中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

函數(shù)知識點總結(jié)

時間:2024-08-20 16:56:59 知識點總結(jié) 我要投稿

函數(shù)知識點總結(jié)15篇[薦]

  總結(jié)就是把一個時段的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的總結(jié),它能夠給人努力工作的動力,因此我們需要回頭歸納,寫一份總結(jié)了。你所見過的總結(jié)應(yīng)該是什么樣的?下面是小編為大家整理的函數(shù)知識點總結(jié),希望能夠幫助到大家。

函數(shù)知識點總結(jié)15篇[薦]

函數(shù)知識點總結(jié)1

  誘導(dǎo)公式的本質(zhì)

  所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

  常用的誘導(dǎo)公式

  公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設(shè)為任意角,的三角函數(shù)值與的`三角函數(shù)值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

函數(shù)知識點總結(jié)2

  本節(jié)知識包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性和函數(shù)的圖象等知識點。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對稱性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個知識點,函數(shù)的.圖象就迎刃而解了。

  一、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義

  2、函數(shù)單調(diào)性的判斷和證明:

  (1)定義法

  (2)復(fù)合函數(shù)分析法

  (3)導(dǎo)數(shù)證明法

  (4)圖象法

  二、函數(shù)的奇偶性和周期性

  1、函數(shù)的奇偶性和周期性的定義

  2、函數(shù)的奇偶性的判定和證明方法

  3、函數(shù)的周期性的判定方法

  三、函數(shù)的圖象

  1、函數(shù)圖象的作法

  (1)描點法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱變換、翻折變換。

  常見考法

  本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點和難點。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

  誤區(qū)提醒

  1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問題定義域優(yōu)先的原則”。

  2、單調(diào)區(qū)間必須用區(qū)間來表示,不能用集合或不等式,單調(diào)區(qū)間一般寫成開區(qū)間,不必考慮端點問題。

  3、在多個單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號隔開。

  4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點對稱,則函數(shù)一定是非奇非偶函數(shù)。

  5、作函數(shù)的圖象,一般是首先化簡解析式,然后確定用描點法或圖象變換法作函數(shù)的圖象。

函數(shù)知識點總結(jié)3

  一次函數(shù)

  一、定義與定義式:

  自變量x和因變量y有如下關(guān)系:

  y=kx+b

  則此時稱y是x的一次函數(shù)。

  特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

  即:y=kx (k為常數(shù),k0)

  二、一次函數(shù)的性質(zhì):

  1、y的變化值與對應(yīng)的x的變化值成正比例,比值為k

  即:y=kx+b (k為任意不為零的實數(shù)b取任何實數(shù))

  2、當(dāng)x=0時,b為函數(shù)在y軸上的截距。

  三、一次函數(shù)的圖像及性質(zhì):

  1、作法與圖形:通過如下3個步驟

 。1)列表;

 。2)描點;

 。3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

  2、性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點。

  3、k,b與函數(shù)圖像所在象限:

  當(dāng)k0時,直線必通過一、三象限,y隨x的增大而增大;

  當(dāng)k0時,直線必通過二、四象限,y隨x的增大而減小。

  當(dāng)b0時,直線必通過一、二象限;

  當(dāng)b=0時,直線通過原點

  當(dāng)b0時,直線必通過三、四象限。

  特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k0時,直線只通過一、三象限;當(dāng)k0時,直線只通過二、四象限。

  四、確定一次函數(shù)的表達(dá)式:

  已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達(dá)式。

 。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

 。2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b ①和y2=kx2+b ②

 。3)解這個二元一次方程,得到k,b的值。

 。4)最后得到一次函數(shù)的表達(dá)式。

  五、一次函數(shù)在生活中的應(yīng)用:

  1、當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。

  2、當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人補充)

  1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)

  2、求與x軸平行線段的中點:|x1—x2|/2

  3、求與y軸平行線段的中點:|y1—y2|/2

  4、求任意線段的長:(x1—x2)^2+(y1—y2)^2 (注:根號下(x1—x2)與(y1—y2)的平方和)

  二次函數(shù)

  I、定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

 。╝,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時,開口方向向上,a0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項式。

  II、二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)

  頂點式:y=a(x—h)^2+k [拋物線的頂點P(h,k)]

  交點式:y=a(x—x)(x—x ) [僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV、拋物線的性質(zhì)

  1、拋物線是軸對稱圖形。對稱軸為直線

  x= —b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2、拋物線有一個頂點P,坐標(biāo)為

  P( —b/2a,(4ac—b^2)/4a )

  當(dāng)—b/2a=0時,P在y軸上;當(dāng)= b^2—4ac=0時,P在x軸上。

  3、二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a0時,拋物線向上開口;當(dāng)a0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4、一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab0),對稱軸在y軸右。

  5、常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6、拋物線與x軸交點個數(shù)

  = b^2—4ac0時,拋物線與x軸有2個交點。

  = b^2—4ac=0時,拋物線與x軸有1個交點。

  = b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

  V、二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,

  當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax^2+bx+c=0

  此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。

  函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。

  1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點坐標(biāo)及對稱軸如下表:

  解析式頂點坐標(biāo)對稱軸

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  當(dāng)h0時,y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

  當(dāng)h0時,則向左平行移動|h|個單位得到、

  當(dāng)h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  當(dāng)h0,k0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x—h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點坐標(biāo)、對稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、

