中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

求函數(shù)極限的方法總結(jié)

時間:2022-01-19 15:19:21 總結(jié) 我要投稿
  • 相關(guān)推薦

求函數(shù)極限的方法總結(jié)

  極限是微積分學(xué)中的一個基本概念,是微積分學(xué)中各種概念和計(jì)算方法能夠建立和應(yīng)用的前提。下面求函數(shù)極限的方法總結(jié),歡迎閱讀參考!

求函數(shù)極限的方法總結(jié)

  求函數(shù)極限的方法總結(jié) 篇1

  利用函數(shù)連續(xù)性:直接將趨向值帶入函數(shù)自變量中,此時要要求分母不能為0;通過已知極限:兩個重要極限需要牢記;采用洛必達(dá)法則求極限:洛必達(dá)法則是分式求極限的一種很好的方法,當(dāng)遇到分式0/0或者∞/∞時可以采用洛必達(dá),其他形式也可以通過變換成此形式。

  函數(shù)極限是高等數(shù)學(xué)最基本的概念之一,導(dǎo)數(shù)等概念都是在函數(shù)極限的定義上完成的。函數(shù)極限性質(zhì)的合理運(yùn)用。常用的函數(shù)極限的性質(zhì)有函數(shù)極限的唯一性、局部有界性、保序性以及函數(shù)極限的運(yùn)算法則和復(fù)合函數(shù)的極限等等。

  1、等價無窮小的轉(zhuǎn)化,(只能在乘除時候使用,但是不是說一定在加減時候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記(x趨近無窮的時候還原成無窮小)。

  2、洛必達(dá)法則(大題目有時候會有暗示要你使用這個方法)。首先他的使用有嚴(yán)格的使用前提!必須是X趨近而不是N趨近。ㄋ悦鎸(shù)列極限時候先要轉(zhuǎn)化成求x趨近情況下的極限,當(dāng)然n趨近是x趨近的一種情況而已,是必要條件(還有一點(diǎn)數(shù)列極限的n當(dāng)然是趨近于正無窮的,不可能是負(fù)無窮!)必須是函數(shù)的導(dǎo)數(shù)要存在。偃绺嬖V你g(x),沒告訴你是否可導(dǎo),直接用,無疑于找死。┍仨毷0比0無窮大比無窮大!當(dāng)然還要注意分母不能為0。洛必達(dá)法則分為3種情況:0比0無窮比無窮時候直接用;0乘以無窮,無窮減去無窮(應(yīng)為無窮大于無窮小成倒數(shù)的關(guān)系)所以無窮大都寫成了無窮小的倒數(shù)形式了。通項(xiàng)之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對于(指數(shù)冪數(shù))方程方法主要是取指數(shù)還取對數(shù)的方法,這樣就能把冪上的函數(shù)移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無窮時候他的冪移下來趨近于0,當(dāng)他的冪移下來趨近于無窮的時候,LNX趨近于0)。

  3、泰勒公式(含有e的x次方的時候,尤其是含有正余弦的加減的時候要特變注意。〦的x展開sina,展開cosa,展開ln1+x,對題目簡化有很好幫助。

  4、面對無窮大比上無窮大形式的解決辦法,取大頭原則最大項(xiàng)除分子分母!看上去復(fù)雜,處理很簡單!

  5、無窮小于有界函數(shù)的處理辦法,面對復(fù)雜函數(shù)時候,尤其是正余弦的復(fù)雜函數(shù)與其他函數(shù)相乘的時候,一定要注意這個方法。面對非常復(fù)雜的函數(shù),可能只需要知道它的范圍結(jié)果就出來了!

  6、夾逼定理(主要對付的是數(shù)列極限。┻@個主要是看見極限中的函數(shù)是方程相除的形式,放縮和擴(kuò)大。

  7、等比等差數(shù)列公式應(yīng)用(對付數(shù)列極限)(q絕對值符號要小于1)。

  8、各項(xiàng)的拆分相加(來消掉中間的大多數(shù))(對付的還是數(shù)列極限)可以使用待定系數(shù)法來拆分化簡函數(shù)。

  9、求左右極限的方式(對付數(shù)列極限)例如知道Xn與Xn+1的關(guān)系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時一樣的,因?yàn)闃O限去掉有限項(xiàng)目極限值不變化。

