初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié)
在我們上學(xué)期間,不管我們學(xué)什么,都需要掌握一些知識(shí)點(diǎn),知識(shí)點(diǎn)就是“讓別人看完能理解”或者“通過(guò)練習(xí)我能掌握”的內(nèi)容。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編為大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié),僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié)1
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(zhǎng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結(jié)圓上任意兩點(diǎn)的線段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對(duì)的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O(shè)命題的結(jié)論不成立;
、趶倪@個(gè)假設(shè)出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設(shè)有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對(duì)稱圖形,經(jīng)過(guò)圓心的每一條直線都是它的`對(duì)稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)兩條弧。
弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。
平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
實(shí)際上,圓繞圓心旋轉(zhuǎn)任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
推理2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
六、圓的判定性質(zhì)
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
③直線L和⊙O相離 dr
13.切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15.推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
③.兩圓相交 R-rr)
、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié)2
一.圓的定義
1.平面上到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點(diǎn)為圓心。
2.定義2中繞的那一端的端點(diǎn)為圓心。
3.圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。
4.垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。
注:圓心一般用字母O表示
5.直徑:通過(guò)圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無(wú)數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
三.圓的基本性質(zhì)
1.圓的對(duì)稱性
(1)圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑所在的直線。
(2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。
(3)圓是旋轉(zhuǎn)對(duì)稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。
平分弧的直徑,垂直平分弧所對(duì)的弦。
3.圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。
(1)同弧所對(duì)的圓周角相等。
(2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。
(2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角三角形的外心就是斜邊的中點(diǎn)。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;直線與圓沒(méi)有交點(diǎn),直線與圓相離。
四.圓和圓
1.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。
2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。
3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。
4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。
5.兩個(gè)圓沒(méi)有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關(guān)系:
(1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。
(2)這個(gè)圓是這個(gè)正多邊形的外接圓。
【初中數(shù)學(xué)知識(shí)點(diǎn)圓總結(jié)】相關(guān)文章:
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)04-12
初中數(shù)學(xué)圓的知識(shí)點(diǎn)03-01
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)歸納02-07
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):圓04-11
人教版初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-24
數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)11-03
初中圓的知識(shí)點(diǎn)總結(jié)02-17