中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)

時(shí)間:2022-11-17 12:29:20 知識(shí)點(diǎn)總結(jié) 我要投稿

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)

  總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),他能夠提升我們的書面表達(dá)能力,讓我們抽出時(shí)間寫寫總結(jié)吧?偨Y(jié)怎么寫才不會(huì)流于形式呢?以下是小編精心整理的數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)1

  1.一些基本概念:

  (1)向量:既有大小,又有方向的量.

  (2)數(shù)量:只有大小,沒(méi)有方向的量.

  (3)有向線段的三要素:起點(diǎn)、方向、長(zhǎng)度.

  (4)零向量:長(zhǎng)度為0的向量.

  (5)單位向量:長(zhǎng)度等于1個(gè)單位的向量.

  (6)平行向量(共線向量):方向相同或相反的非零向量.

  ※零向量與任一向量平行.

  (7)相等向量:長(zhǎng)度相等且方向相同的向量.

  2.向量加法運(yùn)算:

 、湃切畏▌t的特點(diǎn):首尾相連.

 、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)2

  1.輾轉(zhuǎn)相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

  2.所謂輾轉(zhuǎn)相法,就是對(duì)于給定的兩個(gè)數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構(gòu)成新的一對(duì)數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時(shí)的除數(shù)就是原來(lái)兩個(gè)數(shù)的公約數(shù).

  3.更相減損術(shù)是一種求兩數(shù)公約數(shù)的方法.其基本過(guò)程是:對(duì)于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個(gè)操作,直到所得的數(shù)相等為止,則這個(gè)數(shù)就是所求的公約數(shù).

  4.秦九韶算法是一種用于計(jì)算一元二次多項(xiàng)式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.進(jìn)位制是人們?yōu)榱擞?jì)數(shù)和運(yùn)算方便而約定的記數(shù)系統(tǒng).“滿進(jìn)一”,就是k進(jìn)制,進(jìn)制的基數(shù)是k.

  7.將進(jìn)制的數(shù)化為十進(jìn)制數(shù)的方法是:先將進(jìn)制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進(jìn)制數(shù)的運(yùn)算規(guī)則計(jì)算出結(jié)果.

  8.將十進(jìn)制數(shù)化為進(jìn)制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進(jìn)制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個(gè)數(shù)就是相應(yīng)的進(jìn)制數(shù).

  1.重點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)的原理,會(huì)求兩個(gè)數(shù)的公約數(shù);理解秦九韶算法原理,會(huì)求一元多項(xiàng)式的值;會(huì)對(duì)一組數(shù)據(jù)按照一定的規(guī)則進(jìn)行排序;理解進(jìn)位制,能進(jìn)行各種進(jìn)位制之間的轉(zhuǎn)化.

  2.難點(diǎn):秦九韶算法求一元多項(xiàng)式的值及各種進(jìn)位制之間的轉(zhuǎn)化.

  3.重難點(diǎn):理解輾轉(zhuǎn)相除法與更相減損術(shù)、秦九韶算法原理、排序方法、進(jìn)位制之間的轉(zhuǎn)化方法.

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)3

  方程的根與函數(shù)的零點(diǎn)

  1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

  2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

  方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

  3、函數(shù)零點(diǎn)的求法:

  求函數(shù)的零點(diǎn):

  1(代數(shù)法)求方程的實(shí)數(shù)根;

  2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

  4、二次函數(shù)的零點(diǎn):

  二次函數(shù).

  1、△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

  2、△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

  3、△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)4

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的`取值范圍是0°≤α<180°

  (2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

 、谶^(guò)兩點(diǎn)的直線的斜率公式:

  注意下面四點(diǎn):

  (1)當(dāng)時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無(wú)關(guān);

  (3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  (3)直線方程

  ①點(diǎn)斜式:直線斜率k,且過(guò)點(diǎn)

  注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

  ②斜截式:,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c(diǎn)式:直線兩點(diǎn),

 、芙鼐厥剑浩渲兄本與軸交于點(diǎn),與軸交于點(diǎn),即與軸、軸的截距分別為。

  ⑤一般式:(A,B不全為0)

  ⑤一般式:(A,B不全為0)

  注意:○1各式的適用范圍

  ○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (4)直線系方程:即具有某一共同性質(zhì)的直線

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)5

  1.求函數(shù)的單調(diào)性

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù).