  10、兩個重要極限的應(yīng)用。這兩個很重要!對第一個而言是X趨近0時候的sinx與x比值。第2個就如果x趨近無窮大,無窮小都有對有對應(yīng)的形式(第2個實(shí)際上是用于函數(shù)是1的無窮的形式)(當(dāng)?shù)讛?shù)是1的時候要特別注意可能是用地兩個重要極限)。

  11、還有個方法,非常方便的方法,就是當(dāng)趨近于無窮大時候,不同函數(shù)趨近于無窮的速度是不一樣的!x的`x次方快于x!快于指數(shù)函數(shù),快于冪數(shù)函數(shù),快于對數(shù)函數(shù)(畫圖也能看出速率的快慢)!當(dāng)x趨近無窮的時候,他們的比值的極限一眼就能看出來了。

  12、換元法是一種技巧,不會對單一道題目而言就只需要換元,而是換元會夾雜其中。

  13、假如要算的話四則運(yùn)算法則也算一種方法,當(dāng)然也是夾雜其中的。

  14、還有對付數(shù)列極限的一種方法,就是當(dāng)你面對題目實(shí)在是沒有辦法,走投無路的時候可以考慮轉(zhuǎn)化為定積分。一般是從0到1的形式。

  15、單調(diào)有界的性質(zhì),對付遞推數(shù)列時候使用證明單調(diào)性!

  16、直接使用求導(dǎo)數(shù)的定義來求極限,(一般都是x趨近于0時候,在分子上f(x加減某個值)加減f(x)的形式,看見了要特別注意)(當(dāng)題目中告訴你F(0)=0時候f(0)導(dǎo)數(shù)=0的時候,就是暗示你一定要用導(dǎo)數(shù)定義!

  函數(shù)是表皮,函數(shù)的性質(zhì)也體現(xiàn)在積分微分中。例如他的奇偶性質(zhì)他的周期性。還有復(fù)合函數(shù)的性質(zhì):

  1、奇偶性,奇函數(shù)關(guān)于原點(diǎn)對稱偶函數(shù)關(guān)于軸對稱偶函數(shù)左右2邊的圖形一樣(奇函數(shù)相加為0);

  2、周期性也可用在導(dǎo)數(shù)中在定積分中也有應(yīng)用定積分中的函數(shù)是周期函數(shù)積分的周期和他的一致;

  3、復(fù)合函數(shù)之間是自變量與應(yīng)變量互換的關(guān)系;

  4、還有個單調(diào)性。(再求0點(diǎn)的時候可能用到這個性質(zhì)。ǹ梢詫(dǎo)的函數(shù)的單調(diào)性和他的導(dǎo)數(shù)正負(fù)相關(guān)):o再就是總結(jié)一下間斷點(diǎn)的問題(應(yīng)為一般函數(shù)都是連續(xù)的所以間斷點(diǎn)是對于間斷函數(shù)而言的)間斷點(diǎn)分為第一類和第二類剪斷點(diǎn)。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點(diǎn)或者左右極限存在相等但是不等于函數(shù)在這點(diǎn)的值可取的間斷點(diǎn);第二類間斷點(diǎn)是震蕩間斷點(diǎn)或者是無窮極端點(diǎn)(這也說明極限即使不存在也有可能是有界的)。

  數(shù)學(xué)成績是長期積累的結(jié)果,因此準(zhǔn)備時間一定要充分。首先對各個知識點(diǎn)做深入細(xì)致的分析,注意抓考點(diǎn)和重點(diǎn)題型,同時逐步進(jìn)行一些訓(xùn)練,積累解題思路,這有利于知識的消化吸收,徹底弄清楚有關(guān)知識的縱向與橫向聯(lián)系,轉(zhuǎn)化為自己真正掌握的東西。

  求函數(shù)極限的方法總結(jié) 篇2

  (一) 四則運(yùn)算法則

  四則運(yùn)算法則在極限中最直接的應(yīng)用就是分解,即將復(fù)雜的函數(shù)分解為若干個相對簡單的函數(shù)和、積和商,各自求出極限即可得到要求的極限。但是在分解的時候要注意:(1)分解的各部分各自的極限都要存在;(2)滿足相應(yīng)四則運(yùn)算法則,(分母不能為0)。四則運(yùn)算的另外一個應(yīng)用就是“抓大頭”。如果極限式中有幾項(xiàng)均是無窮大,就從無窮大中選取起主要作用的那一項(xiàng),選取的標(biāo)準(zhǔn)是選趨近于無窮最快的那一項(xiàng),對數(shù)函數(shù)趨于無窮的速度遠(yuǎn)遠(yuǎn)小于冪函數(shù),冪函數(shù)趨于無窮的速度遠(yuǎn)遠(yuǎn)小于指數(shù)函數(shù)。