  2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時,開口向上,當(dāng)a0時開口向下,對稱軸是直線x=—b/2a,頂點坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、

  3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時,y隨x的增大而減小;當(dāng)x —b/2a時,y隨x的增大而增大、若a0,當(dāng)x —b/2a時,y隨x的增大而增大;當(dāng)x —b/2a時,y隨x的.增大而減小、

  4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點:

 。1)圖象與y軸一定相交,交點坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的兩根、這兩點間的距離AB=|x—x|

  當(dāng)△=0、圖象與x軸只有一個交點;

  當(dāng)△0、圖象與x軸沒有交點、當(dāng)a0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y0;當(dāng)a0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y0、

  5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時,y最。ù螅┲=(4ac—b^2)/4a、

  頂點的橫坐標(biāo),是取得最值時的自變量值,頂點的縱坐標(biāo),是最值的取值、

  6、用待定系數(shù)法求二次函數(shù)的解析式

 。1)當(dāng)題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應(yīng)值時,可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a0)、

 。2)當(dāng)題給條件為已知圖象的頂點坐標(biāo)或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x—h)^2+k(a0)、

 。3)當(dāng)題給條件為已知圖象與x軸的兩個交點坐標(biāo)時,可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、

  7、二次函數(shù)知識很容易與其它知識綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn)、

  反比例函數(shù)

  形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

  當(dāng)K0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。

  2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

函數(shù)知識點總結(jié)4

  1二次函數(shù)的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).

  注意:(1)二次函數(shù)是關(guān)于自變量的二次式,二次項系數(shù)a必須是非零實數(shù),即a≠0,而b,c是任意實數(shù),二次函數(shù)的表達(dá)式是一個整式;

  (2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實數(shù);

  (3)當(dāng)b=c=0時,二次函數(shù)y=ax2是最簡單的二次函數(shù);

  (4)一個函數(shù)是否是二次函數(shù),要化簡整理后,對照定義才能下結(jié)論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).

  2二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個根,a≠0.

  說明:(1)任何一個二次函數(shù)通過配方都可以化為頂點式y(tǒng)=a(x-h)2+k,拋物線的頂點坐標(biāo)是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當(dāng)k=0時,拋物線a(x-h)2的頂點在x軸上;當(dāng)h=0且k=0時,拋物線y=ax2的'頂點在原點

  3二次函數(shù)y=ax2+c的圖象與性質(zhì)

  (1)拋物線y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點坐標(biāo)是(0,c),對稱軸是y軸.

  當(dāng)a>0時,圖象的開口向上,有最低點(即頂點),當(dāng)x=0時,y最小值=c.在y軸左側(cè),y隨x的增大而減小;在y軸右側(cè),y隨x增大而增大.

  當(dāng)a<0時,圖象的開口向下,有最高點(即頂點),當(dāng)x=0時,y最大值=c.在y軸左側(cè),y隨x的增大而增大;在y軸右側(cè),y隨x增大而減小.

  (3)拋物線y=ax2+c與y=ax2的關(guān)系.

  拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個單位得到.當(dāng)c>0時,向上平行移動,當(dāng)c<0時,向下平行移動.

函數(shù)知識點總結(jié)5

  【—正比例函數(shù)公式】正比例函數(shù)要領(lǐng):一般地,兩個變量x,y之間的關(guān)系式可以表示成形如y=kx(k為常數(shù),且k≠0)的函數(shù),那么y就叫做x的正比例函數(shù)。

  正比例函數(shù)的性質(zhì)

  定義域:R(實數(shù)集)

  值域:R(實數(shù)集)

  奇偶性:奇函數(shù)

  單調(diào)性:

  當(dāng)>0時,圖像位于第一、三象限,從左往右,y隨x的增大而增大(單調(diào)遞增),為增函數(shù);

  當(dāng)k<0時,圖像位于第二、四象限,從左往右,y隨x的增大而減小(單調(diào)遞減),為減函數(shù)。

  周期性:不是周期函數(shù)。

  對稱性:無軸對稱性,但關(guān)于原點中心對稱。

  正比例函數(shù)圖像的作法

  1、在x允許的'范圍內(nèi)取一個值,根據(jù)解析式求出y的值;

  2、根據(jù)第一步求的x、y的值描出點;

  3、作出第二步描出的點和原點的直線(因為兩點確定一直線)。

函數(shù)知識點總結(jié)6

  二次函數(shù)概念

  一般地,把形如y=ax2+bx+c(其中a、b、c是常數(shù),a≠0,b,c可以為0)的函數(shù)叫做二次函數(shù),其中a稱為二次項系數(shù),b為一次項系數(shù),c為常數(shù)項。x為自變量,y為因變量。等號右邊自變量的最高次數(shù)是2。二次函數(shù)圖像是軸對稱圖形。

  注意:“變量”不同于“自變量”,不能說“二次函數(shù)是指變量的最高次數(shù)為二次的多項式函數(shù)”!拔粗獢(shù)”只是一個數(shù)(具體值未知,但是只取一個值),“變量”可在實數(shù)范圍內(nèi)任意取值。在方程中適用“未知數(shù)”的概念(函數(shù)方程、微分方程中是未知函數(shù),但不論是未知數(shù)還是未知函數(shù),一般都表示一個數(shù)或函數(shù)——也會遇到特殊情況),但是函數(shù)中的字母表示的是變量,意義已經(jīng)有所不同。從函數(shù)的定義也可看出二者的差別,如同函數(shù)不等于函數(shù)的關(guān)系。

