中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初一數(shù)學(xué)知識點總結(jié)

時間:2022-11-19 14:37:01 知識點總結(jié) 我要投稿

初一數(shù)學(xué)知識點總結(jié)(精選15篇)

  總結(jié)是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它可使零星的、膚淺的、表面的感性認知上升到全面的、系統(tǒng)的、本質(zhì)的理性認識上來,因此我們需要回頭歸納,寫一份總結(jié)了。我們該怎么寫總結(jié)呢?以下是小編為大家收集的初一數(shù)學(xué)知識點總結(jié),歡迎閱讀與收藏。

初一數(shù)學(xué)知識點總結(jié)(精選15篇)

初一數(shù)學(xué)知識點總結(jié)1

  1.代數(shù)式:用運算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式。

  注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式。2.列代數(shù)式的幾個注意事項:

  13(1)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×1應(yīng)寫成a;

  223(2)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;

  a3.幾個重要的代數(shù)式:(m、n表示整數(shù))

 。1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;

 。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

  (3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;4.有理數(shù):(1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù)。不是有理數(shù)。p正整數(shù)正整數(shù)正有理數(shù)整數(shù)零正分數(shù)(2)有理數(shù)的分類:①有理數(shù)零②有理數(shù)負整數(shù)

  負整數(shù)正分數(shù)負有理數(shù)分數(shù)負分數(shù)負分數(shù)(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù)。(4)自然數(shù)包括:0和正整數(shù)。5.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);

  a(a0)a(a0)(2)絕對值可表示為:a0(a0)或a;絕對值的問題經(jīng)常分類討論;

  aa1a0;

  aa1a0;

  aba。b(4)|a|是重要的非負數(shù),即|a|≥0;注意:|a||b|=|ab|,

  臨淵羨魚,不如退而結(jié)網(wǎng)!

 。3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0a=0,b=0;

  0.120.012底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位。(4)據(jù)規(guī)律112101006.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法。

  7.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  8.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。9.混合運算法則:先乘方,后乘除,最后加減;10.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式。

  11.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

 、伲辉淮畏匠痰臉藴市问剑篴x+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。②.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  ③.一元一次方程解法的一般步驟:整理方程,去分母,去括號,移項,合并同類項,系數(shù)化為1(檢驗方程的解)。

 、埽祈棧焊淖兎柡,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1。12.列方程解應(yīng)用題的常用公式:

 。1)行程問題:距離=速度時間速度距離距離時間;時間速度(2)工程問題:工作量=工效工時工效工作量工作量工時;工時工效(3)比率問題:部分=全體比率比率部分部分全體;全體比率(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折

  售價成本1,利潤=售價-成本,利潤率100%;

  成本10(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  1S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h。

  3臨淵羨魚,不如退而結(jié)網(wǎng)!

  初一下冊知識點總結(jié)

  1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加。2.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減。

  3.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積。4.零指數(shù)與負指數(shù)公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0)。注意:00,0-2無意義。

 。2)有了負指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;(2)完全平方公式:

  ①(a+b)2=a2+2ab+b2,兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc6.配方:

  p(1)若二次三項式x+px+q是完全平方式,則有關(guān)系式:q;

  22

  2※(2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。注意:當(dāng)x=h時,可求出ax2+bx+c的最大(或最。┲祂。1※(3)注意:x2x2。

  xx2127.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);

  系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)。

  8.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;

  多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);

  注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。9.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。10.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。

  11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。

  注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列。

  臨淵羨魚,不如退而結(jié)網(wǎng)!

  平面幾何部分

  1、補角重要性質(zhì):同角或等角的補角相等.余角重要性質(zhì):同角或等角的余角相等.2、①直線公理:過兩點有且只有一條直線.線段公理:兩點之間線段最短.

 、谟嘘P(guān)垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;

 。2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.

  比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.3、三角形的內(nèi)角和等于180

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和三角形的一個外角大于與它不相鄰的任何一個內(nèi)角4、n邊形的對角線公式:

  n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形

  5、n邊形的內(nèi)角和公式:180(n-2);多邊形的外角和等于3606、判斷三條線段能否組成三角形:

 、賏+b>c(ab為最短的兩條線段)②a-b

  擴展閱讀:初中數(shù)學(xué)七年級上冊知識點總結(jié)

  提分數(shù)學(xué)

  提分數(shù)學(xué)七年級上知識清單

  第一章有理數(shù)

  一.正數(shù)和負數(shù)

  ⒈正數(shù)和負數(shù)的概念

  負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,-a是負數(shù);當(dāng)a表示負數(shù)時,-a是正數(shù);當(dāng)a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)

  ②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。2.具有相反意義的量

  若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:零上8℃表示為:+8℃;零下8℃表示為:-8℃

  支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負數(shù)。3.0表示的意義

 、0表示“沒有”,如教室里有0個人,就是說教室里沒有人;⑵0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。

  二.有理數(shù)

  1.有理數(shù)的概念

 、耪麛(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))⑵正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)

 、钦麛(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。

  注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像-2,-4,-6,-8也是偶數(shù),-1,-3,-5也是奇數(shù)。2.(1)凡能寫成

  q(p,q為整數(shù)且p0)形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負p分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);

  提分數(shù)學(xué)

  正整數(shù)正有理數(shù)正分數(shù)(2)有理數(shù)的分類:①按正、負分類:有理數(shù)零

  負整數(shù)負有理數(shù)負分數(shù)正整數(shù)整數(shù)零②按有理數(shù)的意義來分:有理數(shù)負整數(shù)正分數(shù)分數(shù)負分數(shù)總結(jié):①正整數(shù)、0統(tǒng)稱為非負整數(shù)(也叫自然數(shù))②負整數(shù)、0統(tǒng)稱為非正整數(shù)③正有理數(shù)、0統(tǒng)稱為非負有理數(shù)④負有理數(shù)、0統(tǒng)稱為非正有理數(shù)

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);

  a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).

  三.?dāng)?shù)軸

 、睌(shù)軸的概念

  規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。

  注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。2.數(shù)軸上的點與有理數(shù)的關(guān)系

 、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,0用原點表示。

 、扑械挠欣頂(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))3.利用數(shù)軸表示兩數(shù)大小

 、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;⑵正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于負數(shù);⑶兩個負數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。

  提分數(shù)學(xué)

  4.數(shù)軸上特殊的最大(。⿺(shù)

 、抛钚〉淖匀粩(shù)是0,無最大的自然數(shù);⑵最小的正整數(shù)是1,無最大的正整數(shù);⑶最大的負整數(shù)是-1,無最小的負整數(shù)5.a可以表示什么數(shù)

 、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;⑵a提分數(shù)學(xué)

 、乓话愕兀瑪(shù)a的相反數(shù)是-a,其中a是任意有理數(shù),可以是正數(shù)、負數(shù)或0。當(dāng)a>0時,-a0,那么|a|=a;②如果a0),則x=±a;

 、苫橄喾磾(shù)的兩數(shù)的絕對值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;|a|是重要的非負數(shù),即

  提分數(shù)學(xué)

  |a|≥0;注意:|a||b|=|ab|,

  abab⑹絕對值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;

 、巳魩讉數(shù)的絕對值的和等于0,則這幾個數(shù)就同時為0。即|a|+|b|=0,則a=0且b=0。(非負數(shù)的常用性質(zhì):若幾個非負數(shù)的和為0,則有且只有這幾個非負數(shù)同時為0)4.有理數(shù)大小的比較

 、爬脭(shù)軸比較兩個數(shù)的大。簲(shù)軸上的兩個數(shù)相比較,左邊的數(shù)總比右邊的數(shù)小,或者右邊的數(shù)總比左邊的數(shù)大

  ⑵利用絕對值比較兩個負數(shù)的大。簝蓚負數(shù)比較大小,絕對值大的反而。划愄杻蓴(shù)比較大小,正數(shù)大于負數(shù)。

 。3)正數(shù)的絕對值越大,這個數(shù)越大;(4)正數(shù)永遠比0大,負數(shù)永遠比0;(5)正數(shù)大于一切負數(shù);

 。6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.5.絕對值的化簡

 、佼(dāng)a≥0時,|a|=a;②當(dāng)a≤0時,|a|=-a6.已知一個數(shù)的絕對值,求這個數(shù)

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離,一般地,絕對值為同一個正數(shù)的有理數(shù)有兩個,它們互為相反數(shù),絕對值為0的數(shù)是0,沒有絕對值為負數(shù)的數(shù)。

  六.有理數(shù)的加減法.