  利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間.

  反過(guò)來(lái),也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問(wèn)題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

 。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

 。3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立.

  2.求函數(shù)的極值:

  設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對(duì)x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值).

  可導(dǎo)函數(shù)的極值,可通過(guò)研究函數(shù)的單調(diào)性求得,基本步驟是:

  (1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

  (4)檢查f(x)的符號(hào)并由表格判斷極值.

  3.求函數(shù)的值與最小值:

  如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對(duì)任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值.函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的.

  求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

  (2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值.

  4.解決不等式的有關(guān)問(wèn)題:

  (1)不等式恒成立問(wèn)題(絕對(duì)不等式問(wèn)題)可考慮值域.

  f(x)(xA)的值域是[a,b]時(shí),

  不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

  不等式f(x)0恒成立的充要條件是f(x)min0,即a0.

  f(x)(xA)的值域是(a,b)時(shí),

  不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0.

 。2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0.

  5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

  實(shí)際生活求解(小)值問(wèn)題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來(lái)求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說(shuō)明.

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)6

  考點(diǎn)一、映射的概念

  1.了解對(duì)應(yīng)大千世界的對(duì)應(yīng)共分四類,分別是:一對(duì)一多對(duì)一一對(duì)多多對(duì)多

  2.映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping).映射是特殊的對(duì)應(yīng),簡(jiǎn)稱“對(duì)一”的對(duì)應(yīng).包括:一對(duì)一多對(duì)一

  考點(diǎn)二、函數(shù)的概念

  1.函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對(duì)應(yīng),那么,就稱對(duì)應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù).記作y=f(x),xA.其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對(duì)應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域.函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.

  2.函數(shù)的三要素:定義域、值域、對(duì)應(yīng)關(guān)系.這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù).

  3.區(qū)間的概念:設(shè)a,bR,且a

  ①(a,b)={xa

  ⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

  考點(diǎn)三、函數(shù)的表示方法

  1.函數(shù)的三種表示方法列表法圖象法解析法

  2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù).注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù).②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

  考點(diǎn)四、求定義域的幾種情況

 、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;

  ②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

 、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

  ④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零.

  ⑤.因?yàn)榱愕牧愦蝺鐩](méi)有意義,所以底數(shù)和指數(shù)不能同時(shí)為零.

  ⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;

 、呷鬴(x)是由實(shí)際問(wèn)題抽象出來(lái)的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問(wèn)題

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)7

  復(fù)數(shù)定義

  我們把形如a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)虛部等于零時(shí),這個(gè)復(fù)數(shù)可以視為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,也即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。

  復(fù)數(shù)表達(dá)式

  虛數(shù)是與任何事物沒(méi)有聯(lián)系的,是絕對(duì)的,所以符合的表達(dá)式為:

  a=a+ia為實(shí)部,i為虛部

  復(fù)數(shù)運(yùn)算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒(méi)有復(fù)數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個(gè)函數(shù)。

  復(fù)數(shù)與幾何

  ①幾何形式

  復(fù)數(shù)z=a+bi被復(fù)平面上的點(diǎn)z(a,b)確定。這種形式使復(fù)數(shù)的問(wèn)題可以借助圖形來(lái)研究。也可反過(guò)來(lái)用復(fù)數(shù)的理論解決一些幾何問(wèn)題。

 、谙蛄啃问

  復(fù)數(shù)z=a+bi用一個(gè)以原點(diǎn)O(0,0)為起點(diǎn),點(diǎn)Z(a,b)為終點(diǎn)的向量OZ表示。這種形式使復(fù)數(shù)四則運(yùn)算得到恰當(dāng)?shù)膸缀谓忉尅?/p>

 、廴切问

  復(fù)數(shù)z=a+bi化為三角形式

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)8

  有界性

  設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對(duì)于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無(wú)界.