  二次函數(shù)公式大全

  二次函數(shù)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax2+bx+c(a,b,c為常數(shù),a≠0)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax2;+bx+c(a,b,c為常數(shù),a≠0)

  頂點式:y=a(x-h)2;+k [拋物線的頂點P(h,k)]

  交點式:y=a(x-x1)(x-x2) [僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

  III.二次函數(shù)的圖象

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x??的圖象,

  可以看出,二次函數(shù)的.圖象是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對稱圖形。對稱軸為直線

  x = -b/2a。

  對稱軸與拋物線唯一的交點為拋物線的頂點P。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

  2.拋物線有一個頂點P,坐標(biāo)為

  P [ -b/2a ,(4ac-b2;)/4a ]。

  當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ= b2-4ac=0時,P在x軸上。

  3.二次項系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5.常數(shù)項c決定拋物線與y軸交點。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點個數(shù)

  Δ= b2-4ac>0時,拋物線與x軸有2個交點。

  Δ= b2-4ac=0時,拋物線與x軸有1個交點。

  Δ= b2-4ac<0時,拋物線與x軸沒有交點。

  V.二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax2;+bx+c,

  當(dāng)y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax2;+bx+c=0

  此時,函數(shù)圖象與x軸有無交點即方程有無實數(shù)根。

  函數(shù)與x軸交點的橫坐標(biāo)即為方程的根。

函數(shù)知識點總結(jié)7

  1. 函數(shù)的奇偶性

  (1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;

  (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則 f(0)=0(可用于求參數(shù));

  (3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

  (5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

  2. 復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:若已知 的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

  (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

  3.函數(shù)圖像(或方程曲線的對稱性)

  (1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

  (2)證明圖像C1與C2的對稱性,即證明C1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

  (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲線C1:f(x,y)=0關(guān)于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

  (5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

  (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x= 對稱;

  4.函數(shù)的周期性

  (1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,則y=f(x)是周期為2a的'周期函數(shù);

  (2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

  (3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

  (4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);

  (5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);

  (6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);

  5.

  方程k=f(x)有解 k∈D(D為f(x)的值域);

  6.

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  7.

  (1) (a0,a≠1,b0,n∈R+);

  (2) l og a N= ( a0,a≠1,b0,b≠1);

  (3) l og a b的符號由口訣“同正異負(fù)”記憶;

  (4) a log a N= N ( a0,a≠1,N

  8. 判斷對應(yīng)是否為映射時,抓住兩點:

  (1)A中元素必須都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  9. 能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

  10.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

  (1)定義域上的單調(diào)函數(shù)必有反函數(shù);

  (2)奇函數(shù)的反函數(shù)也是奇函數(shù);

  (3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

  (4)周期函數(shù)不存在反函數(shù);

  (5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

  (5) y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).

  11.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;

  12. 依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題

  13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解;

函數(shù)知識點總結(jié)8

  一、函數(shù)的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開方數(shù)大于等于零;

  3、對數(shù)的真數(shù)大于零;

  4、指數(shù)函數(shù)和對數(shù)函數(shù)的'底數(shù)大于零且不等于1;

  5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

  6、如果函數(shù)是由實際意義確定的解析式,應(yīng)依據(jù)自變量的實際意義確定其取值范圍。

  二、函數(shù)的解析式的常用求法:

  1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法

  三、函數(shù)的值域的常用求法:

  1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

  四、函數(shù)的最值的常用求法:

  1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

  五、函數(shù)單調(diào)性的常用結(jié)論:

  1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個區(qū)間上也為增(減)函數(shù)

  2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

  3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

  4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。

  5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

  六、函數(shù)奇偶性的常用結(jié)論:

  1、如果一個奇函數(shù)在x=0處有定義,則f(0)=0,如果一個函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

  2、兩個奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

  3、一個奇函數(shù)與一個偶函數(shù)的積(商)為奇函數(shù)。

  4、兩個函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù),只要其中有一個是偶函數(shù),那么該復(fù)合函數(shù)就是偶函數(shù);當(dāng)兩個函數(shù)都是奇函數(shù)時,該復(fù)合函數(shù)是奇函數(shù)。

  5、若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數(shù)和一個偶函數(shù)的和。

函數(shù)知識點總結(jié)9

  一、函數(shù)對稱性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱f(a+x)=-f(a-x)==>f(x)關(guān)于點(a,0)對稱f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(a,b)對稱

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點[(a+b)/2,c/2]對稱y=f(x)與y=f(-x)關(guān)于x=0對稱y=f(x)與y=-f(x)關(guān)于y=0對稱y=f(x)與y=-f(-x)關(guān)于點(0,0)對稱

  例1:證明函數(shù)y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱。

  【解析】求兩個不同函數(shù)的對稱軸,用設(shè)點和對稱原理作解。

  證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a+x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對稱軸為x=(b-a)/2.

  例2:證明函數(shù)y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱。

  證明:假設(shè)任意一點P(m,n)在函數(shù)y=f(a-x)上,令關(guān)于x=t的對稱點Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對稱軸為x=(a+b)/2.