  1.有理數(shù)的加法法則

 、磐杻蓴(shù)相加,取相同的符號,并把絕對值相加;

 、平^對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;⑶互為相反數(shù)的兩數(shù)相加,和為零;⑷一個數(shù)與0相加,仍得這個數(shù)。2.有理數(shù)加法的運算律⑴加法交換律:a+b=b+a⑵加法結(jié)合律:(a+b)+c=a+(b+c)

  在運用運算律時,一定要根據(jù)需要靈活運用,以達到化簡的目的,通常有下列規(guī)律:①互為相反數(shù)的兩個數(shù)先相加“相反數(shù)結(jié)合法”;

  提分數(shù)學(xué)

  ②符號相同的兩個數(shù)先相加“同號結(jié)合法”;③分母相同的數(shù)先相加“同分母結(jié)合法”;④幾個數(shù)相加得到整數(shù),先相加“湊整法”;⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加“同形結(jié)合法”。3.加法性質(zhì)

  一個數(shù)加正數(shù)后的和比原數(shù)大;加負數(shù)后的和比原數(shù);加0后的和等于原數(shù)。即:⑴當(dāng)b>0時,a+b>a⑵當(dāng)b提分數(shù)學(xué)

 、.把分母相同或便于通分的加數(shù)相結(jié)合(同分母結(jié)合法)--

  313217+-+-524528321137)+(-+)+(+-)55224818原式=(--

  =-1+0-

  =-1

 、.既有小數(shù)又有分數(shù)的運算要統(tǒng)一后再結(jié)合(先統(tǒng)一后結(jié)合)(+0.125)-(-3

  18312)+(-3)-(-10)-(+1.25)4833121)+(-3)+(+10)+(-1)4834原式=(+)+(+3

  18=+3

  183121-3+10-14834=(3

  31112-1)+(-3)+1044883=2

  12-3+102316=-3+13

  =10

  16617-12+41122151761)+(-)

  5151122Ⅴ.把帶分數(shù)拆分后再結(jié)合(先拆分后結(jié)合)-3+10

  15原式=(-3+10-12+4)+(-+

  =-1+

  411+1522提分數(shù)學(xué)

  =-1+

  815+3030=-

  730Ⅵ.分組結(jié)合

  2-3-4+5+6-7-8+9+66-67-68+69

  原式=(2-3-4+5)+(6-7-8+9)++(66-67-68+69)

  =0

  Ⅶ.先拆項后結(jié)合

 。1+3+5+7+99)-(2+4+6+8+100)

  七.有理數(shù)的乘除法

  1.有理數(shù)的乘法法則

  法則一:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;(“同號得正,異號得負”專指“兩數(shù)相乘”的情況,如果因數(shù)超過兩個,就必須運用法則三)法則二:任何數(shù)同0相乘,都得0;

  法則三:幾個不是0的數(shù)相乘,負因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負因數(shù)的個數(shù)是奇數(shù)時,積是負數(shù);法則四:幾個數(shù)相乘,如果其中有因數(shù)為0,則積等于0.2.倒數(shù)

  乘積是1的兩個數(shù)互為倒數(shù),其中一個數(shù)叫做另一個數(shù)的倒數(shù),用式子表示為a

  1=1(a≠0),就是說aa和

  111互為倒數(shù),即a是的倒數(shù),是a的倒數(shù)。aaa1互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么a的倒數(shù)是;倒數(shù)是本身的數(shù)

  a是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).注意:①0沒有倒數(shù);

  ②求假分數(shù)或真分數(shù)的倒數(shù),只要把這個分數(shù)的分子、分母點顛倒位置即可;求帶分數(shù)的倒數(shù)時,先把帶分數(shù)化為假分數(shù),再把分子、分母顛倒位置;

 、壅龜(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(求一個數(shù)的倒數(shù),不改變這個數(shù)的性質(zhì));④倒數(shù)等于它本身的數(shù)是1或-1,不包括0。3.有理數(shù)的乘法運算律

  提分數(shù)學(xué)

  ⑴乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。即ab=ba⑵乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。即(ab)c=a(bc).⑶乘法分配律:一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,在把積相加。即a(b+c)=ab+ac4.有理數(shù)的除法法則

 。1)除以一個不等0的數(shù),等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),即無意義(2)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得05.有理數(shù)的乘除混合運算

 。1)乘除混合運算往往先將除法化成乘法,然后確定積的符號,最后求出結(jié)果。

  (2)有理數(shù)的加減乘除混合運算,如無括號指出先做什么運算,則按照‘先乘除,后加減’的順序進行。

  a0八.有理數(shù)的乘方

  1.乘方的概念

  求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。在a中,a叫做底數(shù),n叫做指數(shù)。(1)a是重要的非負數(shù),即a≥0;若a+|b|=0a=0,b=0;

  0.120.01211(2)據(jù)規(guī)律2底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位

  101002

  22

  n2.乘方的性質(zhì)

  (1)負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪的正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)=-a或(a-b)=-(b-a),當(dāng)

  n為正偶數(shù)時:(-a)=a或(a-b)=(b-a).

 。2)正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  nnnnnnnn

  九.有理數(shù)的混合運算

  做有理數(shù)的混合運算時,應(yīng)注意以下運算順序:1.先乘方,再乘除,最后加減;2.同級運算,從左到右進行;

  3.如有括號,先做括號內(nèi)的運算,按小括號,中括號,大括號依次進行。

  十.科學(xué)記數(shù)法

  把一個大于10的數(shù)表示成a10的形式(其中1a10,n是正整數(shù)),這種記數(shù)法是科學(xué)記數(shù)法

  -9-

  n提分數(shù)學(xué)

  近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

  有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學(xué)計算的最重要的原

  則.

  特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.

  等于本身的數(shù)匯總:相反數(shù)等于本身的數(shù):0倒數(shù)等于本身的數(shù):1,-1絕對值等于本身的數(shù):正數(shù)和0平方等于本身的數(shù):0,1立方等于本身的數(shù):0,1,-1.

  第二章整式的加減

  一.用字母表示數(shù)(代數(shù)初步知識)

  1.代數(shù)式:用運算符號“+-÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式;用基本運算符號把數(shù)和字母連接而成的式子叫做代數(shù)式,如n,-1,2n+500,abc。2.代數(shù)式書寫規(guī)范:

 。1)數(shù)與字母相乘,或字母與字母相乘中通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a5應(yīng)寫成5a;13(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a1應(yīng)寫成a;

  223(5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;

  a

  提分數(shù)學(xué)

 。6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做

  a-b和b-a.

  出現(xiàn)除式時,用分數(shù)表示;

  (7)若運算結(jié)果為加減的式子,當(dāng)后面有單位時,要用括號把整個式子括起來。3.幾個重要的代數(shù)式:(m、n表示整數(shù))

  (1)a與b的平方差是:a-b;a與b差的平方是:(a-b);

 。2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;

  (3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)

  是:n-1、n、n+1;

 。4)若b>0,則正數(shù)是:a+b,負數(shù)是:-a-b,非負數(shù)是:a,非正數(shù)是:-a.

