高一數(shù)學知識點總結(合集15篇)
總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,不如靜下心來好好寫寫總結吧。那么如何把總結寫出新花樣呢?下面是小編整理的高一數(shù)學知識點總結,僅供參考,歡迎大家閱讀。
高一數(shù)學知識點總結1
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
、诩现械脑鼐哂写_定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的.表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N
子集、交集、并集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)并集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。
子集的幾個等價關系
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
、蹵∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、并集運算的性質
、貯∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
、跜u(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數(shù):
設集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關系()
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}
對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。
高一數(shù)學知識點總結2
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數(shù)a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關系:
1、直線和圓位置關系的判定方法一是方程的觀點,即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關系。
、佴>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離、
2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等于圓的半徑;
⑵過切點的半徑垂直于切線;
、墙涍^圓心,與切線垂直的直線必經過切點;
、冉涍^切點,與切線垂直的'直線必經過圓心;
當一條直線滿足
。1)過圓心;
。2)過切點;
。3)垂直于切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點并且垂直于這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
高一數(shù)學知識點總結3
集合的運算
運算類型交 集并 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函數(shù)非奇非偶函數(shù)
函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)
注意:利用函數(shù)的單調性,結合圖象還可以看出:
。1)在[a,b]上, 值域是 或 ;
。2)若 ,則 ; 取遍所有正數(shù)當且僅當 ;
。3)對于指數(shù)函數(shù) ,總有 ;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對數(shù)的書寫格式.
兩個重要對數(shù):
○1 常用對數(shù):以10為底的對數(shù) ;
○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .
指數(shù)式與對數(shù)式的互化
冪值 真數(shù)
= N = b
底數(shù)
指數(shù) 對數(shù)
。ǘ⿲(shù)的運算性質
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
。3)、重要的公式 ①、負數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式
。ǘ⿲(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
2、對數(shù)函數(shù)的性質:
a>10 定義域x>0定義域x>0 值域為R值域為R 在R上遞增在R上遞減 函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0) 。ㄈ﹥绾瘮(shù) 1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù). 2、冪函數(shù)性質歸納. (1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1); 。2) 時,冪函數(shù)的圖象通過原點,并且在區(qū)間 上是增函數(shù).特別地,當 時,冪函數(shù)的圖象下凸;當 時,冪函數(shù)的圖象上凸; 。3) 時,冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第四章 函數(shù)的應用 一、方程的根與函數(shù)的零點 1、函數(shù)零點的概念:對于函數(shù) ,把使 成立的實數(shù) 叫做函數(shù) 的零點。 2、函數(shù)零點的意義:函數(shù) 的零點就是方程 實數(shù)根,亦即函數(shù) 的圖象與 軸交點的橫坐標。 即:方程 有實數(shù)根 函數(shù) 的.圖象與 軸有交點 函數(shù) 有零點. 3、函數(shù)零點的求法: ○1 (代數(shù)法)求方程 的實數(shù)根; ○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質找出零點. 4、二次函數(shù)的零點: 二次函數(shù) . 。1)△>0,方程 有兩不等實根,二次函數(shù)的圖象與 軸有兩個交點,二次函數(shù)有兩個零點. 。2)△=0,方程 有兩相等實根,二次函數(shù)的圖象與 軸有一個交點,二次函數(shù)有一個二重零點或二階零點. 。3)△<0,方程 無實根,二次函數(shù)的圖象與 軸無交點,二次函數(shù)無零點. 5.函數(shù)的模型 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性;2.元素的互異性;3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。 (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。 (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。 (4)集合元素的三個特性使集合本身具有了確定性和整體性。 3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1.用拉丁字母表示集合:A={我校的'籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法。 二、集合間的基本關系 1.“包含”關系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關系(5≥5,且5≤5,則5=5) 實例:設A={x|x2-1=0}B={-1,1}“元素相同” 結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B 、偃魏我粋集合是它本身的子集。AíA 、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA) 、廴绻鸄íB,BíC,那么AíC ④如果AíB同時BíA那么A=B 3.不含任何元素的集合叫做空集,記為Φ 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A. 1、集合的概念 集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)”。理解這句話,應該把握4個關鍵詞:對象、確定的、不同的、整體。 對象――即集合中的元素。集合是由它的元素確定的。 整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。 確定的――集合元素的確定性――元素與集合的“從屬”關系。 不同的――集合元素的互異性。 2、有限集、無限集、空集的意義 有限集和無限集是針對非空集合來說的。我們理解起來并不困難。 我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下“0與Φ”及“Φ與{Φ}”的關系。 幾個常用數(shù)集N、N_N+、Z、Q、R要記牢。 3、集合的表示方法 (1)列舉法的表示形式比較容易掌握,并不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合: ①元素不太多的有限集,如{0,1,8} 、谠剌^多但呈現(xiàn)一定的規(guī)律的'有限集,如{1,2,3,…,100} 、鄢尸F(xiàn)一定規(guī)律的無限集,如{1,2,3,…,n,…} ●注意a與{a}的區(qū)別 ●注意用列舉法表示集合時,集合元素的“無序性”。 (2)特征性質描述法的關鍵是把所研究的集合的“特征性質”找準,然后適當?shù)乇硎境鰜砭托辛。但關鍵點也是難點。學習時多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。 4、集合之間的關系 ●注意區(qū)分“從屬”關系與“包含”關系 “從屬”關系是元素與集合之間的關系。 “包含”關系是集合與集合之間的關系。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用“”等符號,會用Venn圖描述集合之間的關系是基本要求。 ●注意辨清Φ與{Φ}兩種關系。 圓錐曲線性質: 一、圓錐曲線的定義 1.橢圓:到兩個定點的距離之和等于定長(定長大于兩個定點間的距離)的`動點的軌跡叫做橢圓. 2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小于兩個定點的距離)的動點軌跡叫做雙曲線.即. 3.圓錐曲線的統(tǒng)一定義:到定點的距離與到定直線的距離的比e是常數(shù)的點的軌跡叫做圓錐曲線.當01時為雙曲線. 二、圓錐曲線的方程 1.橢圓:+ =1(a>b>0)或 + =1(a>b>0)(其中,a2=b2+c2) 2.雙曲線:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2) 3.拋物線:y2=±2px(p>0),x2=±2py(p>0) 三、圓錐曲線的性質 1.橢圓:+ =1(a>b>0) (1)范圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)(5)準線:x=± 2.雙曲線:- =1(a>0,b>0)(1)范圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)準線:x=± (6)漸近線:y=± x 3.拋物線:y2=2px(p>0)(1)范圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1(5)準線:x=- 一、函數(shù)的概念與表示 1、映射 (1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。 注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射 2、函數(shù) 構成函數(shù)概念的`三要素 ①定義域②對應法則③值域 兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同 二、函數(shù)的解析式與定義域 1、求函數(shù)定義域的主要依據(jù): (1)分式的分母不為零; (2)偶次方根的被開方數(shù)不小于零,零取零次方沒有意義; (3)對數(shù)函數(shù)的真數(shù)必須大于零; (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1; 三、函數(shù)的值域 1求函數(shù)值域的方法 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù); ②換元法:利用換元法將函數(shù)轉化為二次函數(shù)求值域,適合根式內外皆為一次式; 、叟袆e式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式; 、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖); 、輪握{性法:利用函數(shù)的單調性求值域; ⑥圖象法:二次函數(shù)必畫草圖求其值域; 、呃脤μ柡瘮(shù) 、鄮缀我饬x法:由數(shù)形結合,轉化距離等求值域。主要是含絕對值函數(shù) 四.函數(shù)的奇偶性 1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。 如果對于任意∈A,都有,則稱y=f(x)為奇 函數(shù)。 2.性質: 、賧=f(x)是偶函數(shù)y=f(x)的圖象關于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關于原點對稱, ②若函數(shù)f(x)的定義域關于原點對稱,則f(0)=0 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關于原點對稱] 3.奇偶性的判斷 、倏炊x域是否關于原點對稱②看f(x)與f(-x)的關系 五、函數(shù)的單調性 1、函數(shù)單調性的定義: 2設是定義在M上的函數(shù),若f(x)與g(x)的單調性相反,則在M上是減函數(shù);若f(x)與g(x)的單調性相同,則在M上是增函數(shù)。 棱錐 棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐 棱錐的的性質: (1)側棱交于一點。側面都是三角形 (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠棱錐高的比的平方 正棱錐 正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內的射影是底面的中心,這樣的棱錐叫做正棱錐。 正棱錐的性質: (1)各側棱交于一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的.高相等,它叫做正棱錐的斜高。 (3)多個特殊的直角三角形 esp: a、相鄰兩側棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。 b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。 數(shù)學是利用符號語言研究數(shù)量、結構、變化以及空間模型等概念的一門學科。小編準備了高一數(shù)學必修1期末考知識點,希望你喜歡。 一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素. 2、集合的中元素的三個特性: 1.元素的確定性; 2.元素的互異性; 3.元素的無序性 說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素. (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素. (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣. (4)集合元素的三個特性使集合本身具有了確定性和整體性. 3、集合的表示:{ } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} 2.集合的表示方法:列舉法與描述法. 注意。撼S脭(shù)集及其記法: 非負整數(shù)集(即自然數(shù)集)記作:N 正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實數(shù)集R 關于屬于的概念 集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上. 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法.用確定的條件表示某些對象是否屬于這個集合的方法. ①語言描述法:例:{不是直角三角形的三角形} 、跀(shù)學式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32} 4、集合的分類: 1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5} 二、集合間的基本關系 1.包含關系子集 注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合. 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A 2.相等關系(55,且55,則5=5) 實例:設 A={x|x2-1=0} B={-1,1} 元素相同 結論:對于兩個集合A與B,如果集合A的.任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B 、 任何一個集合是它本身的子集.AA 、谡孀蛹:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A) ③如果 AB, BC ,那么 AC 、 如果AB 同時 BA 那么A=B 3. 不含任何元素的集合叫做空集,記為 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集. 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作AB(讀作A交B),即AB={x|xA,且xB}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}. 3、交集與并集的性質:AA = A, A=, AB = BA,AA = A, A= A ,AB = BA. 4、全集與補集 (1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) (2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集.