  二、函數(shù)的周期性

  令a,b均不為零,若:

  1、函數(shù)y=f(x)存在f(x)=f(x+a)==>函數(shù)最小正周期T=|a|

  2、函數(shù)y=f(x)存在f(a+x)=f(b+x)==>函數(shù)最小正周期T=|b-a|

  3、函數(shù)y=f(x)存在f(x)=-f(x+a)==>函數(shù)最小正周期T=|2a|

  4、函數(shù)y=f(x)存在f(x+a)=1/f(x)==>函數(shù)最小正周期T=|2a|

  5、函數(shù)y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數(shù)最小正周期T=|4a|

  這里只對第2~5點進行解析。

  第2點解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

  ②∴由①和②解得f(x)=f(x+2a)∴函數(shù)最小正周期T=|2a|

  第4點解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數(shù)最小正周期T=|2a|

  第5點解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數(shù)最小正周期T=|4a|

  擴展閱讀:函數(shù)對稱性、周期性和奇偶性的規(guī)律總結(jié)

  函數(shù)對稱性、周期性和奇偶性規(guī)律總結(jié)

 。ㄒ唬┩缓瘮(shù)的函數(shù)的奇偶性與對稱性:(奇偶性是一種特殊的對稱性)

  1、奇偶性:

 。1)奇函數(shù)關(guān)于(0,0)對稱,奇函數(shù)有關(guān)系式f(x)f(x)0

 。2)偶函數(shù)關(guān)于y(即x=0)軸對稱,偶函數(shù)有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數(shù)的對稱性

 。1)函數(shù)的軸對稱:

  函數(shù)yf(x)關(guān)于xa對稱f(ax)f(ax)

  f(ax)f(ax)也可以寫成f(x)f(2ax)或f(x)f(2ax)

  若寫成:f(ax)f(bx),則函數(shù)yf(x)關(guān)于直線x稱

 。╝x)(bx)ab對22證明:設(shè)點(x1,y1)在yf(x)上,通過f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(2ax1,y1)也在yf(x)上,而點(x1,y1)與點(2ax1,y1)關(guān)于x=a對稱。得證。

  說明:關(guān)于xa對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱,∴函數(shù)yf(x)關(guān)于xa對稱

  f(x)f(2ax)

 。2)函數(shù)的點對稱:

  函數(shù)yf(x)關(guān)于點(a,b)對稱f(ax)f(ax)2b

  上述關(guān)系也可以寫成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫成:f(ax)f(bx)c,函數(shù)yf(x)關(guān)于點(abc,)對稱2證明:設(shè)點(x1,y1)在yf(x)上,即y1f(x1),通過f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(2ax1,2by1)也在yf(x)上,而點(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱。得證。

  說明:關(guān)于點(a,b)對稱要求橫坐標(biāo)之和為2a,縱坐標(biāo)之和為2b,如(ax)與(ax)之和為2a。

 。3)函數(shù)yf(x)關(guān)于點yb對稱:假設(shè)函數(shù)關(guān)于yb對稱,即關(guān)于任一個x值,都有兩個y值與其對應(yīng),顯然這不符合函數(shù)的定義,故函數(shù)自身不可能關(guān)于yb對稱。但在曲線c(x,y)=0,則有可能會出現(xiàn)關(guān)于yb對稱,比如圓c(x,y)x2y240它會關(guān)于y=0對稱。

 。4)復(fù)合函數(shù)的.奇偶性的性質(zhì)定理:

  性質(zhì)1、復(fù)數(shù)函數(shù)y=f[g(x)]為偶函數(shù),則f[g(-x)]=f[g(x)]。復(fù)合函數(shù)y=f[g(x)]為奇函數(shù),則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則f(x+a)=f(-x+a);復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則f(-x+a)=-f(a+x)。

  性質(zhì)3、復(fù)合函數(shù)y=f(x+a)為偶函數(shù),則y=f(x)關(guān)于直線x=a軸對稱。復(fù)合函數(shù)y=f(x+a)為奇函數(shù),則y=f(x)關(guān)于點(a,0)中心對稱。

  總結(jié):x的系數(shù)一個為1,一個為-1,相加除以2,可得對稱軸方程

  總結(jié):x的系數(shù)一個為1,一個為-1,f(x)整理成兩邊,其中一個的系數(shù)是為1,另一個為-1,存在對稱中心。

  總結(jié):x的系數(shù)同為為1,具有周期性。

 。ǘ﹥蓚函數(shù)的圖象對稱性

  1、yf(x)與yf(x)關(guān)于X軸對稱。

  證明:設(shè)yf(x)上任一點為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過點(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對稱,∴y1f(x1)與yf(x)關(guān)于X軸對稱.注:換種說法:yf(x)與yg(x)f(x)若滿足f(x)g(x),即它們關(guān)于y0對稱。

函數(shù)知識點總結(jié)10

  余割函數(shù)

  對于任意一個實數(shù)x,都對應(yīng)著唯一的'角(弧度制中等于這個實數(shù)),而這個角又對應(yīng)著唯一確定的余割值cscx與它對應(yīng),按照這個對應(yīng)法則建立的函數(shù)稱為余割函數(shù)。