  2222222

  二.整式

  1.單項式:表示數(shù)與字母的乘積的代數(shù)式叫單項式。單獨的一個數(shù)或一個字母也是代數(shù)式。

  2.單項式的系數(shù):單項式中的數(shù)字因數(shù);單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);

  3.單項式的次數(shù):一個單項式中,所有字母的指數(shù)和

  4多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項,不含字母的項叫做常數(shù)項。多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。常數(shù)項的次數(shù)為0。注意:(若a、b、c、p、q是常數(shù))ax+bx+c和x+px+q是常見的兩個二次三項式.

  5整式:單項式和多項式統(tǒng)稱為整式,即凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:整式2

  2

  單項式多項式.

  注意:分母上含有字母的不是整式。

  6.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,

  叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.

  提分數(shù)學(xué)

  三.整式的加減

  1.合并同類項

  2同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。

  3合并同類項的法則:同類項的系數(shù)相加,所得的結(jié)果作為系數(shù),字母和字母的指數(shù)不變。

  4合并同類項的步驟:(1)準確的找出同類項;(2)運用加法交換律,把同類項交換位置后結(jié)合在一起;(3)利用法則,把同類項的系數(shù)相加,字母和字母的指數(shù)不變;(4)寫出合并后的結(jié)果。5去括號去括號的法則:

 。1)括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項的符號都不變;(2)括號前面是“”號,把括號和它前面的“”號去掉,括號里各項的符號都要改變。

  6添括號法則:添括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號

  里的各項都要變號.

  7整式的加減:進行整式的加減運算時,如果有括號先去括號,再合并同類項;整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.

  8整式加減的步驟:(1)列出代數(shù)式;(2)去括號;(3)添括號(4)合并同類項。

  第三章一元一次方程

  1等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3方程:含未知數(shù)的等式,叫方程.

  4一元一次方程的概念:只含有一個未知數(shù)(元)(含未知數(shù)項的系數(shù)不是零)且未知數(shù)的指數(shù)是1(次)的整式方程叫做一元一次方程。一般形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0)

  1注意:未知數(shù)在分母中時,它的次數(shù)不能看成是1次。如3x,它不是一元一次方程。

  x5解一元一次方程

  提分數(shù)學(xué)

  方程的解:能使方程左右兩邊相等的未知數(shù)的值叫做方程的解;注意:“方程的解就能代入”驗算!解方程:求方程的解的過程叫做解方程。

  等式的性質(zhì):(1)等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式;(2)等式兩邊都乘或除以同一個不等于0的數(shù),所得結(jié)果仍是等式。

  6移項

  移項:方程中的某些項改變符號后,可以從方程的一邊移到另一邊,這樣的變形叫做移項。

  移項的依據(jù):(1)移項實際上就是對方程兩邊進行同時加減,根據(jù)是等式的性質(zhì)1;(2)系數(shù)化為1實際上就是對方程兩邊同時乘除,根據(jù)是等式的性質(zhì)2。

  移項的作用:移項時一般把含未知數(shù)的項向左移,常數(shù)項往右移,使左邊對含未知數(shù)的項合并,右邊對常數(shù)項合并。

  注意:移項時要跨越“=”號,移過的項一定要變號。

  7解一元一次方程的一般步驟:整理方程、去分母、去括號、移項、合并同類項、未知數(shù)的系數(shù)化為1;(檢驗方程的解)。

  注意:去分母時不可漏乘不含分母的項。分數(shù)線有括號的作用,去掉分母后,若分子是多項式,要加括號。解下列方程:(1)4x342x;(2)4x3(20x)6x7(9x);(3)0.1x0.2x130.020.5x15xx1;(4)32638用方程解決問題

  列一元一次方程解應(yīng)用題的基本步驟:審清題意、設(shè)未知數(shù)(元)、列出方程、解方程、寫出答案。關(guān)鍵在于抓住問題中的有關(guān)數(shù)量的相等關(guān)系,列出方程。

  解決問題的策略:利用表格和示意圖幫助分析實際問題中的數(shù)量關(guān)系9列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

 。2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形

  提分數(shù)學(xué)

  各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  10實際問題的常見類型:

  (1)行程問題:路程=時間速度,時間=

  路程路程,速度=速度時間(單位:路程米、千米;時間秒、分、時;速度米/秒、米/分、千米/小時)

  (2)工程問題:工作總量=工作時間工作效率,工作效率工作時間工作總量;工作總量=各部分工作量的和;

  工作效率利潤,售價=標價(1-折扣);進價工作總量;

  工作時間(3)利潤問題:利潤=售價-進價,利潤率=

  (4)商品價格問題:售價=定價折

  售價成本1100%;,利潤=售價-成本,利潤率成本10(5)利息問題:本息和=本金+利息;利息=本金利率(6)比率問題:部分=全體比率比率部分部分全體;全體比率(7)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

  (8)等積變形問題:長方體的體積=長寬高;圓柱的體積=底面積高;鍛造前的體積=鍛造后的體積

  (9)周長、面積、體積問題:C圓=2πR,S圓=πR,C長方形=2(a+b),S長方形=ab,C正方形=4a,

  2

  1222322

  S正方形=a,S環(huán)形=π(R-r),V長方體=abc,V正方體=a,V圓柱=πRh,V圓錐=πRh.

  310.列一元一次方程解應(yīng)用題:

 。1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

  提分數(shù)學(xué)

 。2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  第四章走進圖形世界

  1、幾何圖形:

  現(xiàn)實生活中的物體我們只管它的形狀、大小、位置而得到的圖形,叫做幾何圖形

  從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。

  立體圖形:有些幾何圖形的各個部分不都在同一平面內(nèi),它們是立體圖形。長方體、正方體、球、圓柱、

  圓錐等都是立體圖形。此外棱柱、棱錐也是常見的立體圖形。

  平面圖形:有些幾何圖形的各個部分都在同一平面內(nèi),它們是平面圖形。長方形、正方形、三角形、圓

  等都是平面圖形。

  立體圖形與平面圖形:許多立體圖形是由一些平面圖形圍成的,將它們適當(dāng)?shù)丶糸_,就可以展開成平面圖形。

  2、點、線、面、體(1)幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。線:面和面相交的地方是線,分為直線和曲線。面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。長方體、正方體、圓柱、圓錐、球、棱柱、棱錐等都是幾何體。

  包圍著體的是面。面有平的面和曲的面兩種。面和面相交的地方形成線;線和線相交的地方是點;幾何圖形都是由點、線、面、體組成的,點是構(gòu)成圖形的基本元素。

  (2)點動成線,線動成面,面動成體。

  3、生活中的立體圖形圓柱柱體

  棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、

  生活中的立體圖形球體

  (按名稱分)圓錐

  椎體

  提分數(shù)學(xué)

  棱錐

  4、棱柱及其有關(guān)概念:

  棱:在棱柱中,任何相鄰兩個面的交線,都叫做棱。側(cè)棱:相鄰兩個側(cè)面的交線叫做側(cè)棱。

  n棱柱有兩個底面,n個側(cè)面,共(n+2)個面;3n條棱,n條側(cè)棱;2n個頂點。

  棱柱的所有側(cè)棱長都相等,棱柱的上下兩個底面是相同的多邊形,直棱柱的側(cè)面是長方形。棱柱的側(cè)面有可能是長方形,也有可能是平行四邊形。

  5、正方體的平面展開圖:11種

  6、截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。7、三視圖

  物體的三視圖指主視圖、俯視圖、左視圖。主視圖:從正面看到的圖,叫做主視圖。左視圖:從左面看到的圖,叫做左視圖。俯視圖:從上面看到的圖,叫做俯視圖。

  平面圖形的認識

  線段,射線,直線名稱線段射線直線

  -16-

  不同點延伸性不能延伸只能向一方延伸可向兩方無限延伸端點數(shù)21無聯(lián)系線段向一方延長就成射線,向兩方延長就成直線共同點都是直的線提分數(shù)學(xué)

