高一函數(shù)知識點總結(jié)2篇
總結(jié)是在某一特定時間段對學(xué)習(xí)和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)加以回顧和分析的書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚成績,讓我們來為自己寫一份總結(jié)吧?偨Y(jié)一般是怎么寫的呢?以下是小編幫大家整理的高一函數(shù)知識點總結(jié),歡迎大家分享。
高一函數(shù)知識點總結(jié)1
(一)、映射、函數(shù)、反函數(shù)
1、對應(yīng)、映射、函數(shù)三個概念既有共性又有區(qū)別,映射是一種特殊的對應(yīng),而函數(shù)又是一種特殊的映射。
2、對于函數(shù)的概念,應(yīng)注意如下幾點:
。1)掌握構(gòu)成函數(shù)的三要素,會判斷兩個函數(shù)是否為同一函數(shù)。
。2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數(shù)關(guān)系式,特別是會求分段函數(shù)的解析式。
。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)、
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
。1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
。2)由y=f(x)的解析式求出x=f—1(y);
。3)將x,y對換,得反函數(shù)的習(xí)慣表達式y(tǒng)=f—1(x),并注明定義域、
注意①:對于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起、
、谑煜さ膽(yīng)用,求f—1(x0)的值,合理利用這個結(jié)論,可以避免求反函數(shù)的過程,從而簡化運算、
(二)、函數(shù)的解析式與定義域
1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對應(yīng)法則的同時,求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:
。1)有時一個函數(shù)來自于一個實際問題,這時自變量x有實際意義,求定義域要結(jié)合實際意義考慮;
(2)已知一個函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:
、俜质降姆帜覆坏脼榱悖
、谂即畏礁谋婚_方數(shù)不小于零;
、蹖(shù)函數(shù)的真數(shù)必須大于零;
、苤笖(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。
應(yīng)注意,一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。
。3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,主要考慮定義域的深刻含義即可。
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。
2、求函數(shù)的解析式一般有四種情況
。1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式。
。2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。
。3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式。
(三)、函數(shù)的值域與最值
1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。
。2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元。
。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的`關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。
。4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。
。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧。
。6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
。7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。
。8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最。ù螅┲。因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2?梢姸x域?qū)瘮?shù)的值域或最值的影響。
3、函數(shù)的最值在實際問題中的應(yīng)用
函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最。钡戎T多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值。
(四)、函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時需要將函數(shù)化簡或應(yīng)用定義的等價形式。
高一函數(shù)知識點總結(jié)2
知識點總結(jié)
本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的圖象就迎刃而解了。
一、函數(shù)的單調(diào)性
1、函數(shù)單調(diào)性的定義
2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法
二、函數(shù)的奇偶性和周期性
1、函數(shù)的奇偶性和周期性的定義
2、函數(shù)的奇偶性的判定和證明方法
3、函數(shù)的周期性的判定方法
三、函數(shù)的圖象
1、函數(shù)圖象的作法 (1)描點法 (2)圖象變換法
2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。
常見考法
本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。
誤區(qū)提醒
1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。
2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。
3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。
4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。
5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。
【高一函數(shù)知識點總結(jié)2篇】相關(guān)文章:
高一政治知識點總結(jié)12-12
高一化學(xué)知識點總結(jié)01-12
高一歷史知識點總結(jié)12-11
高一歷史古代中國知識點總結(jié)01-27
高一政治必修一知識點總結(jié)12-12
奇函數(shù)的反函數(shù)是奇函數(shù)嗎10-12
高一物理必修一知識點總結(jié)08-30
高一數(shù)學(xué)必修一知識點總結(jié)08-09
高一語文必修一知識點總結(jié)01-12