中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高二數(shù)學(xué)知識(shí)點(diǎn)

時(shí)間:2023-04-25 10:54:26 秀雯 總結(jié) 我要投稿

高二數(shù)學(xué)知識(shí)點(diǎn)大全

  在學(xué)習(xí)中,大家最不陌生的就是知識(shí)點(diǎn)吧!知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。還在為沒有系統(tǒng)的知識(shí)點(diǎn)而發(fā)愁嗎?下面是小編幫大家整理的高二數(shù)學(xué)知識(shí)點(diǎn),供大家參考借鑒,希望可以幫助到有需要的朋友。

高二數(shù)學(xué)知識(shí)點(diǎn)大全

  高二數(shù)學(xué)知識(shí)點(diǎn)

  (1)總體和樣本:

 、僭诮y(tǒng)計(jì)學(xué)中,把研究對(duì)象的全體叫做總體.

  ②把每個(gè)研究對(duì)象叫做個(gè)體.

 、郯芽傮w中個(gè)體的總數(shù)叫做總體容量.

  ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個(gè)體的個(gè)數(shù)稱為樣本容量.

 。2)簡(jiǎn)單隨機(jī)抽樣,也叫純隨機(jī)抽樣。

  就是從總體中不加任何分組、劃類、排隊(duì)等,完全隨機(jī)地抽取調(diào)查單位。特點(diǎn)是:每個(gè)樣本單位被抽中的可能性相同(概率相等),樣本的每個(gè)單位完全獨(dú)立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡(jiǎn)單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時(shí),才采用這種方法。

 。3)簡(jiǎn)單隨機(jī)抽樣常用的方法:

  ①抽簽法

 、陔S機(jī)數(shù)表法

 、塾(jì)算機(jī)模擬法

  在簡(jiǎn)單隨機(jī)抽樣的樣本容量設(shè)計(jì)中,主要考慮:

  ①總體變異情況;

 、谠试S誤差范圍;

 、鄹怕时WC程度。

 。4)抽簽法:

 、俳o調(diào)查對(duì)象群體中的每一個(gè)對(duì)象編號(hào);

 、跍(zhǔn)備抽簽的工具,實(shí)施抽簽;

 、蹖(duì)樣本中的每一個(gè)個(gè)體進(jìn)行測(cè)量或調(diào)查

  高二數(shù)學(xué)知識(shí)點(diǎn)

  一、不等式的性質(zhì)

  1.兩個(gè)實(shí)數(shù)a與b之間的大小關(guān)系

  2.不等式的性質(zhì)

  (4) (乘法單調(diào)性)

  3.絕對(duì)值不等式的性質(zhì)

  (2)如果a>0,那么

  (3)|ab|=|a||b|.

  (5)|a|-|b|≤|a±b|≤|a|+|b|.

  (6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

  二、不等式的證明

  1.不等式證明的依據(jù)

  (2)不等式的性質(zhì)(略)

  (3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

 、赼2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))

  2.不等式的證明方法

  (1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.

  用比較法證明不等式的步驟是:作差——變形——判斷符號(hào).

  (2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

  (3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時(shí),從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

  證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.

  三、解不等式

  1.解不等式問題的分類

  (1)解一元一次不等式.

  (2)解一元二次不等式.

  (3)可以化為一元一次或一元二次不等式的不等式.

 、俳庖辉叽尾坏仁;

 、诮夥质讲坏仁;

 、劢鉄o理不等式;

 、芙庵笖(shù)不等式;

  ⑤解對(duì)數(shù)不等式;

 、藿鈳Ы^對(duì)值的不等式;

  ⑦解不等式組.

  2.解不等式時(shí)應(yīng)特別注意下列幾點(diǎn):

  (1)正確應(yīng)用不等式的基本性質(zhì).

  (2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的增、減性.

  (3)注意代數(shù)式中未知數(shù)的取值范圍.

  3.不等式的同解性

  (5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

  (6)|f(x)|>g(x)

 、倥cf(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;

 、谂cg(x)<0同解.

  (9)當(dāng)a>1時(shí),af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0<a<1時(shí),af(x)>ag(x)與f(x)<g(x)同

  高二數(shù)學(xué)知識(shí)點(diǎn)

  ●不等式

  1、不等式你會(huì)解么?你會(huì)解么?如果是寫解集不要忘記寫成集合形式!

  2、的解集是(1,3),那么的解集是什么?

  3、兩類恒成立問題圖象法——恒成立,則=?

  ★★★★分離變量法——在[1,3]恒成立,則=?(必考題)

  4、線性規(guī)劃問題

 。1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界

  (2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)

 。3)平行直線系去畫

  5、基本不等式的形式和變形形式

  如a,b為正數(shù),a,b滿足,則ab的范圍是

  6、運(yùn)用基本不等式求最值要注意:一正二定三相等!

  如的最小值是的最小值(不要忘記交代是什么時(shí)候取到=!。

  一個(gè)非常重要的函數(shù)——對(duì)勾函數(shù)的圖象是什么?

