中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-11-25 16:51:47 知識(shí)點(diǎn)總結(jié) 我要投稿

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(匯編15篇)

  總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,是時(shí)候?qū)懸环菘偨Y(jié)了?偨Y(jié)你想好怎么寫了嗎?下面是小編為大家整理的高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)(匯編15篇)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)1

  一:函數(shù)模型及其應(yīng)用

  本節(jié)主要包括函數(shù)的模型、函數(shù)的應(yīng)用等知識(shí)點(diǎn)。主要是理解函數(shù)解應(yīng)用題的一般步驟靈活利用函數(shù)解答實(shí)際應(yīng)用題。

  1、常見的函數(shù)模型有一次函數(shù)模型、二次函數(shù)模型、指數(shù)函數(shù)模型、對(duì)數(shù)函數(shù)模型、分段函數(shù)模型等。

  2、用函數(shù)解應(yīng)用題的基本步驟是:

 。1)閱讀并且理解題意。(關(guān)鍵是數(shù)據(jù)、字母的實(shí)際意義);

 。2)設(shè)量建模;

  (3)求解函數(shù)模型;

 。4)簡要回答實(shí)際問題。

  常見考法:

  本節(jié)知識(shí)在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函數(shù)和較復(fù)雜的函數(shù)的最值等問題,屬于拔高題,難度較大。

  誤區(qū)提醒:

  1、求解應(yīng)用性問題時(shí),不僅要考慮函數(shù)本身的定義域,還要結(jié)合實(shí)際問題理解自變量的取值范圍。

  2、求解應(yīng)用性問題時(shí),首先要弄清題意,分清條件和結(jié)論,抓住關(guān)鍵詞和量,理順數(shù)量關(guān)系,然后將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,建立相應(yīng)的數(shù)學(xué)模型。

  【典型例題】

  例1:

 。1)某種儲(chǔ)蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數(shù)x之間的函數(shù)關(guān)系式,并計(jì)算5個(gè)月后的本息和(不計(jì)復(fù)利)。

  (2)按復(fù)利計(jì)算利息的一種儲(chǔ)蓄,本金為a元,每期利率為r,設(shè)本利和為y,存期為x,寫出本利和y隨存期x變化的函數(shù)式。如果存入本金1000元,每期利率2。25%,試計(jì)算5期后的本利和是多少?解:(1)利息=本金×月利率×月數(shù)。y=100+100×0。36%·x=100+0。36x,當(dāng)x=5時(shí),y=101。8,∴5個(gè)月后的本息和為101。8元。

  例2:

  某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤與投資單位是萬元)

 。1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式。

 。2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能是企業(yè)獲得利潤,其利潤約為多少萬元。(精確到1萬元)。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)2

  1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

  2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

  3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起?疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

  4.立體幾何知識(shí):20xx年已經(jīng)變得簡單,20xx年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

  5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

  6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

  7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)3

  【基本初等函數(shù)】

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand)。

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2、分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

  3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

 。ǘ┲笖(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

  2、指數(shù)函數(shù)的圖象和性質(zhì)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)4

  數(shù)學(xué)是利用符號(hào)語言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。

  一、集合有關(guān)概念

  1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

  2、集合的中元素的三個(gè)特性:

  1.元素的確定性; 2.元素的互異性; 3.元素的無序性

  說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

  (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

  (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

  (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

  3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  2.集合的表示方法:列舉法與描述法.

  注意啊:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  關(guān)于屬于的概念

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

  列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上.

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

 、僬Z言描述法:例:{不是直角三角形的三角形}

  ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

  4、集合的分類:

  1.有限集 含有有限個(gè)元素的集合

  2.無限集 含有無限個(gè)元素的集合

  3.空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.包含關(guān)系子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.相等關(guān)系(55,且55,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、 任何一個(gè)集合是它本身的子集.AA

  ②真子集:如果AB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

  ④ 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

  三、集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作AB(讀作A交B),即AB={x|xA,且xB}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

  3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

  A= A ,AB = BA.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來表示.