通常用U來表示. (3)性質:⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U 歸納1 1、“包含”關系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2、“相等”關系(5≥5,且5≤5,則5=5) 實例:設A={x|x2—1=0}B={—1,1}“元素相同” 結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B ①任何一個集合是它本身的子集。AíA 、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA) ③如果AíB,BíC,那么AíC 、苋绻鸄íB同時BíA那么A=B 3、不含任何元素的集合叫做空集,記為Φ 規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。 歸納2 形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。 自變量x的取值范圍是不等于0的一切實數(shù)。 反比例函數(shù)圖像性質: 反比例函數(shù)的圖像為雙曲線。 由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關于原點對稱。 另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。 上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。 當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù) 當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù) 反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。 知識點: 1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。 2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移) 歸納3 方程的根與函數(shù)的零點 1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。 2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標。即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點。 3、函數(shù)零點的求法: 。1)(代數(shù)法)求方程的實數(shù)根; 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的.性質找出零點。 4、二次函數(shù)的零點: 。1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。 (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。 。3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。 歸納3 形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。 自變量x的取值范圍是不等于0的一切實數(shù)。 反比例函數(shù)圖像性質: 反比例函數(shù)的圖像為雙曲線。 由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關于原點對稱。 另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。 如圖,上面給出了k分別為正和負(2和—2)時的函數(shù)圖像。 當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù) 當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù) 反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。 知識點: 1、過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。 2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移) 歸納4 冪函數(shù)的性質: 對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性: 首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道: 排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù); 排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù); 排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。 總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù); 如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。 在x大于0時,函數(shù)的值域總是大于0的實數(shù)。 在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。 而只有a為正數(shù),0才進入函數(shù)的值域。 由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、 可以看到: 。1)所有的圖形都通過(1,1)這點。 (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。 。3)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。 (4)當a小于0時,a越小,圖形傾斜程度越大。 (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。 。6)顯然冪函數(shù)無界。 解題方法:換元法 解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。 換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來。或者變?yōu)槭煜さ男问,把復雜的計算和推證簡化。 它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。 二次函數(shù) I.定義與定義表達式 一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.) 則稱y為x的二次函數(shù)。 二次函數(shù)表達式的右邊通常為二次三項式。 II.二次函數(shù)的三種表達式 一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0) 頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)] 交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線] 注:在3種形式的互相轉化中,有如下關系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函數(shù)的圖像 在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的`圖像是一條拋物線。 IV.拋物線的性質 1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線的交點為拋物線的頂點P。 特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0) 2.拋物線有一個頂點P,坐標為 P(-b/2a,(4ac-b^2)/4a) 當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。 3.二次項系數(shù)a決定拋物線的開口方向和大小。 當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。 |a|越大,則拋物線的開口越小。 一:函數(shù)及其表示 知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等 1. 函數(shù)與映射的區(qū)別: 2. 求函數(shù)定義域 常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下: 、佼攆(x)為整式時,函數(shù)的定義域為R. 、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。 ③當f(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的實數(shù)集合。 