  點、直線、射線和線段的表示在幾何里,我們常用字母表示圖形。一個點可以用一個大寫字母表示,如點A

  一條直線可以用一個小寫字母表示或用直線上兩個點的大寫字母表示,如直線l,或者直線AB

  一條射線可以用一個小寫字母表示或用端點和射線上另一點來表示(端點字母寫在前面),如射線l,射線AB一條線段可以用一個小寫字母表示或用它的端點的兩個大寫字母來表示,如線段l,線段AB

  點和直線的位置關(guān)系有兩種:

  ①點在直線上,或者說直線經(jīng)過這個點。②點在直線外,或者說直線不經(jīng)過這個點。

  線段的性質(zhì)

 。1)線段公理:兩點之間的所有連線中,線段最短。

 。2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。(3)線段的中點到兩端點的距離相等。

 。4)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。(5)線段的比較:1.目測法2.疊合法3.度量法線段的中點:

  點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。

  M是線段AB的中點

  A

  直線的性質(zhì)

  MB

  AM=BM=

  1AB(或者AB=2AM=2BM)2(1)直線公理:經(jīng)過兩個點有且只有一條直線。(2)過一點的直線有無數(shù)條。

  (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。(4)直線上有無窮多個點。

 。5)兩條不同的直線至多有一個公共點。

  經(jīng)過兩點有一條直線,并且只有一條直線;兩點確定一條直線;點C線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。類似的還有線段的三等分點、四等分點等。

  提分數(shù)學(xué)

  直線桑一點和它一旁的部分叫做射線;兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。

  角:有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。

  平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。

  角的表示:

 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。

 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。

 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。

  注意:用三個大寫英文字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。

  用一副三角板,可以畫出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°角的度量

  角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”;度、分、秒是常用的角的度量單位。

  把一個周角360等分,每一份就是一度的角,記作1°;

  把1°的角60等分,每一份叫做1分的角,1分記作“1’”;把1’的角60等分,每一份叫做1秒的角,1秒記作“1””;角的性質(zhì)

 。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。(2)角的大小可以度量,可以比較(3)角可以參與運算。角的平分線

  從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。類似的,

  1°=60’,1’=60”

  還有叫的三等分線。

  AOB平分∠AOC∠AOB=∠BOC=

  1∠AOC(或者∠AOC=2∠AOB=2∠2OBBOC)

  -18-

  C提分數(shù)學(xué)

  余角和補角

 、偃绻麅蓚角的和是一個直角等于90°,這兩個角叫做互為余角,簡稱互余,其中一個角是另一個角的

  余角。用數(shù)學(xué)語言表示為如果∠α+∠β=90°,那么∠α與∠β互余;反過來,如果∠α與∠β互余,那么∠α+∠β=90°

  ②如果兩個角的和是一個平角等于180°,這兩個角叫做互為補角,簡稱互補,其中一個角是另一個角的補角。用數(shù)學(xué)語言表示為如果∠α+∠β=180°,那么∠α與∠β互補;反過來如果∠α與∠β互補,那么∠α+∠β=180°

 、弁牵ɑ虻冉牵┑挠嘟窍嗟;同角(或等角)的補角相等。

  對頂角

 、僖粚牵绻鼈兊捻旤c重合,兩條邊互為反向延長線,我們把這樣的兩個角叫做互為對頂角,其中一

  個角叫做另一個角的對頂角。

  注意:對頂角是成對出現(xiàn)的,它們有公共的頂點;只有兩條直線相交時才能形成對頂角。

 、趯斀堑男再|(zhì):對頂角相等

  如圖,∠1和∠4是對頂角,∠2和∠3是對頂角

  2431

  ∠1=∠4,∠2=∠3

  平行線:

  在同一個平面內(nèi),不相交的兩條直線叫做平行線。平行用符號“∥”表示,如“AB∥CD”,讀作“AB平行于CD”。

  注意:(1)平行線是無限延伸的,無論怎樣延伸也不相交。

 。2)當(dāng)遇到線段、射線平行時,指的是線段、射線所在的直線平行。平行線公理及其推論

  平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。補充平行線的判定方法:

  提分數(shù)學(xué)

 。1)平行于同一條直線的兩直線平行。

 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。垂直:

  兩條直線相交成直角,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。

  直線AB,CD互相垂直,記作“AB⊥CD”(或“CD⊥AB”),讀作“AB垂直于CD”(或“CD垂直于AB”)。

  垂線的性質(zhì):

  性質(zhì)1:平面內(nèi),過一點有且只有一條直線與已知直線垂直。

  性質(zhì)2:直線外一點與直線上各點連接的所有線段中,垂線段最短。簡稱:垂線段最短。點到直線的距離:過A點作l的垂線,垂足為B點,線段AB的長度叫做點A到直線l的距離。同一平面內(nèi),兩條直線的位置關(guān)系:相交或平行。

  圖形知識結(jié)構(gòu)圖:

  提分數(shù)學(xué)

  從不同方向看立體圖形

  立體圖形展開立體圖形

  幾何圖形平面圖形角的度量角角的大小比較余角和補角角的平分線同角(等角)的余角相等;同角(等角)的補角相等等角的余角相等

  直線、射線、線段

  平面圖形平面圖形

初一數(shù)學(xué)知識點總結(jié)2

  相反數(shù)

  (1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

  (2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等.

  (3)多重符號的化簡:與“+”個數(shù)無關(guān),有奇數(shù)個“﹣”號結(jié)果為負,有偶數(shù)個“﹣”號,結(jié)果為正.

  (4)規(guī)律方法總結(jié):求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號.

  2代數(shù)式求值

  (1)代數(shù)式的:用數(shù)值代替代數(shù)式里的字母,計算后所得的結(jié)果叫做代數(shù)式的值.

  (2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值.

  題型簡單總結(jié)以下三種:

 、僖阎獥l件不化簡,所給代數(shù)式化簡;

 、谝阎獥l件化簡,所給代數(shù)式不化簡;

 、垡阎獥l件和所給代數(shù)式都要化簡.

  3由三視圖判斷幾何體

  (1)由三視圖想象幾何體的形狀,首先,應(yīng)分別根據(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,然后綜合起來考慮整體形狀.

  (2)由物體的三視圖想象幾何體的形狀是有一定難度的,可以從以下途徑進行分析:

 、俑鶕(jù)主視圖、俯視圖和左視圖想象幾何體的前面、上面和左側(cè)面的形狀,以及幾何體的長、寬、高;

 、趶膶嵕和虛線想象幾何體看得見部分和看不見部分的輪廓線;

 、凼煊浺恍┖唵蔚膸缀误w的三視圖對復(fù)雜幾何體的想象會有幫助;

 、芾糜扇晥D畫幾何體與有幾何體畫三視圖的互逆過程,反復(fù)練習(xí),不斷總結(jié)方法

初一數(shù)學(xué)知識點總結(jié)3

  知識點、概念總結(jié)

  1.不等式:用符號"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。

  2.不等式分類:不等式分為嚴格不等式與非嚴格不等式。

  一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

  3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

  4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

  5.不等式解集的表示方法:

  (1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x-1≤2的解集是x≤3

  (2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

  6.解不等式可遵循的一些同解原理

  (1)不等式F(x)F(x)同解。

  (2)如果不等式F(x)

  (3)如果不等式F(x)0,那么不等式F(x)H(x)G(x)同解。

  7.不等式的性質(zhì):