  單調(diào)性

  設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D.如果對(duì)于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的.單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù).

  奇偶性

  設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù).

  幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對(duì)稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會(huì)改變.

  奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x).

  設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù).

  幾何上,一個(gè)偶函數(shù)關(guān)于y軸對(duì)稱,亦即其圖在對(duì)y軸映射后不會(huì)改變.

  偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x).

  偶函數(shù)不可能是個(gè)雙射映射.

  連續(xù)性

  在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性.直觀上來(lái)說(shuō),連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會(huì)隨之足夠小的函數(shù).如果輸入值的某種微小的變化會(huì)產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無(wú)法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說(shuō)具有不連續(xù)性).

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)9

  1.萬(wàn)能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)

  2.輔助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a

  3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]sina_cosb=[sin(a+b)+sin(a-b)]/2cosa_sinb=[sin(a+b)-sin(a-b)]/2cosa_cosb=[cos(a+b)+cos(a-b)]/2sina_sinb=-[cos(a+b)-cos(a-b)]/2sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]

  向量公式:

  1.單位向量:?jiǎn)挝幌蛄縜0=向量a/|向量a|

  2.P(x,y)那么向量OP=x向量i+y向量j|向量OP|=根號(hào)(x平方+y平方)

  3.P1(x1,y1)P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根號(hào)[(x2-x1)平方+(y2-y1)平方]

  4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cosα=x1x2+y1y2Cosα=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)根號(hào)(x1平方+y1平方)_根號(hào)(x2平方+y2平方)

  5.空間向量:同上推論(提示:向量a={x,y,z})

  6.充要條件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y2

  7.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)10

  二項(xiàng)式定理知識(shí)點(diǎn):

  ①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

  特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

 、谥饕再|(zhì)和主要結(jié)論:對(duì)稱性Cnm=Cnn-m

  二項(xiàng)式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項(xiàng)還是中間兩項(xiàng))

  所有二項(xiàng)式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

  奇數(shù)項(xiàng)二項(xiàng)式系數(shù)的和=偶數(shù)項(xiàng)而是系數(shù)的和

  Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

  ③通項(xiàng)為第r+1項(xiàng):Tr+1=Cnran-rbr作用:處理與指定項(xiàng)、特定項(xiàng)、常數(shù)項(xiàng)、有理項(xiàng)等有關(guān)問(wèn)題。

  二項(xiàng)式定理的應(yīng)用:解決有關(guān)近似計(jì)算、整除問(wèn)題,運(yùn)用二項(xiàng)展開(kāi)式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。

  注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)(字母項(xiàng)的系數(shù),指定項(xiàng)的系數(shù)等,指運(yùn)算結(jié)果的系數(shù))的區(qū)別,在求某幾項(xiàng)的系數(shù)的和時(shí)注意賦值法的應(yīng)用。

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)11

  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

  x=-b/2a。

  對(duì)稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P(-b/2a,(4ac-b^2)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  |a|越大,則拋物線的開(kāi)口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)12

  1.定義法:

  判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可.

  2.轉(zhuǎn)換法:

  當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷.

  3.集合法

  在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:

  若A∩B,則p是q的充分條件.

  若A∪B,則p是q的必要條件.

  若A=B,則p是q的充要條件.

  若A∈B,且B∈A,則p是q的既不充分也不必要條件.

【數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)10-08

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)12篇11-17

數(shù)學(xué)學(xué)業(yè)水平考高中知識(shí)點(diǎn)總結(jié)(12篇)11-17

高二數(shù)學(xué)水平考知識(shí)點(diǎn)總結(jié)08-08

地理學(xué)業(yè)水平測(cè)試知識(shí)點(diǎn)總結(jié)07-28

化學(xué)水平考復(fù)習(xí)知識(shí)點(diǎn)總結(jié)10-08

關(guān)于高中學(xué)業(yè)水平自我評(píng)價(jià)03-16

高中學(xué)業(yè)水平發(fā)展報(bào)告評(píng)語(yǔ)02-21

高中學(xué)業(yè)水平自我評(píng)價(jià)范例06-11