  (二) 洛必達(dá)法則(結(jié)合等價無窮小替換、變限積分求導(dǎo))

  洛必達(dá)法則解決的.是“零比零“或“無窮比無窮”型的未定式的形式,所以只要是這兩種形式的未定式都可以考慮用洛必達(dá)法則。當(dāng)然,在用洛必達(dá)的時候需要注意:

  (1)它的三個條件都要滿足,尤其要注意第二三個條件,當(dāng)三個條件都滿足的時候才能用洛必達(dá)法則;

  (2)用洛必達(dá)法則之前一定要先化簡,把要求極限的式子化成“干凈”的式子,否則會遇到越求導(dǎo)越麻煩的情況,有的甚至求不出來,所以一定要先化簡。化簡常用的方法就是等價無窮小替換,有時也會用到四則運(yùn)算?忌欢ㄒ煊洺S玫牡葍r無窮小,以及替換原則(乘除因子可以替換,加減不要替換)?佳兄,除了也常常會把變限積分和洛必達(dá)相結(jié)合進(jìn)行考查,這種類型的題目,首先要考慮洛必達(dá),但是我們也要掌握變限積分求導(dǎo)。

  另外,考試中有時候不直接考查“零比零“或“無窮比無窮”型,會出“零乘以無窮”,“無窮減無窮”這種形式,我們用的方法就是把他們變成“零比零“或“無窮比無窮”型。

  (三) 利用泰勒公式求極限

  利用泰勒公式求極限,也是考研中常見的方法。泰勒公式可以將常用的等價無窮小進(jìn)行推廣,如

  (四) 定積分定義

  考研中求n項(xiàng)和的極限這類題型用夾逼定理做不出來,這時候需要用定積分定義去求極限。常用的是這種形式

  只要把要求的極限湊成等是左邊的形式,就可以用定積分去求極限了。

  求函數(shù)極限的方法總結(jié) 篇3

  1.驗(yàn)證定義:“猜出”極限值,然后再驗(yàn)證這個值確實(shí)是極限值/驗(yàn)證收斂,再由極限唯一性可得。

  2.利用收斂定理、兩邊夾、關(guān)于無窮小/大的一些結(jié)果,四則運(yùn)算、復(fù)合(形式上的“換元公式”)、函數(shù)極限的序列式定義。

  從1+2得到的'一些基本的結(jié)果出發(fā),利用3就可以去完成一大堆極限運(yùn)算了。

  先從函數(shù)極限開始:

  3.利用初等函數(shù)的連續(xù)性,結(jié)果就是把求極限變成了求函數(shù)值。

  4.關(guān)于P(x)/Q(x),P、Q是兩個多項(xiàng)式。如果Q(a)不等于0,見4;如果Q(a)等于0但P(a)不等于0,Infinity;如果Q(a)=P(a)=0,利用綜合除法,P、Q均除以(x-a),可以多除幾次直到"Q"不能被整除,這時候就轉(zhuǎn)化為前面的情形。

  5.其它0/0:利用“換元”盡一切可能地轉(zhuǎn)化為幾種基本極限中的一種或多種。當(dāng)然這里有一大殺器L'Hospital法則,不過注意它不能用來求sin x/x(x趨于0),因?yàn)椋篖'Hospital法則需要sin的導(dǎo)數(shù),而求出lim sin x/x——求sinx的導(dǎo)數(shù)。

  關(guān)于序列極限;

  6.0/0,利用a^n-b^n=(a-b)[a^(n-1)+ba^(n-2)+……+b^(n-1)]以及加減輔助項(xiàng),盡量把減轉(zhuǎn)化為加。

  7.如果是遞推形式,先利用遞推式求出極限(如果有)應(yīng)該滿足的方程,求出極限,然后驗(yàn)證序列收斂;蛘呃脡嚎s映像。

【求函數(shù)極限的方法總結(jié)】相關(guān)文章:

求極限方法總結(jié)03-30

冪指函數(shù)求極限09-10

數(shù)分求極限的方法總結(jié)03-30

最全求極限方法總結(jié)11-19

求高極限數(shù)的方法總結(jié)03-30

求極限的16個方法總結(jié)12-25

求函數(shù)最值的方法總結(jié)03-31

常函數(shù)有極限嗎10-12

反函數(shù)怎么求09-10