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)5

  集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同”

  結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

  A?① 任何一個(gè)集合是它本身的子集。A

  B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A

  C?C ,那么 A?B, B?③如果 A

  A 那么A=B?B 同時(shí) B?④ 如果A

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  集合的運(yùn)算

  1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

  記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

  2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

  3、交集與并集的性質(zhì):A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

  4、全集與補(bǔ)集

  (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  A}?S且 x? x?記作: CSA 即 CSA ={x

  (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

  (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)6

  二次函數(shù)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x?)(x-x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)7

  集合間的基本關(guān)系

  1.子集,A包含于B,記為:,有兩種可能

  (1)A是B的一部分,

  (2)A與B是同一集合,A=B,A、B兩集合中元素都相同。

  反之:集合A不包含于集合B,記作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三個(gè)集合的關(guān)系可以表示為,,B=C。A是C的子集,同時(shí)A也是C的真子集。

  2.真子集:如果A?B,且A?B那就說集合A是集合B的真子集,記作AB(或BA)

  3、不含任何元素的集合叫做空集,記為Φ。Φ是任何集合的子集。

  4、有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-2個(gè)非空真子集。如A={1,2,3,4,5},則集合A有25=32個(gè)子集,25-1=31個(gè)真子集,25-2=30個(gè)非空真子集。

  例:集合共有個(gè)子集。(13年高考第4題,簡單)

  練習(xí):A={1,2,3},B={1,2,3,4},請(qǐng)問A集合有多少個(gè)子集,并寫出子集,B集合有多少個(gè)非空真子集,并將其寫出來。

  解析:

  集合A有3個(gè)元素,所以有23=8個(gè)子集。分別為:①不含任何元素的子集Φ;②含有1個(gè)元素的子集{1}{2}{3};③含有兩個(gè)元素的子集{1,2}{1,3}{2,3};④含有三個(gè)元素的子集{1,2,3}。

  集合B有4個(gè)元素,所以有24-2=14個(gè)非空真子集。具體的子集自己寫出來。

  此處這么羅嗦主要是為了讓同學(xué)們注意寫的順序,數(shù)學(xué)就是要講究嚴(yán)謹(jǐn)性和邏輯性的。一定要養(yǎng)成自己的邏輯習(xí)慣。如果就是為了提高計(jì)算能力倒不如直接去菜場賣菜算了,絕對(duì)能飛速提高的,那學(xué)數(shù)學(xué)也沒什么必要了。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)8

  一、教學(xué)思想:

  教育學(xué)生掌握基礎(chǔ)知識(shí)與基本技能,培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間觀念和解決簡單實(shí)際問題的能力,使學(xué)生逐步學(xué)會(huì)正確、合理地進(jìn)行

  運(yùn)算,逐步學(xué)會(huì)觀察分析、綜合、抽象、概括。會(huì)用歸納演繹、類比進(jìn)行簡單的推理。使學(xué)生懂得數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐。提高學(xué)習(xí)數(shù)學(xué)的興趣,逐步培養(yǎng)學(xué)生具有良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的態(tài)度。頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索的新思想。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問題的能力。

  二、在教學(xué)過程中抓住以下幾個(gè)環(huán)節(jié)

  (1)認(rèn)真?zhèn)湔n。認(rèn)真研究教材及考綱,明確教學(xué)目標(biāo),抓住重點(diǎn)、難點(diǎn),精心設(shè)計(jì)教學(xué)過程,重視每一章節(jié)內(nèi)容與前后知識(shí)的聯(lián)系及其地位,重視課后反思,設(shè)計(jì)好每一節(jié)課的師生互動(dòng)的細(xì)節(jié)。

  (2)抓住課堂45分鐘。

  本學(xué)期的教學(xué)內(nèi)容共五章、

  第一章分式

  第二章一元二次方程

  第三章圓

  第四章圖形的全等

  第五章樣本與總體嚴(yán)格按照教學(xué)計(jì)劃,備課統(tǒng)一進(jìn)度,統(tǒng)一練習(xí),進(jìn)行教學(xué),精心設(shè)計(jì)每一節(jié)課的每一個(gè)環(huán)節(jié),爭取每節(jié)課達(dá)到教學(xué)目標(biāo),突出重點(diǎn),分散難點(diǎn),增大課堂容量組織學(xué)生人人參與課堂活動(dòng),使每個(gè)學(xué)生積極主動(dòng)參與課堂活動(dòng),使每個(gè)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,及時(shí)反饋信息提高課堂效益。