  運(yùn)用對(duì)勾函數(shù)來處理下面問題的最小值是

  7、★★兩種題型:

  和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?

  和——積(直接用基本不等式),如x,y為正數(shù),則的范圍是?

  不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),則的范圍是?

  高二數(shù)學(xué)知識(shí)點(diǎn)

  平面向量

  戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運(yùn)算:

  (1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

  向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

  戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結(jié)合律);

  兩個(gè)向量共線的充要條件:

  (1) 向量b與非零向量共線的充要條件是有且僅有一個(gè)實(shí)數(shù),使得b=

  (2) 若=( ),b=( )則‖b .

  平面向量基本定理:

  若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對(duì)實(shí)數(shù),使得= e1+ e2

  高二數(shù)學(xué)知識(shí)點(diǎn)

  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

  反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個(gè)正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

  反函數(shù)求導(dǎo)方法

  若F(X),G(X)互為反函數(shù),

  則:F(X)_(X)=1

  E.G.:y=arcsin_siny

  y_=1(arcsinx)_siny)=1

  y=1/(siny)=1/(cosy)=1/根號(hào)(1-sin^2y)=1/根號(hào)(1-x^2)

  其余依此類推

  高二數(shù)學(xué)知識(shí)點(diǎn)

  一、導(dǎo)數(shù)的應(yīng)用

  1、用導(dǎo)數(shù)研究函數(shù)的最值

  確定函數(shù)在其確定的定義域內(nèi)可導(dǎo)(通常為開區(qū)間),求出導(dǎo)函數(shù)在定義域內(nèi)的零點(diǎn),研究在零點(diǎn)左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點(diǎn)處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點(diǎn)處函數(shù)取極小值。

  學(xué)習(xí)了如何用導(dǎo)數(shù)研究函數(shù)的最值之后,可以做一個(gè)有關(guān)導(dǎo)數(shù)和函數(shù)的綜合題來檢驗(yàn)下學(xué)習(xí)成果。

  2、生活中常見的函數(shù)優(yōu)化問題

  1)費(fèi)用、成本最省問題

  2)利潤(rùn)、收益最大問題

  3)面積、體積最(大)問題

  二、推理與證明

  1、歸納推理:歸納推理是高二數(shù)學(xué)的一個(gè)重點(diǎn)內(nèi)容,其難點(diǎn)就是有部分結(jié)論得到一般結(jié)論,的方法是充分考慮部分結(jié)論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點(diǎn)是發(fā)現(xiàn)兩類對(duì)象的相似特征,由其中一類對(duì)象的特征得出另一類對(duì)象的特征,的方法是利用已經(jīng)掌握的數(shù)學(xué)知識(shí),分析兩類對(duì)象之間的關(guān)系,通過兩類對(duì)象已知的相似特征得出所需要的相似特征。

  2、類比推理:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理,簡(jiǎn)而言之,類比推理是由特殊到特殊的推理。

  三、不等式

  對(duì)于含有參數(shù)的一元二次不等式解的討論

  1)二次項(xiàng)系數(shù):如果二次項(xiàng)系數(shù)含有字母,要分二次項(xiàng)系數(shù)是正數(shù)、零和負(fù)數(shù)三種情況進(jìn)行討論。

  2)不等式對(duì)應(yīng)方程的根:如果一元二次不等式對(duì)應(yīng)的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個(gè)根的大小進(jìn)行分類討論,這時(shí),兩個(gè)根的大小關(guān)系就是分類標(biāo)準(zhǔn),如果一元二次不等式對(duì)應(yīng)的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進(jìn)行分類討論。

  通過不等式練習(xí)題能夠幫助你更加熟練的運(yùn)用不等式的知識(shí)點(diǎn),例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結(jié)出來。

  四、坐標(biāo)平面上的直線

  1、內(nèi)容要目:直線的點(diǎn)方向式方程、直線的點(diǎn)法向式方程、點(diǎn)斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點(diǎn)到直線的距離,兩直線的夾角以及兩平行線之間的距離。

  2、基本要求:掌握求直線的方法,熟練轉(zhuǎn)化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點(diǎn)與直線、直線與直線的不同位置,能正確求點(diǎn)到直線的距離、兩直線的交點(diǎn)坐標(biāo)及兩直線的夾角大小。

  3、重難點(diǎn):初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進(jìn)行轉(zhuǎn)化,定量地研究點(diǎn)與直線、直線與直線的位置關(guān)系。根據(jù)兩個(gè)獨(dú)立條件求出直線方程。熟練運(yùn)用待定系數(shù)法。

  五、圓錐曲線

  1、內(nèi)容要目:直角坐標(biāo)系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標(biāo)準(zhǔn)方程及圓的一般方程。橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程及它們的性質(zhì)。

  2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點(diǎn)是否在曲線

  上及求曲線的交點(diǎn)。掌握?qǐng)A、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點(diǎn)之間的距離及交點(diǎn)的中點(diǎn)坐標(biāo)。利用直線和圓、圓和圓的位置關(guān)系的幾何判定,確定它們的位置關(guān)系并利用解析法解決相應(yīng)的幾何問題。

