中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中函數(shù)知識點總結(jié)

時間:2024-09-29 09:23:02 知識點總結(jié) 我要投稿

初中函數(shù)知識點總結(jié)

  總結(jié)是指社會團體、企業(yè)單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規(guī)律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,為此我們要做好回顧,寫好總結(jié)。總結(jié)怎么寫才不會千篇一律呢?下面是小編精心整理的初中函數(shù)知識點總結(jié),僅供參考,希望能夠幫助到大家。

初中函數(shù)知識點總結(jié)

初中函數(shù)知識點總結(jié)1

  1、配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的.提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等

  5、待定系數(shù)法

  在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

初中函數(shù)知識點總結(jié)2

  I.定義與定義表達式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

 。╝,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大)則稱y為x的二次函數(shù)。

  二次函數(shù)表達式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

  交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1、拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。

  3、二次項系數(shù)a決定拋物線的開口方向和大小。

  當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

  4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當a與b同號時(即ab>0),對稱軸在y軸左;

  當a與b異號時(即ab<0),對稱軸在y軸右。

  5、常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點。

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點。

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。

  1、二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

  當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,當h<0時,則向左平行移動|h|個單位得到。

  當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了。這給畫圖象提供了方便。

  2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a)。

  3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減;當x≥-b/2a時,y隨x的增大而增大。若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的'增大而減小。

  4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:

  (1)圖象與y軸一定相交,交點坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根。這兩點間的距離AB=|x-x|

  當△=0。圖象與x軸只有一個交點;

  當△0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0。

  5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最。ù)值=(4ac-b^2)/4a。

  頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值。

  6、用待定系數(shù)法求二次函數(shù)的解析式

 。1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0)。

 。2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0)。

  (3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。

  7、二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)。

初中函數(shù)知識點總結(jié)3

  1課前認真預習。預習的目的是為了能更好得聽老師講課,通過預習,掌握度要達到百分之八十。帶著預習中不明白的問題去聽老師講課,來解答這類的問題。預習還可以使聽課的整體效率提高。具體的預習方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘。在時間允許的情況下,還可以將練習冊做完。

  2讓數(shù)學課學與練結(jié)合。在數(shù)學課上,光聽是沒用的。當老師讓同學去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴”。

  3課后及時復習。寫完作業(yè)后對當天老師講的內(nèi)容進行梳理,可以適當?shù)刈?5分鐘左右的課外題?梢愿鶕(jù)自己的需要選擇適合自己的課外書。其課外題內(nèi)容大概就是今天上的課。

  4單元測驗是為了檢測近期的.學習情況。其實分數(shù)代表的是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓,是為了讓你在期中、期末考得更好。老師經(jīng)常會在沒通知的情況下進行考試,所以要及時做到“課后復習”。

初中函數(shù)知識點總結(jié)4

  二次根式

  學生已經(jīng)學過整式與分式,知道用式子可以表示實際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會遇到二次根式!岸胃健币徽戮蛠碚J識這種式子,探索它的性質(zhì),掌握它的運算。

  在這一章,首先讓學生了解二次根式的概念,并掌握以下重要結(jié)論:

  注:關(guān)于二次根式的運算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。“二次根式的乘除”一節(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,并運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

  并運用它們進行二次根式的化簡。

  “二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運算的內(nèi)容。在本節(jié)中,注意類比整式運算的有關(guān)內(nèi)容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助于學生掌握本節(jié)內(nèi)容。

  一元二次方程

  學生已經(jīng)掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J識這種方程,討論這種方程的解法,并運用這種方程解決一些實際問題。

  本章首先通過雕像設(shè)計、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,“降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

  (1)在介紹配方法時,首先通過實際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)不是1的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。對于沒有實數(shù)根的一元二次方程,學了“公式法”以后,學生對這個內(nèi)容會有進一步的理解。

  (2)在介紹公式法時,首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數(shù)根的一元二次方程,也涉及沒有實數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。

  (3)在介紹因式分解法時,首先通過實際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結(jié)。

  “實際問題與一元二次方程”一節(jié)安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。

  旋轉(zhuǎn)

  學生已經(jīng)認識了平移、軸對稱,探索了它們的性質(zhì),并運用它們進行圖案設(shè)計。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來認識這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認識中心對稱和中心對稱圖形。

  “旋轉(zhuǎn)”一節(jié)首先通過實例介紹旋轉(zhuǎn)的概念。然后讓學生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進行圖案設(shè)計。

  “中心對稱”一節(jié)首先通過實例介紹中心對稱的概念。然后讓學生探究中心對稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個圖形成中心對稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關(guān)于原點對稱的點的'坐標的關(guān)系,以及利用這一關(guān)系作與一個圖形成中心對稱的圖形的方法。

  “課題學習圖案設(shè)計”一節(jié)讓學生探索圖形之間的變換關(guān)系(平移、軸對稱、旋轉(zhuǎn)及其組合),靈活運用平移、軸對稱、旋轉(zhuǎn)的組合進行圖案設(shè)計。關(guān)注我們,搜微信公眾號:chzhshuxue

  圓

  圓是一種常見的圖形。在“圓”這一章,學生將進一步認識圓,探索它的性質(zhì),并用這些知識解決一些實際問題。通過這一章的學習,學生的解決圖形問題的能力將會進一步提高。

  “圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運用這些結(jié)論解決問題。接下來,讓學生探究弧、弦、圓心角的關(guān)系,并運用上述關(guān)系解決問題。最后讓學生探究圓周角與圓心角的關(guān)系,并運用上述關(guān)系解決問題。

  “與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點和圓的三種位置關(guān)系、三角形的外心的概念,并通過證明“在同一直線上的三點不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。

  “正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。

  “弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。

  概率初步

  將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學了“概率”一章,學生就能更好地認識這個問題了。掌握了概率的初步知識,學生還會解決更多的實際問題。

  “概率”一節(jié)首先通過實例介紹隨機事件的概念,然后通過擲幣問題引出概率的概念。

  “用列舉法求概率”一節(jié)首先通過具體試驗引出用列舉法求概率的方法。然后安排運用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。

  “利用頻率估計概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計概率的方法。

  “課題學習鍵盤上字母的排列規(guī)律”一節(jié)讓學生通過這一課題的研究體會概率的廣泛應(yīng)用。

【初中函數(shù)知識點總結(jié)】相關(guān)文章:

初中數(shù)學函數(shù)知識點總結(jié)04-08

函數(shù)知識點總結(jié)02-10

函數(shù)知識點總結(jié)06-23

初中數(shù)學函數(shù)知識點總結(jié)6篇11-24

[精華]函數(shù)知識點總結(jié)08-28

函數(shù)知識點總結(jié)(實用)09-20

函數(shù)知識點總結(jié)(精)08-21

(精品)函數(shù)知識點總結(jié)08-22

函數(shù)知識點總結(jié)(熱門)09-19