  記作f(x)=cscx

  f(x)=cscx=1/sinx

  1、定義域:{x|x≠kπ,k∈Z}

  2、值域:{y|y≤-1或y≥1}

  3、奇偶性:奇函數(shù)

  4、周期性:最小正周期為2π

  5、圖像:

  圖像漸近線為:x=kπ ,k∈Z

  其實有一點需要注意,就是余割函數(shù)與正弦函數(shù)互為倒數(shù)。

函數(shù)知識點總結(jié)11

  f(x2),那么那么y=f(x)在區(qū)間D上是減函數(shù),D是函數(shù)y=f(x)的單調(diào)遞減區(qū)間。

 、藕瘮(shù)區(qū)間單調(diào)性的判斷思路

  ⅰ在給出區(qū)間內(nèi)任取x1、x2,則x1、x2∈D,且x1

 、⒆霾钪礷(x1)-f(x2),并進行變形和配方,變?yōu)橐子谂袛嗾?fù)的形式。

 、E袛嘧冃魏蟮谋磉_(dá)式f(x1)-f(x2)的符號,指出單調(diào)性。

  ⑵復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)y=f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律為“同增異減”;多個函數(shù)的復(fù)合函數(shù),根據(jù)原則“減偶則增,減奇則減”。

 、亲⒁馐马

  函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成并集,如果函數(shù)在區(qū)間A和B上都遞增,則表示為f(x)的單調(diào)遞增區(qū)間為A和B,不能表示為A∪B。

  2、函數(shù)的整體性質(zhì)——奇偶性

  對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =f(-x),則f(x)就為偶函數(shù);

  對于函數(shù)f(x)定義域內(nèi)的任意一個x,都有f(x) =-f(x),則f(x)就為奇函數(shù)。

  小編推薦:高中數(shù)學(xué)必考知識點歸納總結(jié)

 、牌婧瘮(shù)和偶函數(shù)的性質(zhì)

 、o論函數(shù)是奇函數(shù)還是偶函數(shù),只要函數(shù)具有奇偶性,該函數(shù)的定義域一定關(guān)于原點對稱。

 、⑵婧瘮(shù)的圖像關(guān)于原點對稱,偶函數(shù)的圖像關(guān)于y軸對稱。

 、坪瘮(shù)奇偶性判斷思路

 、∠却_定函數(shù)的定義域是否關(guān)于原點對稱,若不關(guān)于原點對稱,則為非奇非偶函數(shù)。

 、⒋_定f(x)和f(-x)的關(guān)系:

  若f(x) -f(-x)=0,或f(x) /f(-x)=1,則函數(shù)為偶函數(shù);

  若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,則函數(shù)為奇函數(shù)。

  3、函數(shù)的最值問題

 、艑τ诙魏瘮(shù),利用配方法,將函數(shù)化為y=(x-a)2+b的形式,得出函數(shù)的最大值或最小值。

 、茖τ谝子诋嫵龊瘮(shù)圖像的函數(shù),畫出圖像,從圖像中觀察最值。

 、顷P(guān)于二次函數(shù)在閉區(qū)間的最值問題

  ⅰ判斷二次函數(shù)的頂點是否在所求區(qū)間內(nèi),若在區(qū)間內(nèi),則接ⅱ,若不在區(qū)間內(nèi),則接ⅲ。

 、⑷舳魏瘮(shù)的'頂點在所求區(qū)間內(nèi),則在二次函數(shù)y=ax2+bx+c中,a>0時,頂點為最小值,a0時的最大值或a

 、H舳魏瘮(shù)的頂點不在所求區(qū)間內(nèi),則判斷函數(shù)在該區(qū)間的單調(diào)性

  若函數(shù)在[a,b]上遞增,則最小值為f(a),最大值為f(b);

  若函數(shù)在[a,b]上遞減,則最小值為f(b),最大值為f(a)。

  3高一數(shù)學(xué)基本初等函數(shù)1、指數(shù)函數(shù):函數(shù)y=ax (a>0且a≠1)叫做指數(shù)函數(shù)

  a的取值a>1 0

  注意:⑴由函數(shù)的單調(diào)性可以看出,在閉區(qū)間[a,b]上,指數(shù)函數(shù)的最值為:

  a>1時,最小值f(a),最大值f(b);0

 、茖τ谌我庵笖(shù)函數(shù)y=ax (a>0且a≠1),都有f(1)=a。

  2、對數(shù)函數(shù):函數(shù)y=logax(a>0且a≠1)),叫做對數(shù)函數(shù)

  a的取值a>1 0

  3、冪函數(shù):函數(shù)y=xa(a∈R),高中階段,冪函數(shù)只研究第I象限的情況。

 、潘袃绾瘮(shù)都在(0,+∞)區(qū)間內(nèi)有定義,而且過定點(1,1)。

 、芶>0時,冪函數(shù)圖像過原點,且在(0,+∞)區(qū)間為增函數(shù),a越大,圖像坡度越大。

  ⑶a

  當(dāng)x從右側(cè)無限接近原點時,圖像無限接近y軸正半軸;

  當(dāng)y無限接近正無窮時,圖像無限接近x軸正半軸。

  冪函數(shù)總圖見下頁。

  4、反函數(shù):將原函數(shù)y=f(x)的x和y互換即得其反函數(shù)x=f-1(y)。

  反函數(shù)圖像與原函數(shù)圖像關(guān)于直線y=x對稱。

函數(shù)知識點總結(jié)12

  一次函數(shù)的圖象與性質(zhì)的口訣:

  一次函數(shù)是直線,圖象經(jīng)過三象限;

  正比例函數(shù)更簡單,經(jīng)過原點一直線;

  兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;

  k為負(fù)來左下展,變化規(guī)律正相反;

  k的絕對值越大,線離橫軸就越遠(yuǎn)。

  拓展閱讀:一次函數(shù)的解題方法

  理解一次函數(shù)和其它知識的聯(lián)系

  一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。

  掌握一次函數(shù)的解析式的特征

  一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項式,其中常數(shù)b可以是任意實數(shù),一次項系數(shù)k必須是非零數(shù),k≠0,因為當(dāng)k = 0時,y = b(b是常數(shù)),由于沒有一次項,這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。

  應(yīng)用一次函數(shù)解決實際問題

  1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;

  2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);

  3、在實際問題中,一般存在著三種量,如距離、時間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時間(或速度)不變時,距離與速度(或時間)才成正比例,也就是說,距離(s)是時間(t)或速度( )的正比例函數(shù);

  4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。

  數(shù)形結(jié)合

  方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點來理解。一元一次不等式實際上就看兩條直線上下方的關(guān)系,求出端點后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識,直線交點的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對應(yīng)2條直線,方程組的解就是直線的交點,結(jié)合圖形可以認(rèn)識兩直線的位置關(guān)系也可以把握交點個數(shù)。

  如果一個交點時候兩條直線的k不同,如果無窮個交點就是k,b都一樣,如果平行無交點就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對應(yīng)點平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。

  數(shù)學(xué)解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。

  2、因式分解法

  因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學(xué)中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達(dá)定理

  一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解決數(shù)學(xué)問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識相互滲透,有助于解決問題。

  數(shù)學(xué)經(jīng)常遇到的問題解答

  1、要提高數(shù)學(xué)成績首先要做什么?

  這一點,是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識學(xué)起。不少同學(xué)覺得基礎(chǔ)知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎(chǔ)不牢的`表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實。

  2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?

  對于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個好處,第一,強化基礎(chǔ);第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學(xué)生成績不好,會說自己是因為粗心導(dǎo)致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點,所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。

  為什么要學(xué)習(xí)數(shù)學(xué)

  作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實上,數(shù)學(xué)是所有學(xué)科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。

  首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們在學(xué)習(xí)的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復(fù)雜問題時更能得心應(yīng)手。

  其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計算機科學(xué)、物理學(xué)、經(jīng)濟學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測趨勢,并且可以在實際應(yīng)用中優(yōu)化和改進。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時,在工程學(xué)領(lǐng)域,許多機械、電子、化工等產(chǎn)品的設(shè)計和制造過程,也需要運用到數(shù)學(xué)知識,因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學(xué)和商科領(lǐng)域,經(jīng)濟學(xué)和金融學(xué)運用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計學(xué)等,使得我們能夠更好地理解經(jīng)濟和財務(wù)數(shù)據(jù),并進行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個領(lǐng)域的知識。

  最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據(jù)科學(xué)、研究機構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領(lǐng)域脫穎而出。

函數(shù)知識點總結(jié)13

  三角和的公式

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  倍角公式

  tan2A = 2tanA/(1-tan2 A)

  Sin2A=2SinA?CosA

  Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

  三倍角公式

  sin3A = 3sinA-4(sinA)3;

  cos3A = 4(cosA)3 -3cosA

  tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

  三角函數(shù)特殊值

  α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

  α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

  a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

  α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

  α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

  α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

  α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

  α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

  α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

  α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

  α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

  三角函數(shù)記憶順口溜

  1三角函數(shù)記憶口訣

  “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負(fù)號。

  以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號為負(fù),所以右邊為-sinα。

  2符號判斷口訣

  全,S,T,C,正。這五個字口訣的意思就是說:第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

  也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的.都是負(fù)值。

  “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應(yīng)的三角函數(shù)為正值。

  3三角函數(shù)順口溜

  三角函數(shù)是函數(shù),象限符號坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

  同角關(guān)系很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

  中心記上數(shù)字一,連結(jié)頂點三角形。向下三角平方和,倒數(shù)關(guān)系是對角,

  頂點任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

  變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

  將其后者視銳角,符號原來函數(shù)判。兩角和的余弦值,化為單角好求值,

  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

  計算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

  一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

  三角函數(shù)反函數(shù),實質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

  利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

函數(shù)知識點總結(jié)14

  一、二次函數(shù)概念:

  a0)b,c是常數(shù)

  1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實里需要強調(diào):和一元二次方程類似,二次項系數(shù)a0,而b,數(shù).

  2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:

 、诺忍栕筮吺呛瘮(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.

 、芶,二、二次函數(shù)的基本形式

  1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對值越大,拋物線的開口越小。

  a的符號a0開口方向頂點坐標(biāo)對稱軸向上00,00,性質(zhì)x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減;x0時,y有最小值0.x0時,y隨x的增大而減。粁0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值0.

  2.yax2c的性質(zhì):上加下減。

  a的符號a0開口方向頂點坐標(biāo)對稱軸向上c0,c0,性質(zhì)x0時,y隨x的增大而增大;x0時,y隨y軸x的增大而減小;x0時,y有最小值c.x0時,y隨x的增大而減小;x0時,y隨a0向下y軸x的增大而增大;x0時,y有最大值c.