  (1)如果x>y,那么yy;(對稱性)

  (2)如果x>y,y>z;那么x>z;(傳遞性)

  (3)如果x>y,而z為任意實數(shù)或整式,那么x+z>y+z;(加法則)

  (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

  (7)如果x>y>0,m>n>0,那么xm>yn

  (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))

  8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

  9.解一元一次不等式的一般順序:

  (1)去分母(運用不等式性質(zhì)2、3)

  (2)去括號

  (3)移項(運用不等式性質(zhì)1)

  (4)合并同類項

  (5)將未知數(shù)的系數(shù)化為1(運用不等式性質(zhì)2、3)

  (6)有些時候需要在數(shù)軸上表示不等式的解集

  10.一元一次不等式與一次函數(shù)的綜合運用:

  一般先求出函數(shù)表達式,再化簡不等式求解。

  11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成

  了一個一元一次不等式組。

  12.解一元一次不等式組的步驟:

  (1)求出每個不等式的解集;

  (2)求出每個不等式的解集的公共部分;(一般利用數(shù)軸)

  (3)用代數(shù)符號語言來表示公共部分。(也可以說成是下結(jié)論)

  13.解不等式的訣竅

  (1)大于大于取大的(大大大);

  例如:X>-1,X>2,不等式組的解集是X>2

  (2)小于小于取小的(小小小);

  例如:X<-4,X<-6,不等式組的解集是X<-6

  (3)大于小于交叉取中間;

  (4)無公共部分分開無解了;

  14.解不等式組的口訣

  (1)同大取大

  例如,x>2,x>3,不等式組的解集是X>3

  (2)同小取小

  例如,x<2,x<3,不等式組的解集是X<2

  (3)大小小大中間找

  例如,x<2,x>1,不等式組的解集是1

  (4)大大小小不用找

  例如,x<2,x>3,不等式組無解

  15.應(yīng)用不等式組解決實際問題的步驟

  (1)審清題意

  (2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組

  (3)解不等式組

  (4)由不等式組的解確立實際問題的解

  (5)作答

  16.用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結(jié)合生活實際具體分析,最后確定結(jié)果。

初一數(shù)學(xué)知識點總結(jié)4

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2.三角形的分類

  3.三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

  5.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。

  6.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

  7.高線、中線、角平分線的意義和做法

  8.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。

  9.三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  推論1直角三角形的兩個銳角互余;

  推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角和;

  推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;

  三角形的內(nèi)角和是外角和的一半。

  10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。

  11.三角形外角的性質(zhì)

  (1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;

  (2)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和;

  (3)三角形的一個外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  12.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  13.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  15.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  17.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  19.公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  20.多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)多邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°

  21.多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。

  (2)n邊形共有n(n-3)/2條對角線。

初一數(shù)學(xué)知識點總結(jié)5

  二元一次方程組

  1.二元一次方程:含有兩個未知數(shù),并且含未知數(shù)項的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數(shù)個解.

  2.二元一次方程組:兩個二元一次方程聯(lián)立在一起是二元一次方程組.

  3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數(shù)的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有唯一解(即公共解).4.二元一次方程組的解法:(1)代入消元法;(2)加減消元法;(3)注意:判斷如何解簡單是關(guān)鍵.※5.一次方程組的應(yīng)用:

 。1)對于一個應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則“難列

  易解”;

 。2)對于方程組,若方程個數(shù)與未知數(shù)個數(shù)相等時,一般可求出未知數(shù)的值;

 。3)對于方程組,若方程個數(shù)比未知數(shù)個數(shù)少一個時,一般求不出未知數(shù)的值,但總可以求出任何兩個未知

  數(shù)的關(guān)系.

  一元一次不等式(組)

  1.不等式:用不等號“>”“<”“≤”“≥”“≠”,把兩個代數(shù)式連接起來的式子叫不等式.2.不等式的基本性質(zhì):

  不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變;不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向要改變.

  3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不

  博源教育曾老師1378780036612

  等式的解集.

  4.一元一次不等式:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b>0或ax+b<0,(a≠0).

  5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質(zhì)

  3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時,要注意空圈和實點.

  6.一元一次不等式組:含有相同未知數(shù)的幾個一元一次不等式所組成的不等式組,叫做一元一次不等式組;

  注意:ab>0

  abab0a0b0或a0b0;

  amamab<0

  0a0b0或a0b0;ab=0a=0或b=0;a=m.

  7.一元一次不等式組的解集與解法:所有這些一元一次不等式解集的公共部分,叫做這個一元一次不等式組的解集;解一元一次不等式時,應(yīng)分別求出這個不等式組中各個不等式的解集,再利用數(shù)軸確定這個不等式組的解集.

  8.一元一次不等式組的解集的四種類型:設(shè)a>b

  xaxb不等式組的解集xaxb是xa不等式的組解集是xbba>ba>xaxb不等式組的解集是axbxaxb不等式組解集是空集ba>xy0x、y是正數(shù)xy0ba>,

  9.幾個重要的判斷:,

  xy0x、y是負數(shù)xy0xy0x、y異號且正數(shù)絕對值大,xy0-2-

  xy0x、y異號且負數(shù)絕對值大xy0.博源教育曾老師1378780036613

  整式的乘除

  1.同底數(shù)冪的乘法:aman=am+n,底數(shù)不變,指數(shù)相加.

  2.冪的乘方與積的乘方:(am)n=amn,底數(shù)不變,指數(shù)相乘;(ab)n=anbn,積的乘方等于各因式乘方的積.3.單項式的乘法:系數(shù)相乘,相同字母相乘,只在一個因式中含有的字母,連同指數(shù)寫在積里.4.單項式與多項式的乘法:m(a+b+c)=ma+mb+mc,用單項式去乘多項式的每一項,再把所得的積相加.5.多項式的乘法:(a+b)(c+d)=ac+ad+bc+bd,先用多項式的每一項去乘另一個多項式的每一項,再把所得的積相加.6.乘法公式:

  (1)平方差公式:(a+b)(a-b)=a2-b2,兩個數(shù)的和與這兩個數(shù)的差的積等于這兩個數(shù)的平方差;(2)完全平方公式:

 、(a+b)=a+2ab+b,兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;②(a-b)2=a2-2ab+b2,兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:

  p(1)若二次三項式x+px+q是完全平方式,則有關(guān)系式:22

  222

  2q;

 。2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式,利用a(x-h)2+k①可以判斷ax+bx+c值的符號;②當(dāng)x=h時,可求出ax+bx+c的最大(或最小)值k.(3)注意:x22

  21x21xx22.

  8.同底數(shù)冪的除法:am÷an=am-n,底數(shù)不變,指數(shù)相減.9.零指數(shù)與負指數(shù)公式:(1)a0=1(a≠0);a-n=

  1an,(a≠0).注意:00,0-2無意義;

  博源教育曾老師1378780036614

  (2)有了負指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5.

  10.單項式除以單項式:系數(shù)相除,相同字母相除,只在被除式中含有的字母,連同它的指數(shù)作為商的一個因式.

  11.多項式除以單項式:先用多項式的每一項除以單項式,再把所得的商相加.

