高中數(shù)學(xué)拋物線知識點(diǎn)總結(jié)
上學(xué)期間,大家都沒少背知識點(diǎn)吧?知識點(diǎn)也可以理解為考試時會涉及到的知識,也就是大綱的分支。那么,都有哪些知識點(diǎn)呢?以下是小編收集整理的高中數(shù)學(xué)拋物線知識點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
拋物線
y=ax^2+bx+c(a≠0)
就是y等于a乘以x的平方加上b乘以x再加上c
置于平面直角坐標(biāo)系中
a>0時開口向上
a<0時開口向下
(a=0時為一元一次函數(shù))
c>0時函數(shù)圖像與y軸正方向相交
c<0時函數(shù)圖像與y軸負(fù)方向相交
c=0時拋物線經(jīng)過原點(diǎn)
b=0時拋物線對稱軸為y軸
(當(dāng)然a=0且b≠0時該函數(shù)為一次函數(shù))
還有頂點(diǎn)公式y(tǒng)=a(x+h)*2+k,(h,k)=(-b/(2a),(4ac-b^2)/(4a))
就是y等于a乘以(x+h)的平方+k
-h是頂點(diǎn)坐標(biāo)的x
k是頂點(diǎn)坐標(biāo)的y
一般用于求最大值與最小值和對稱軸
拋物線標(biāo)準(zhǔn)方程:y^2=2px(p>0)
它表示拋物線的焦點(diǎn)在x的正半軸上,焦點(diǎn)坐標(biāo)為(p/2,0)準(zhǔn)線方程為x=-p/2
由于拋物線的焦點(diǎn)可在任意半軸,故共有標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
②兩條數(shù)軸
、刍ハ啻怪
④原點(diǎn)重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點(diǎn)。
對于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的.對應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點(diǎn)C的坐標(biāo)。
一個點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對點(diǎn)的坐標(biāo)的`性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的`知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運(yùn)用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:
①結(jié)果必須是整式
、诮Y(jié)果必須是積的形式
、劢Y(jié)果是等式
④因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時取各項最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。
、诖_定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
【高中數(shù)學(xué)拋物線知識點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)必修三知識點(diǎn)總結(jié)04-22
高中數(shù)學(xué)必修四知識點(diǎn)總結(jié)12-03
高中數(shù)學(xué)教學(xué)總結(jié)(15篇)01-21
高中數(shù)學(xué)返崗實踐總結(jié)09-08
高中數(shù)學(xué)教師學(xué)習(xí)總結(jié)01-13
《觀潮》知識點(diǎn)總結(jié)11-17