、墚攆(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。 ⑤如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。 、迯秃虾瘮(shù)的定義域是復合的各基本的函數(shù)定義域的交集。 、邔τ谟蓪嶋H問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的'制約。 3. 求函數(shù)值域 (1)、觀察法:通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域; (2)、配方法;如果一個函數(shù)是二次函數(shù)或者經過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域; (3)、判別式法: (4)、數(shù)形結合法;通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域; (5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域; (6)、利用函數(shù)的單調性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調的,那么就可以利用端點的函數(shù)值來求出值域; (7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域; (8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域; (9)、反函數(shù)法:如果函數(shù)在其定義域內存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。 內容子交并補集,還有冪指對函數(shù)。性質奇偶與增減,觀察圖象最明顯。 復合函數(shù)式出現(xiàn),性質乘法法則辨,若要詳細證明它,還須將那定義抓。 指數(shù)與對數(shù)函數(shù),初中學習方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。 函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù); 正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。 兩個互為反函數(shù),單調性質都相同;圖象互為軸對稱,Y=X是對稱軸; 求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。 冪函數(shù)性質易記,指數(shù)化既約分數(shù);函數(shù)性質看指數(shù),奇母奇子奇函數(shù), 奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內,函數(shù)增減看正負。 形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。 自變量x的取值范圍是不等于0的一切實數(shù)。 反比例函數(shù)圖像性質: 反比例函數(shù)的圖像為雙曲線。 由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關于原點對稱。 另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。 如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。 當K>0時,反比例函數(shù)圖像經過一,三象限,是減函數(shù) 當K<0時,反比例函數(shù)圖像經過二,四象限,是增函數(shù) 反比例函數(shù)圖像只能無限趨向于坐標軸,無法和坐標軸相交。 知識點: 1.過反比例函數(shù)圖象上任意一點作兩坐標軸的.垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為k。 2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移) 函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的點P(x,y)的函數(shù)C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上. (2)畫法 A、描點法: B、圖象變換法 常用變換方法有三種 1)平移變換 2)伸縮變換 3)對稱變換 4.高中數(shù)學函數(shù)區(qū)間的概念 (1)函數(shù)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 5.映射 一般地,設A、B是兩個非空的`函數(shù),如果按某一個確定的對應法則f,使對于函數(shù)A中的任意一個元素x,在函數(shù)B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數(shù)A到函數(shù)B的一個映射。記作“f(對應關系):A(原象)B(象)” 對于映射f:A→B來說,則應滿足: (1)函數(shù)A中的每一個元素,在函數(shù)B中都有象,并且象是的; (2)函數(shù)A中不同的元素,在函數(shù)B中對應的象可以是同一個; (3)不要求函數(shù)B中的每一個元素在函數(shù)A中都有原象。 6.高中數(shù)學函數(shù)之分段函數(shù) (1)在定義域的不同部分上有不同的解析表達式的函數(shù)。 (2)各部分的自變量的取值情況. (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集. 補充:復合函數(shù) 如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數(shù)。 1.函數(shù)的概念:設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域. 注意:2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個式子有意義的實數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 定義域補充 能使函數(shù)式有意義的實數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實際問題中的函數(shù)的定義域還要保證實際問題有意義. 構成函數(shù)的三要素:定義域、對應關系和值域 再注意:(1)構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))(2)兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。相同函數(shù)的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備) 值域補充 (1)、函數(shù)的值域取決于定義域和對應法則,不論采取什么方法求函數(shù)的值域都應先考慮其定義域.(2).應熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復雜函數(shù)值域的基礎。 3.函數(shù)圖象知識歸納 (1)定義:在平面直角坐標系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標,函數(shù)值y為縱坐標的.點P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象. C上每一點的坐標(x,y)均滿足函數(shù)關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數(shù)對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A} 圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2)畫法 A、描點法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最后用平滑的曲線將這些點連接起來. B、圖象變換法(請參考必修4三角函數(shù)) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換 (3)作用: 1、直觀的看出函數(shù)的性質;2、利用數(shù)形結合的方法分析解題的思路。提高解題的速度。 【高一數(shù)學知識點總結】相關文章: 高一數(shù)學知識點總結11-09 高一數(shù)學必修知識點總結08-01 高一數(shù)學必修知識點總結12-15 高一數(shù)學集合知識點總結12-01 高一數(shù)學必修知識點總結08-30 高一數(shù)學知識點總結06-06 高一數(shù)學的知識點歸納總結07-11 高一數(shù)學知識點總結06-10高一數(shù)學知識點總結4
高一數(shù)學知識點總結5
高一數(shù)學知識點總結6
高一數(shù)學知識點總結7
高一數(shù)學知識點總結8
高一數(shù)學知識點總結9
高一數(shù)學知識點總結10
高一數(shù)學知識點總結11
高一數(shù)學知識點總結12
高一數(shù)學知識點總結13
高一數(shù)學知識點總結14
高一數(shù)學知識點總結15