  ※12.多項式除以多項式:先因式分解后約分或豎式相除;注意:被除式-余式=除式商式.13.整式混合運算:先乘方,后乘除,最后加減,有括號先算括號內(nèi).線段、角、相交線與平行線

  幾何A級概念:(要求深刻理解、熟練運用、主要用于幾何證明)

  1.角平分線的定義:一條射線把一個角分成兩個相等的部分,這條射線叫角的平分線.(如圖)OA幾何表達式舉例:(1)∵OC平分∠AOBC∴∠AOC=∠BOCB(2)∵∠AOC=∠BOC∴OC是∠AOB的平分線2.線段中點的定義:幾何表達式舉例:(1)∵C是AB中點∴AC=BCCB點C把線段AB分成兩條相等的線段,點C叫線段中點.(如圖)A(2)∵AC=BC∴C是AB中點3.等量公理:(如圖)(1)等量加等量和相等;(2)等量減等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.幾何表達式舉例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC

  博源教育曾老師137878003661AB5(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCCACDB(1)OED(2)即∠AOB=∠DOC(3)∵∠BOC=∠GFMACM又∵∠AOB=2∠BOCGOBF(3)∠EFG=2∠GFM∴∠AOB=∠EFGACBEGF(4)(4)∵AC=12AB,EG=12EF又∵AB=EF∴AC=EG4.等量代換:幾何表達式舉例:∵a=cb=c∴a=b5.補角重要性質(zhì):同角或等角的補角相等.(如圖)13幾何表達式舉例:∵a=cb=d又∵c=d∴a=b幾何表達式舉例:∵a=c+db=c+d∴a=b幾何表達式舉例:∵∠1+∠3=180°∠2+∠4=180°24又∵∠3=∠4∴∠1=∠26.余角重要性質(zhì):同角或等角的余角相等.(如圖)幾何表達式舉例:∵∠1+∠3=90°132∠2+∠4=90°又∵∠3=∠44博源教育曾老師1378780036616∴∠1=∠27.對頂角性質(zhì)定理:對頂角相等.(如圖)CAOBD幾何表達式舉例:∵∠AOC=∠DOB∴8.兩條直線垂直的定義:兩條直線相交成四個角,有一個角是直角,這兩條直線互相垂直.(如圖)AC幾何表達式舉例:(1)∵AB、CD互相垂直∴∠COB=90°BO(2)∵∠COB=90°∴AB、CD互相垂直D9.三直線平行定理:兩條直線都和第三條直線平行,那么,這兩條直線也平行.(如圖)ACEBDF幾何表達式舉例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行線判定定理:兩條直線被第三條直線所截:(1)若同位角相等,兩條直線平行;(如圖)(2)若內(nèi)錯角相等,兩條直線平行;(如圖)

  -6-

  幾何表達式舉例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE博源教育曾老師1378780036617(3)若同旁內(nèi)角互補,兩條直線平行.(如圖)11.平行線性質(zhì)定理:ACHFEGBD∴AB∥CD(3)∵∠BEF+∠DFE=180°∴AB∥CD幾何表達式舉例:(1)∵AB∥CD(1)兩條平行線被第三條直線所截,同位角相等;(如圖)(2)兩條平行線被第三條直線所截,內(nèi)錯角相等;(如圖)(3)兩條平行線被第三條直線所截,同旁內(nèi)角互補.(如圖)ACHFEGBD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°幾何B級概念:(要求理解、會講、會用,主要用于填空和選擇題)

  一基本概念:

  直線、射線、線段、角、直角、平角、周角、銳角、鈍角、互為補角、互為余角、鄰補角、兩點間的距離、相交線、平行線、垂線段、垂足、對頂角、延長線與反向延長線、同位角、內(nèi)錯角、同旁內(nèi)角、點到直線的距離、平行線間的距離、命題、真命題、假命題、定義、公理、定理、推論、證明.二定理:

  1.直線公理:過兩點有且只有一條直線.2.線段公理:兩點之間線段最短.

  3.有關(guān)垂線的定理:

  (1)過一點有且只有一條直線與已知直線垂直;

  (2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.4.平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行.

  博源教育曾老師1378780036618

  三公式:

  直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常識:

  1.定義有雙向性,定理沒有.

  2.直線不能延長;射線不能正向延長,但能反向延長;線段能雙向延長.

  3.命題可以寫為“如果那么”的形式,“如果”是命題的條件,“那么”是命題的結(jié)論.

  4.幾何畫圖要畫一般圖形,以免給題目附加沒有的條件,造成誤解.5.?dāng)?shù)射線、線段、角的個數(shù)時,應(yīng)該按順序數(shù),或分類數(shù).

  6.幾何論證題可以運用“分析綜合法”、“方程分析法”、“代入分析法”、“圖形觀察法”四種方法分析.7.方向角:

初一數(shù)學(xué)知識點總結(jié)6

  初一數(shù)學(xué)下冊期末考試知識點總結(jié)一(蘇教版)

  第七章 平面圖形的認識(二) 1

  第八章 冪的運算 2

  第九章 整式的乘法與因式分解 3

  第十章 二元一次方程組 4

  第十一章 一元一次不等式 4

  第十二章 證明 9

  第七章 平面圖形的認識(二)

  一、知識點:

  1、“三線八角”

 、 如何由線找角:一看線,二看型。

  同位角是“F”型;

  內(nèi)錯角是“Z”型;

  同旁內(nèi)角是“U”型。

 、 如何由角找線:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。

  簡述:平行于同一條直線的兩條直線平行。

  補充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。

  簡述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質(zhì):

  判定定理 性質(zhì)定理

  條件 結(jié)論 條件 結(jié)論

  同位角相等 兩直線平行 兩直線平行 同位角相等

  內(nèi)錯角相等 兩直線平行 兩直線平行 內(nèi)錯角相等

  同旁內(nèi)角互補 兩直線平行 兩直線平行 同旁內(nèi)角互補

  4、圖形平移的性質(zhì):

  圖形經(jīng)過平移,連接各組對應(yīng)點所得的線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關(guān)系:

  三角形的任意兩邊之和大于第三邊;

  三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,

  則

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:①三角形的高、角平分線、中線都是線段。

  ②高、角平分線、中線的應(yīng)用。

  7、三角形的內(nèi)角和:

  三角形的3個內(nèi)角的和等于180°;

  直角三角形的兩個銳角互余;

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和;

  三角形的一個外角大于與它不相鄰的任意一個內(nèi)角。

  8、多邊形的內(nèi)角和:

  n邊形的內(nèi)角和等于(n-2)180°;

  任意多邊形的外角和等于360°。

  第八章 冪的運算

  冪(p5

初一數(shù)學(xué)知識點總結(jié)7

  1 過兩點有且只有一條直線

  2 兩點之間線段最短

  3 同角或等角的補角相等

  4 同角或等角的余角相等

  5 過一點有且只有一條直線和已知直線垂直

  6 直線外一點與直線上各點連接的所有線段中,垂線段最短

  7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9 同位角相等,兩直線平行

  10 內(nèi)錯角相等,兩直線平行

  11 同旁內(nèi)角互補,兩直線平行

  12兩直線平行,同位角相等

  13 兩直線平行,內(nèi)錯角相等

  14 兩直線平行,同旁內(nèi)角互補

  15 定理 三角形兩邊的和大于第三邊

  16 推論 三角形兩邊的差小于第三邊

  17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180

  18 推論1 直角三角形的兩個銳角互余

  19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21 全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等

  26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

  29 角的平分線是到角的兩邊距離相等的所有點的集合

  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)

  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60

  34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35 推論1 三個角都相等的三角形是等邊三角形

  36 推論 2 有一個角等于60的等腰三角形是等邊三角形

  37 在直角三角形中,如果一個銳角等于30那么它所對的直角邊等于斜邊的一半

  38 直角三角形斜邊上的中線等于斜邊上的一半

  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?