  (3)課后反饋。精選適當(dāng)?shù)木毩?xí)題、測試卷,及時(shí)批改作業(yè),發(fā)現(xiàn)問題及時(shí)給學(xué)生面對(duì)面的指出并指導(dǎo)學(xué)生搞懂弄通,不留一個(gè)疑難點(diǎn),讓學(xué)生學(xué)有所獲。

  三、不斷鉆研業(yè)務(wù),提高業(yè)務(wù)能力及水平

  積極參加業(yè)務(wù)學(xué)習(xí),看書、看報(bào),參加學(xué)校組織的培訓(xùn),使之更好的為基礎(chǔ)教育的改革努力,掌握新的技能、技巧,不斷努力,取長補(bǔ)短,揚(yáng)長避短,努力使教學(xué)更務(wù)實(shí),方法更靈活,手段更先進(jìn)。

  四、提高質(zhì)量的措施

  1、認(rèn)真學(xué)習(xí)鉆研新課標(biāo),掌握教材。

  2、認(rèn)真?zhèn)湔n,爭取充分掌握學(xué)生動(dòng)態(tài)。

  3、認(rèn)真上好每一堂課。

  4、落實(shí)每一堂課后輔助,查漏補(bǔ)缺。

  5、積極與其它老師溝通,加強(qiáng)教研教改,提高教學(xué)水平。

  6、經(jīng)常聽取學(xué)生良好的合理化建議。

  7、以“兩頭”帶“中間”戰(zhàn)略思想不變。

  8、深化兩極生的訓(xùn)導(dǎo)。

  周教學(xué)進(jìn)度安排

  周次主要內(nèi)容教學(xué)目標(biāo)

  1整式的除法會(huì)單項(xiàng)式或多項(xiàng)式除以單項(xiàng)式

  2分式的基本性質(zhì)、運(yùn)算會(huì)約分、通分、乘除、加減運(yùn)算

  3分式方程解法會(huì)解分式方程

  4一元二次方程及解法解一元二次方程

  5完成與探索的總結(jié)培養(yǎng)學(xué)生綜合能力

  6圓的相關(guān)知識(shí)了解圓的有關(guān)概念

  7與圓有關(guān)的位置關(guān)系掌握各種位置關(guān)系有應(yīng)用

  8圓的相關(guān)問題綜合知識(shí)

  9期中前復(fù)習(xí)查漏補(bǔ)缺

  10期中檢測自我檢查相當(dāng)激勵(lì)

  11全等三角形的識(shí)別學(xué)會(huì)判斷

  12命題與證明學(xué)會(huì)初步說理

  13尺規(guī)作圖會(huì)簡單地尺規(guī)作圖

  14復(fù)習(xí)總結(jié)本章

  15樣本與總體能用隨機(jī)抽樣的方法抽樣

  16用樣本估計(jì)總體會(huì)用樣本估計(jì)總體明白原因

  17概率懂得概率含義與預(yù)測

  18本章小結(jié)熟練掌握本章內(nèi)容

  19總復(fù)習(xí)本章內(nèi)容及串聯(lián)

  20期終考試檢測師生的教與學(xué)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)9

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  【函數(shù)的應(yīng)用】

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  1(代數(shù)法)求方程的實(shí)數(shù)根;

  2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)10

  集合的運(yùn)算

  運(yùn)算類型交 集并 集補(bǔ) 集

  定義域 R定義域 R

  值域>0值域>0

  在R上單調(diào)遞增在R上單調(diào)遞減

  非奇非偶函數(shù)非奇非偶函數(shù)

  函數(shù)圖象都過定點(diǎn)(0,1)函數(shù)圖象都過定點(diǎn)(0,1)

  注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

 。1)在[a,b]上, 值域是 或 ;

 。2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

 。3)對(duì)于指數(shù)函數(shù) ,總有 ;

  二、對(duì)數(shù)函數(shù)

 。ㄒ唬⿲(duì)數(shù)

  1.對(duì)數(shù)的概念:

  一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

  說明:○1 注意底數(shù)的限制 ,且 ;

  ○2 ;

  ○3 注意對(duì)數(shù)的書寫格式.