  3.yaxh的性質(zhì):左加右減。

  2a的符號a0開口方向頂點坐標(biāo)對稱軸向上0h,0h,性質(zhì)xh時,y隨x的增大而增大;xh時,y隨X=hx的增大而減;xh時,y有最小值0.xh時,y隨x的增大而減;xh時,y隨a02向下X=hx的增大而增大;xh時,y有最大值0.

  4.yaxhk的性質(zhì):

  a的符號開口方向頂點坐標(biāo)對稱軸性質(zhì)a0向上h,kh,kX=hxh時,y隨x的增大而增大;xh時,y隨x的增大而減。粁h時,y有最小值k.xh時,y隨x的增大而減;xh時,y隨a0向下X=hx的增大而增大;xh時,y有最大值k.

  三、二次函數(shù)圖象的平移

  1.平移步驟:

  方法一:

 、艑佄锞解析式轉(zhuǎn)化成頂點式y(tǒng)axhk,確定其頂點坐標(biāo)h,k;

 、票3謷佄锞yax2的形狀不變,將其頂點平移到h,k處,具體平移方法如下:

  向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k

  畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與x軸的交點,與y軸的`交點.

  六、二次函數(shù)yax2bxc的性質(zhì)

  b4acb2b1.當(dāng)a0時,拋物線開口向上,對稱軸為x,頂點坐標(biāo)為,.

  2a4a2a當(dāng)xbbb時,y隨x的增大而減;當(dāng)x時,y隨x的增大而增大;當(dāng)x時,y有最小2a2a2a4acb2值.

  4ab4acb2bb2.當(dāng)a0時,拋物線開口向下,對稱軸為x,頂點坐標(biāo)為,時,y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時,y隨x的增大而減。划(dāng)x時,y有最大值

  2a2a4a

  七、二次函數(shù)解析式的表示方法

  1.一般式:yax2bxc(a,b,c為常數(shù),a0);

  2.頂點式:ya(xh)2k(a,h,k為常數(shù),a0);

  3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點的橫坐標(biāo)).

  注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與x軸有交點,即b24ac0時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.

  八、二次函數(shù)的圖象與各項系數(shù)之間的關(guān)系

  1.二次項系數(shù)a

  二次函數(shù)yax2bxc中,a作為二次項系數(shù),顯然a0.

  ⑴當(dāng)a0時,拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;

 、飘(dāng)a0時,拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.

  總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。

  2.一次項系數(shù)b

  在二次項系數(shù)a確定的前提下,b決定了拋物線的對稱軸.

 、旁赼0的前提下,當(dāng)b0時,當(dāng)b0時,當(dāng)b0時,b0,即拋物線的對稱軸在y軸左側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時,當(dāng)b0時,當(dāng)b0時,b0,即拋物線的對稱軸在y軸右側(cè);2ab0,即拋物線的對稱軸就是y軸;2ab0,即拋物線對稱軸在y軸的左側(cè).2a

  總結(jié)起來,在a確定的前提下,b決定了拋物線對稱軸的位置.

  ab的符號的判定:對稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):

  3.常數(shù)項c

 、女(dāng)c0時,拋物線與y軸的交點在x軸上方,即拋物線與y軸交點的縱坐標(biāo)為正;

 、飘(dāng)c0時,拋物線與y軸的交點為坐標(biāo)原點,即拋物線與y軸交點的縱坐標(biāo)為0;

 、钱(dāng)c0時,拋物線與y軸的交點在x軸下方,即拋物線與y軸交點的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點的位置.

  b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:

  根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點,選擇適當(dāng)?shù)男问剑拍苁菇忸}簡便.一般來說,有如下幾種情況:

  1.已知拋物線上三點的坐標(biāo),一般選用一般式;

  2.已知拋物線頂點或?qū)ΨQ軸或最大(。┲,一般選用頂點式;

  3.已知拋物線與x軸的兩個交點的橫坐標(biāo),一般選用兩根式;

  4.已知拋物線上縱坐標(biāo)相同的兩點,常選用頂點式.

  九、二次函數(shù)圖象的對稱

  二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達(dá)

  1.關(guān)于x軸對稱

  yax2bxc關(guān)于x軸對稱后,得到的解析式是yax2bxc;

  yaxhk關(guān)于x軸對稱后,得到的解析式是yaxhk;

  2.關(guān)于y軸對稱

  yax2bxc關(guān)于y軸對稱后,得到的解析式是yax2bxc;

  22yaxhk關(guān)于y軸對稱后,得到的解析式是yaxhk;

  3.關(guān)于原點對稱

  yax2bxc關(guān)于原點對稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點對稱后,得到的解析式是yaxhk;

  4.關(guān)于頂點對稱(即:拋物線繞頂點旋轉(zhuǎn)180°)

  2222b2yaxbxc關(guān)于頂點對稱后,得到的解析式是yaxbxc;

  2a22yaxhk關(guān)于頂點對稱后,得到的解析式是yaxhk.n對稱

  5.關(guān)于點m,n對稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點m,根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對稱拋物線的表達(dá)式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點坐標(biāo)及開口方向,再確定其對稱拋物線的頂點坐標(biāo)及開口方向,然后再寫出其對稱拋物線的表達(dá)式.