  3、重難點(diǎn):建立數(shù)形結(jié)合的概念,理解曲線與方程的對(duì)應(yīng)關(guān)系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉(zhuǎn)化為等價(jià)的代數(shù)表示,通過代數(shù)方法解決幾何問題。

  高二數(shù)學(xué)知識(shí)點(diǎn)

  (1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;

  (2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;

  (3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;

  (4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;

  (5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。

  (6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率。

  高二數(shù)學(xué)知識(shí)點(diǎn)

  1、幾何概型的定義:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型,簡(jiǎn)稱幾何概型。

  2、幾何概型的概率公式:P(A)=構(gòu)成事件A的區(qū)域長(zhǎng)度(面積或體積);

  試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域長(zhǎng)度(面積或體積)

  3、幾何概型的特點(diǎn):

  1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);

  2)每個(gè)基本事件出現(xiàn)的可能性相等、

  4、幾何概型與古典概型的比較:一方面,古典概型具有有限性,即試驗(yàn)結(jié)果是可數(shù)的;而幾何概型則是在試驗(yàn)中出現(xiàn)無限多個(gè)結(jié)果,且與事件的區(qū)域長(zhǎng)度(或面積、體積等)有關(guān),即試驗(yàn)結(jié)果具有無限性,是不可數(shù)的。這是二者的不同之處;另一方面,古典概型與幾何概型的試驗(yàn)結(jié)果都具有等可能性,這是二者的共性。

  通過以上對(duì)于幾何概型的基本知識(shí)點(diǎn)的梳理,我們不難看出其要核是:要抓住幾何概型具有無限性和等可能性兩個(gè)特點(diǎn),無限性是指在一次試驗(yàn)中,基本事件的個(gè)數(shù)可以是無限的,這是區(qū)分幾何概型與古典概型的關(guān)鍵所在;等可能性是指每一個(gè)基本事件發(fā)生的可能性是均等的,這是解題的基本前提。因此,用幾何概型求解的概率問題和古典概型的基本思路是相同的,同屬于“比例法”,即隨機(jī)事件A的概率可以用“事件A包含的基本事件所占的圖形的長(zhǎng)度、面積(體積)和角度等”與“試驗(yàn)的基本事件所占總長(zhǎng)度、面積(體積)和角度等”之比來表示。下面就幾何概型常見類型題作一歸納梳理。

  高二數(shù)學(xué)知識(shí)點(diǎn)

  1、向量的加法

  向量的加法滿足平行四邊形法則和三角形法則。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的運(yùn)算律:

  交換律:a+b=b+a;

  結(jié)合律:(a+b)+c=a+(b+c)。

  2、向量的減法

  如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

  AB-AC=CB. 即“共同起點(diǎn),指向被減”

  a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

  3、數(shù)乘向量

  實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

  當(dāng)λ>0時(shí),λa與a同方向;

  當(dāng)λ<0時(shí),λa與a反方向;

  當(dāng)λ=0時(shí),λa=0,方向任意。

  當(dāng)a=0時(shí),對(duì)于任意實(shí)數(shù)λ,都有λa=0。

  注:按定義知,如果λa=0,那么λ=0或a=0。

  實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長(zhǎng)或壓縮。

  當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長(zhǎng)為原來的∣λ∣倍;

  當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

  數(shù)與向量的乘法滿足下面的運(yùn)算律

  結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。

  向量對(duì)于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.

  數(shù)對(duì)于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  數(shù)乘向量的消去律:

  ① 如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。

 、 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的數(shù)量積

  定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

  定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

  向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。

  向量的數(shù)量積的運(yùn)算率

  a·b=b·a(交換率);

  (a+b)·c=a·c+b·c(分配率);

  向量的數(shù)量積的性質(zhì)

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

  高二數(shù)學(xué)知識(shí)點(diǎn)

  空間兩條直線只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類:

 。1)共面:平行、相交

 。2)異面:

  異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。

  異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。

  兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法

  兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法

  若從有無公共點(diǎn)的角度看可分為兩類:

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線;

  (2)沒有公共點(diǎn)——平行或異面

  直線和平面的位置關(guān)系:

  直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

 、僦本在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

  ②直線和平面相交——有且只有一個(gè)公共點(diǎn)

  直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。

  空間向量法(找平面的法向量)

  規(guī)定:

  a、直線與平面垂直時(shí),所成的角為直角

  b、直線與平面平行或在平面內(nèi),所成的角為0°角

  由此得直線和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角

  三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直

  直線和平面垂直

  直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

 、壑本和平面平行——沒有公共點(diǎn)

  直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

【高二數(shù)學(xué)知識(shí)點(diǎn)】相關(guān)文章:

高二數(shù)學(xué)知識(shí)點(diǎn)07-15

高二的數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)04-22

數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)03-07

高二數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-08

高二數(shù)學(xué)的知識(shí)點(diǎn)整理02-24

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-19

數(shù)學(xué)高二知識(shí)點(diǎn)總結(jié)歸納12-29

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12-18

高二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)08-04

高二數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)03-30