  兩個(gè)重要對(duì)數(shù):

  ○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

  ○2 自然對(duì)數(shù):以無理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

  指數(shù)式與對(duì)數(shù)式的互化

  冪值 真數(shù)

 。 N = b

  底數(shù)

  指數(shù) 對(duì)數(shù)

  (二)對(duì)數(shù)的運(yùn)算性質(zhì)

  如果 ,且 , , ,那么:

  ○1 + ;

  ○2 - ;

  ○3 .

  注意:換底公式: ( ,且 ; ,且 ; ).

  利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

  (3)、重要的公式 ①、負(fù)數(shù)與零沒有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

  (二)對(duì)數(shù)函數(shù)

  1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).

  注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).

  ○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

  2、對(duì)數(shù)函數(shù)的性質(zhì):

  a>10

  定義域x>0定義域x>0

  值域?yàn)镽值域?yàn)镽

  在R上遞增在R上遞減

  函數(shù)圖象都過定點(diǎn)(1,0)函數(shù)圖象都過定點(diǎn)(1,0)

  (三)冪函數(shù)

  1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

  2、冪函數(shù)性質(zhì)歸納.

 。1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);

 。2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;

 。3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸.

  第四章 函數(shù)的應(yīng)用

  一、方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。

  即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  ○1 (代數(shù)法)求方程 的實(shí)數(shù)根;

  ○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù) .

 。1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

 。2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

 。3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).

  5.函數(shù)的模型

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)11

  高一數(shù)學(xué)集合有關(guān)概念

  集合的含義

  集合的中元素的三個(gè)特性:

  元素的確定性如:世界上的山

  元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

  元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

  3。集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  集合的表示方法:列舉法與描述法。

  注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集)記作:N

  正整數(shù)集N_N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

  列舉法:{a,b,c……}

  描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  語言描述法:例:{不是直角三角形的三角形}

  Venn圖:

  4、集合的分類:

  有限集含有有限個(gè)元素的集合

  無限集含有無限個(gè)元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12

  棱錐

  棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的的性質(zhì):

  (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

  正棱錐

  正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個(gè)特殊的直角三角形

  esp:

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

  b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)13

  1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:

  解析式

  頂點(diǎn)坐標(biāo)

  對(duì)稱軸

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,

  當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當(dāng)h>0,k>0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h>0,k<0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)^2+k的圖象;

  因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.

  2.拋物線y=ax^2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

  3.拋物線y=ax^2+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減小;當(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的增大而減小.

  4.拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

  (2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的兩根.這兩點(diǎn)間的'距離AB=|x?-x?|

  當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);

  當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.

  5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

  6.用待定系數(shù)法求二次函數(shù)的解析式

  (1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

  y=ax^2+bx+c(a≠0).

  (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)^2+k(a≠0).

  (3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)14

  高一數(shù)學(xué)必修一知識(shí)點(diǎn)

  指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運(yùn)算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、棱柱S-h-高V=Sh

  6、棱錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)

  人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

  1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  (1)棱柱:

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  (2)棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  (3)棱臺(tái):

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  (4)圓柱:

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

  (5)圓錐:

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

  (6)圓臺(tái):

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

  (7)球體:

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點(diǎn):

 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)15

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無序性,

  3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

  ? 注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 語言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類:

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無限集 含有無限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合間的基本關(guān)系

  1.“包含”關(guān)系—子集

  注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

  2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)

  實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

 、 如果A?B 同時(shí) B?A 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。

  求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開方數(shù)不小于零;

  (3)對(duì)數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

  相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

  (2) 畫法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對(duì)稱變換

  4.區(qū)間的概念

  (1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

  (2)無窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

  如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

  ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

  (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)最大(小)值(定義見課本p36頁)

  ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

  ○2 利用圖象求函數(shù)的最大(小)值

  ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

【高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)12-07

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)08-09

高一數(shù)學(xué)必修3知識(shí)點(diǎn)總結(jié)04-11

高一數(shù)學(xué)必修五的知識(shí)點(diǎn)總結(jié)03-30

高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié)09-08

高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08

高一必修一數(shù)學(xué)集合知識(shí)點(diǎn)總結(jié)12-03

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納02-15

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納01-14

高一數(shù)學(xué)必修一函數(shù)圖像知識(shí)點(diǎn)總結(jié)08-12