  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形

  43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

初一數(shù)學(xué)知識點總結(jié)8

  1.4 有理數(shù)的乘除法

  有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。

  乘積是1的兩個數(shù)互為倒數(shù)。

  有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。

  兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 mì

  求n個相同因數(shù)的積的運算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。

  負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。

  把一個大于10的數(shù)表示成a×10的n次方的形式,用的就是科學(xué)計數(shù)法。

  從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。

  上面內(nèi)容是初中數(shù)學(xué)有理數(shù)的乘除法知識點總結(jié),想必大家都已經(jīng)做好筆記了,接下來還有更詳細的初中數(shù)學(xué)知識點盡在哦,希望同學(xué)們關(guān)注了。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標系的構(gòu)成

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的坐標的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

初一數(shù)學(xué)知識點總結(jié)9

  有理數(shù)加法法則

  1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  3、一個數(shù)與0相加,仍得這個數(shù)。

  有理數(shù)加法的運算律

  1、加法的交換律:a+b=b+a;

  2、加法的結(jié)合律:(a+b)+c=a+(b+c)

  有理數(shù)減法法則

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)

  有理數(shù)乘法法則

  1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  2、任何數(shù)同零相乘都得零;

  3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

初一數(shù)學(xué)知識點總結(jié)10

  初一下冊知識點總結(jié)

  1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。

  2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。

  3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。

  4.零指數(shù)與負指數(shù)公式:

  (1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。

  (2)有了負指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。

  5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數(shù)的和與這兩個數(shù)的差的.積等于這兩個數(shù)的平方差;

  (2)完全平方公式:

 、 (a+b)2=a2+2ab+b2, 兩個數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;

  ② (a-b)2=a2-2ab+b2 , 兩個數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;

  ※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc

  6.配方:

  (1)若二次三項式x2+px+q是完全平方式,則有關(guān)系式: ;

  ※ (2)二次三項式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。

  注意:當(dāng)x=h時,可求出ax2+bx+c的最大(或最小)值k。

  ※(3)注意: 。

  7.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);

  系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù)。

  8.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;

  多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);

  注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式。

  9.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項。

  10.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變。

  11.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號。

  注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列。

  平面幾何部分

  1、補角重要性質(zhì):同角或等角的補角相等.

  余角重要性質(zhì):同角或等角的余角相等.

  2、①直線公理:過兩點有且只有一條直線.

  線段公理:兩點之間線段最短.

  ②有關(guān)垂線的定理:(1)過一點有且只有一條直線與已知直線垂直;

  (2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短.

  比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.

  3、三角形的內(nèi)角和等于180

  三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和

  三角形的一個外角大于與它不相鄰的任何一個內(nèi)角

  4、n邊形的對角線公式:

  各個角都相等,各條邊都相等的多邊形叫做正多邊形

  5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360

  6、判斷三條線段能否組成三角形:

 、賏+b>c(a b為最短的兩條線段)②a-b

  7、第三邊取值范圍:

  a-b< c

  8、對應(yīng)周長取值范圍:

  若兩邊分別為a,b則周長的取值范圍是 2a

  如兩邊分別為5和7則周長的取值范圍是 14

  9、相關(guān)命題:

  (1) 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。

  (2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。

  (3)任意一個三角形兩角平分線的夾角=90+第三角的一半。

  (4) 鈍角三角形有兩條高在外部。

  (5) 全等圖形的大小(面積、周長)、形狀都相同。

  (6) 面積相等的兩個三角形不一定是全等圖形。

  (7) 三角形具有穩(wěn)定性。

  (8) 角平分線到角的兩邊距離相等。

  (9)有一個角是60的等腰三角形是等邊三角形。

初一數(shù)學(xué)知識點總結(jié)11

  平面直角坐標系

  1.定義:平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。

  2.平面上的任意一點都可以用一個有序數(shù)對來表示,記為(a,b),a是橫坐標,b是縱坐標。

  3.原點的坐標是(0,0);

  縱坐標相同的點的連線平行于x軸;

  橫坐標相同的點的連線平行于y軸;

  x軸上的點的縱坐標為0,表示為(x,0);

  y軸上的點的橫坐標為0,表示為(0,y)。

  4.建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。

  5.幾個象限內(nèi)點的特點:

  第一象限(+,+);第二象限(—,+);

  第三象限(—,—);第四象限(+,—)。

  6.(x,y)關(guān)于原點對稱的點是(—x,—y);

  (x,y)關(guān)于x軸對稱的點是(x,—y);

  (x,y)關(guān)于y軸對稱的點是(—x,y)。

  7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;

  點P(x,y)到y(tǒng)軸的距離是︱x︳。

  8.在第一、三象限角平分線上的點的坐標是(m,m);

  在第二、四象限叫平分線上的點的坐標是(m,—m)。

  不等式與不等式組

  (1)不等式

  用不等號(<,>,≥,≤,≠)連接的式子叫做不等式。

  (2)不等式的性質(zhì)

  ①對稱性;

 、趥鬟f性;

 、奂臃▎握{(diào)性,即同向不等式可加性;

  ④乘法單調(diào)性;

 、萃蛘挡坏仁娇沙诵;

 、拚挡坏仁娇沙朔;

  ⑦正值不等式可開方;

  (3)一元一次不等式

  用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。

  (4)一元一次不等式組

  一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。

  點、線、面、體知識點

  1.幾何圖形的組成

  點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。

  線:面和面相交的地方是線,分為直線和曲線。

  面:包圍著體的是面,分為平面和曲面。

  體:幾何體也簡稱體。

  2.點動成線,線動成面,面動成體。

  點、直線、射線和線段的表示

  在幾何里,我們常用字母表示圖形。

  一個點可以用一個大寫字母表示。

  一條直線可以用一個小寫字母表示。

  一條射線可以用端點和射線上另一點來表示。

  一條線段可用它的端點的兩個大寫字母來表示。

  注意:

  (1)表示點、直線、射線、線段時,都要在字母前面注明點、直線、射線、線段。

  (2)直線和射線無長度,線段有長度。

  (3)直線無端點,射線有一個端點,線段有兩個端點。

  (4)點和直線的位置關(guān)系有線面兩種:

  ①點在直線上,或者說直線經(jīng)過這個點。

 、邳c在直線外,或者說直線不經(jīng)過這個點。

  角的種類

  銳角:大于0°,小于90°的角叫做銳角。

  直角:等于90°的角叫做直角。

  鈍角:大于90°而小于180°的角叫做鈍角。

  平角:等于180°的角叫做平角。

  優(yōu)角:大于180°小于360°叫優(yōu)角。

  劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

  周角:等于360°的角叫做周角。

  負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。

  正角:逆時針旋轉(zhuǎn)的角為正角。

  0角:等于零度的角。

  余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。

  對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。

  還有許多種角的關(guān)系,如內(nèi)錯角,同位角,同旁內(nèi)角(三線八角中,主要用來判斷平行)。

初一數(shù)學(xué)知識點總結(jié)12

  第二章:整式的加減

  1、單項式:;單獨的一個數(shù)或一個字母也是單項式

  2、系數(shù):;

  3、單項式的次數(shù):;

  4、多項式:;

  叫做多項式的項;的項叫做常數(shù)項。

  5、多項式的次數(shù):;

  6、整式:;

  7、同類項:;

  8、把多項式中的同類項合并成一項,叫做合并同類項;

  合并同類項后,所得項的系數(shù)是合并同前各同類項的系數(shù)的和,且字母部分不變。

  9、去括號:(1)如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同

  (2)如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反

  10、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項

  第三章:一次方程(組)

  一、方程的有關(guān)概念

  1、方程的概念:

  (1)含有未知數(shù)的等式叫方程。

  (2)在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。

  2、等式的基本性質(zhì):

  (1)等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。

  (2)等式兩邊同時乘以(或除以)同一個數(shù)(除數(shù)不能為0),所得結(jié)果仍是等式。若a=b,則ac=bc或

  二、解方程

  1、移項的有關(guān)概念:

  把方程中的某一項改變符號后,從方程的一邊移到另一邊,叫做移項。這個法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項從方程的左邊移到右邊或從右邊移到左邊,移動的項一定要變號。

