中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中圓的知識點總結(jié)

時間:2024-11-11 06:58:53 知識點總結(jié) 我要投稿

初中圓的知識點總結(jié)經(jīng)典【2篇】

  總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此,讓我們寫一份總結(jié)吧?偨Y(jié)你想好怎么寫了嗎?以下是小編為大家收集的初中圓的知識點總結(jié),希望對大家有所幫助。

初中圓的知識點總結(jié)經(jīng)典【2篇】

初中圓的知識點總結(jié)1

  集合:

  圓:圓可以看作是到定點的距離等于定長的點的集合;

  圓的外部:可以看作是到定點的距離大于定長的點的集合;

  圓的內(nèi)部:可以看作是到定點的距離小于定長的點的集合

  軌跡:

  1、到定點的距離等于定長的點的軌跡是:以定點為圓心,定長為半徑的圓;

  2、到線段兩端點距離相等的點的軌跡是:線段的中垂線;

  3、到角兩邊距離相等的點的軌跡是:角的平分線;

  4、到直線的距離相等的點的軌跡是:平行于這條直線且到這條直線的距離等于定長的兩條直線;

  5、到兩條平行線距離相等的點的軌跡是:平行于這兩條平行線且到兩條直線距離都相等的一條直線。

  定義:

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的'弦心距相等

  10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12.①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21.定理相交兩圓的連心線垂直平分兩圓的公共弦

  22.定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23.定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24.正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  26.正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27.正三角形面積√3a/4a表示邊長

  28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29.弧長計算公式:L=n兀R/180

  30.扇形面積公式:S扇形=n兀R^2/360=LR/2

  31.內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  32.定理一條弧所對的圓周角等于它所對的圓心角的一半

  33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35.弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

初中圓的知識點總結(jié)2

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的.弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12.①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離dr

  13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離dR+r ②兩圓外切d=R+r

 、.兩圓相交R-rr)

 、.兩圓內(nèi)切d=R-r(Rr) ⑤兩圓內(nèi)含dr)

【初中圓的知識點總結(jié)】相關(guān)文章:

初中圓的知識點總結(jié)07-16

初中數(shù)學(xué)圓的知識點總結(jié)06-07

初中數(shù)學(xué)圓知識點總結(jié)10-17

初中數(shù)學(xué)圓的知識點歸納總結(jié)06-16

圓初中數(shù)學(xué)知識點總結(jié)12-02

初中數(shù)學(xué)圓的知識點總結(jié)6篇12-05

初中數(shù)學(xué)總復(fù)習(xí)圓知識點總結(jié)12-16

初中圓的知識點總結(jié)優(yōu)秀[3篇]09-13

圓初中數(shù)學(xué)知識點總結(jié)5篇12-02

初三數(shù)學(xué)圓的知識點總結(jié)12-06