  十、二次函數(shù)與一元二次方程:

  1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點情況):

  一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時的特殊情況.圖象與x軸的交點個數(shù):

 、佼(dāng)b24ac0時,圖象與x軸交于兩點Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次

  b24ac方程axbxc0a0的兩根.這兩點間的距離ABx2x1.

  a2

  ②當(dāng)0時,圖象與x軸只有一個交點;

 、郛(dāng)0時,圖象與x軸沒有交點.

  1"當(dāng)a0時,圖象落在x軸的上方,無論x為任何實數(shù),都有y0;

  2"當(dāng)a0時,圖象落在x軸的下方,無論x為任何實數(shù),都有y0.

  2.拋物線yax2bxc的圖象與y軸一定相交,交點坐標(biāo)為(0,c);

  3.二次函數(shù)常用解題方法總結(jié):

  ⑴求二次函數(shù)的圖象與x軸的交點坐標(biāo),需轉(zhuǎn)化為一元二次方程;

 、魄蠖魏瘮(shù)的最大(。┲敌枰门浞椒▽⒍魏瘮(shù)由一般式轉(zhuǎn)化為頂點式;

 、歉鶕(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號,或由二次函數(shù)中a,b,c的符號判斷圖象的位置,要數(shù)形結(jié)合;

 、榷魏瘮(shù)的圖象關(guān)于對稱軸對稱,可利用這一性質(zhì),求和已知一點對稱的點坐標(biāo),或已知與x軸的一個交點坐標(biāo),可由對稱性求出另一個交點坐標(biāo).

 、膳c二次函數(shù)有關(guān)的還有二次三項式,二次三項式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時為例,揭示二次函數(shù)、二次三項式和一元二次方程之間的內(nèi)在聯(lián)系:

  0拋物線與x軸有兩個交點0二次三項式的值可正、可零、可負(fù)二次三項式的值為非負(fù)二次三項式的值恒為正一元二次方程有兩個不相等實根一元二次方程有兩個相等的實數(shù)根一元二次方程無實數(shù)根.0拋物線與x軸只有一個交點拋物線與x軸無交點y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:

  y=3x2y=3(x-2)2y=x22

  y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用

  剎車距離二次函數(shù)應(yīng)用何時獲得最大利潤

  最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2

函數(shù)知識點總結(jié)15

  一、函數(shù)的概念與表示

  1、映射

  (1)映射:設(shè)A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應(yīng),則這樣的對應(yīng)(包括集合A、B以及A到B的對應(yīng)法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點:(1)對映射定義的理解。(2)判斷一個對應(yīng)是映射的方法。一對多不是映射,多對一是映射

  2、函數(shù)

  構(gòu)成函數(shù)概念的三要素

 、俣x域②對應(yīng)法則③值域

  兩個函數(shù)是同一個函數(shù)的'條件:三要素有兩個相同

  二、函數(shù)的解析式與定義域

  1、求函數(shù)定義域的主要依據(jù):

  (1)分式的分母不為零;

  (2)偶次方根的被開方數(shù)不小于零,零取零次方?jīng)]有意義;

  (3)對數(shù)函數(shù)的真數(shù)必須大于零;

  (4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;

  三、函數(shù)的值域

  1求函數(shù)值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復(fù)合函數(shù);

 、趽Q元法:利用換元法將函數(shù)轉(zhuǎn)化為二次函數(shù)求值域,適合根式內(nèi)外皆為一次式;

 、叟袆e式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

  ④分離常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);

 、輪握{(diào)性法:利用函數(shù)的單調(diào)性求值域;

 、迗D象法:二次函數(shù)必畫草圖求其值域;

 、呃脤μ柡瘮(shù)

  ⑧幾何意義法:由數(shù)形結(jié)合,轉(zhuǎn)化距離等求值域。主要是含絕對值函數(shù)

  四.函數(shù)的奇偶性

  1.定義:設(shè)y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。

  如果對于任意∈A,都有,則稱y=f(x)為奇

  函數(shù)。

  2.性質(zhì):

 、賧=f(x)是偶函數(shù)y=f(x)的圖象關(guān)于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關(guān)于原點對稱,

  ②若函數(shù)f(x)的定義域關(guān)于原點對稱,則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關(guān)于原點對稱]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點對稱②看f(x)與f(-x)的關(guān)系

  五、函數(shù)的單調(diào)性

  1、函數(shù)單調(diào)性的定義:

  2設(shè)是定義在M上的函數(shù),若f(x)與g(x)的單調(diào)性相反,則在M上是減函數(shù);若f(x)與g(x)的單調(diào)性相同,則在M上是增函數(shù)。

【函數(shù)知識點總結(jié)】相關(guān)文章:

函數(shù)知識點總結(jié)06-23

函數(shù)知識點總結(jié)02-10

函數(shù)知識點03-01

[精選]函數(shù)知識點03-01

初二函數(shù)知識點總結(jié)01-13

關(guān)于高中函數(shù)的知識點總結(jié)03-30

初中數(shù)學(xué)函數(shù)知識點總結(jié)04-08

函數(shù)知識點總結(jié)20篇04-20

初二函數(shù)知識點總結(jié)07-27

函數(shù)知識點總結(jié)(20篇)07-20