  2、解一元一次方程的步驟:

  解一元一次方程的步驟

  主要依據(jù)

  1、去分母

  等式的性質(zhì)2

  2、去括號

  去括號法則、乘法分配律

  3、移項

  等式的性質(zhì)1

  4、合并同類項

  合并同類項法則

  5、系數(shù)化為1

  等式的性質(zhì)2

  6、檢驗

  3、二元一次方程組

  (1)將二元一次方程用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);

  (2)解二元一次方程組的指導(dǎo)思想是轉(zhuǎn)化的思想;

  (3)解二元一次方程組的方法有:加減消元法;代入消元法;

  二、列方程解應(yīng)用題

  1、列方程解應(yīng)用題的一般步驟:

  (1)將實際問題抽象成數(shù)學(xué)問題;

  (2)分析問題中的已知量和未知量,找出等量關(guān)系;

  (3)設(shè)未知數(shù),列出方程;

  (4)解方程;

  (5)檢驗并作答。

  2、一些實際問題中的規(guī)律和等量關(guān)系:

  (1)幾種常用的面積公式:

  長方形面積公式:S=ab,a為長,b為寬,S為面積;正方形面積公式:S=a2,a為邊長,S為面積;

  梯形面積公式:S=,a,b為上下底邊長,h為梯形的高,S為梯形面積;

  圓形的面積公式:,r為圓的半徑,S為圓的面積;

  三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,S為三角形的面積。

  (2)幾種常用的周長公式:

  長方形的周長:L=2(a+b),a,b為長方形的長和寬,L為周長。

  正方形的周長:L=4a,a為正方形的邊長,L為周長。

  圓:L=2πr,r為半徑,L為周長。

初一數(shù)學(xué)知識點總結(jié)13

  初一數(shù)學(xué)(上)應(yīng)知應(yīng)會的知識點代數(shù)初步知識

  1.代數(shù)式:用運算符號“+-×÷”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式.注意:用字母表示數(shù)有一定的限制,首先字母所取得數(shù)應(yīng)保證它所在的式子有意義,其次字母所取得數(shù)還應(yīng)使實際生活或生產(chǎn)有意義;單獨一個數(shù)或一個字母也是代數(shù)式.2.列代數(shù)式的幾個注意事項:

  (1)數(shù)與字母相乘,或字母與字母相乘通常使用“”乘,或省略不寫;(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“”乘,也不能省略乘號;(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a;(4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a×應(yīng)寫成a;

 。5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3÷a寫成的形式;(6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a.

  3.幾個重要的代數(shù)式:(m、n表示整數(shù))

 。1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;(2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則三位整數(shù)是:100a+10b+c;(3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1;

 。4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2.有理數(shù)1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);(2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).2.?dāng)?shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;(2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b;(3)相反數(shù)的和為0a+b=0a、b互為相反數(shù).4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;(3);;

  (4)|a|是重要的非負數(shù),即|a|≥0;注意:|a||b|=|ab|,.

  5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而。唬5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;倒數(shù)是本身的數(shù)是±1;若ab=1a、b互為倒數(shù);若ab=-1a、b互為負倒數(shù).7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數(shù)與0相加,仍得這個數(shù).8.有理數(shù)加法的運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).10有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;(2)任何數(shù)同零相乘都得零;(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定.

  11有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.13.有理數(shù)乘方的法則:(1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;(3)a2是重要的非負數(shù),即a2≥0;若a2+|b|=0a=0,b=0;(4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位.

  15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

  18.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學(xué)計算的最重要的原則.

  19.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設(shè)成立而進行猜想的一種方法,但不能用于證明.整式的加減

  1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式.2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).3.多項式:幾個單項式的和叫多項式.

  4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式.

  5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式.整式分類為:.

  6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項.7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變.

  8.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.

  9.整式的加減:整式的加減,實際上是在去括號的基礎(chǔ)上,把多項式的同類項合并.10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結(jié)果一般應(yīng)該進行升冪(或降冪)排列.一元一次方程

  1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!2.等式的性質(zhì):

  等式性質(zhì)1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式;等式性質(zhì)2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結(jié)果仍是等式.3.方程:含未知數(shù)的等式,叫方程.

  4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”!5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質(zhì)1.6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

  7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數(shù)化為1(檢驗方程的解).10.列一元一次方程解應(yīng)用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.(2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

  11.列方程解應(yīng)用題的常用公式:

  (1)行程問題:距離=速度時間;(2)工程問題:工作量=工效工時;(3)比率問題:部分=全體比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;(5)商品價格問題:售價=定價折,利潤=售價-成本,;

 。6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐=πR2h.

初一數(shù)學(xué)知識點總結(jié)14

  正數(shù)和負數(shù)

 、、正數(shù)和負數(shù)的概念

  負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)

  注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時,—a是負數(shù);當(dāng)a表示負數(shù)時,—a是正數(shù);當(dāng)a表示0時,—a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)

  ②正數(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。

  2、具有相反意義的量

  若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:

  零上8℃表示為:+8℃;零下8℃表示為:—8℃

  3、0表示的意義

  (1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;

 。2)0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。如:

  (3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。

  有理數(shù)

  1、有理數(shù)的概念

 。1)正整數(shù)、0、負整數(shù)統(tǒng)稱為整數(shù)(0和正整數(shù)統(tǒng)稱為自然數(shù))

 。2)正分數(shù)和負分數(shù)統(tǒng)稱為分數(shù)

 。3)正整數(shù),0,負整數(shù),正分數(shù),負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  理解:只有能化成分數(shù)的數(shù)才是有理數(shù)。①π是無限不循環(huán)小數(shù),不能寫成分數(shù)形式,不是有理數(shù)。②有限小數(shù)和無限循環(huán)小數(shù)都可化成分數(shù),都是有理數(shù)。③整數(shù)也能化成分數(shù),也是有理數(shù)

  注意:引入負數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴大了,像—2,—4,—6,—8也是偶數(shù),—1,—3,—5也是奇數(shù)。

初一數(shù)學(xué)知識點總結(jié)15

  填空題答題技巧

  要求熟記的基本概念、基本事實、數(shù)據(jù)公式、原理,復(fù)習(xí)時要特別細心,注意記熟,做到臨考前能準確無誤、清晰回憶。

  對那些起關(guān)鍵作用的,或最容易混淆記錯的概念、符號或圖形要特別注意,因為考查的往往就是它們。如區(qū)間的端點開還是閉、定義域和值域要用區(qū)間或集合表示、單調(diào)區(qū)間誤寫成不等式或把兩個單調(diào)區(qū)間取了并集等等。

  解答題答題技巧

 。1)仔細審題。注意題目中的關(guān)鍵詞,準確理解考題要求。

  (2)規(guī)范表述。分清層次,要注意計算的準確性和簡約性、邏輯的條理性和連貫性。

 。3)給出結(jié)論。注意分類討論的問題,最后要歸納結(jié)論。

  (4)講求效率。合理有序的書寫試卷和使用草稿紙,節(jié)省驗算時間。

【初一數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

人教版數(shù)學(xué)初一知識點總結(jié)04-24

初一的數(shù)學(xué)知識點總結(jié)04-24

初一數(shù)學(xué)知識點總結(jié)04-24

初一數(shù)學(xué)全部知識點總結(jié)04-22

人教版初一數(shù)學(xué)知識點總結(jié)04-25

初一數(shù)學(xué)基本知識點總結(jié)08-11

初一數(shù)學(xué)下冊知識點總結(jié)歸納08-13

初一數(shù)學(xué)代數(shù)式知識點總結(jié)04-25

初一數(shù)學(xué)知識點總結(jié)(15篇)11-10

初一數(shù)學(xué)知識點總結(jié)15篇11-10