中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

時(shí)間:2024-06-08 10:55:32 煒亮 知識(shí)點(diǎn)總結(jié) 我要投稿

精選高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  總結(jié)是指對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究,做出帶有規(guī)律性結(jié)論的書面材料,它可以幫助我們有尋找學(xué)習(xí)和工作中的規(guī)律,不如我們來制定一份總結(jié)吧。你想知道總結(jié)怎么寫嗎?以下是小編為大家整理的高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

精選高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

  高三數(shù)學(xué)知識(shí)點(diǎn)之導(dǎo)數(shù)公式

  1.y=c(c為常數(shù)) y=0

  2.y=x^n y=nx^(n-1)

  3.y=a^x y=a^xlna

  y=e^x y=e^x

  4.y=logax y=logae/x

  y=lnx y=1/x

  5.y=sinx y=cosx

  6.y=cosx y=-sinx

  7.y=tanx y=1/cos^2x

  8.y=cotx y=-1/sin^2x

  9.y=arcsinx y=1/√1-x^2

  10.y=arccosx y=-1/√1-x^2

  11.y=arctanx y=1/1+x^2

  12.y=arccotx y=-1/1+x^2

  三角函數(shù)公式

  銳角三角函數(shù)公式

  sin α=∠α的對(duì)邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對(duì)邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對(duì)邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導(dǎo)

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導(dǎo)公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  數(shù)學(xué)圓錐公式知識(shí)點(diǎn)

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑

  余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角

  圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標(biāo)

  圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0

  拋物線標(biāo)準(zhǔn)方程y2=2pxy2=-2px-x2=2pyx2=-2py

  直棱柱側(cè)面積S=c.h斜棱柱側(cè)面積S=c.h

  正棱錐側(cè)面積S=1/2c.h正棱臺(tái)側(cè)面積S=1/2(c+c)h

  圓臺(tái)側(cè)面積S=1/2(c+c)l=pi(R+r)l球的表面積S=4pi.r2

  圓柱側(cè)面積S=c.h=2pi.h圓錐側(cè)面積S=1/2.c.l=pi.r.l

  弧長公式l=a.ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2.l.r

  錐體體積公式V=1/3.S.H圓錐體體積公式V=1/3.pi.r2h

  斜棱柱體積V=SL注:其中,S是直截面面積,L是側(cè)棱長

  柱體體積公式V=s.h圓柱體V=p.r2h

  乘法與因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b

  三角函數(shù)的單調(diào)性判斷致誤

  對(duì)于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時(shí),由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時(shí),內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時(shí)該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對(duì)于帶有絕對(duì)值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實(shí)數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會(huì)出錯(cuò),考生應(yīng)給予足夠的重視。

  向量夾角范圍不清致誤

  解題時(shí)要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時(shí)把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時(shí),a與b的夾角不一定為鈍角,要注意θ=π的情況。

  an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項(xiàng)an與其前n項(xiàng)和Sn之間存在下列關(guān)系:an=S1,n=1,Sn-Sn-1,n≥2。這個(gè)關(guān)系對(duì)任意數(shù)列都是成立的,但要注意的是這個(gè)關(guān)系式是分段的,在n=1和n≥2時(shí)這個(gè)關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯(cuò)的一個(gè)地方,在使用這個(gè)關(guān)系式時(shí)要牢牢記住其“分段”的特點(diǎn)。

  對(duì)數(shù)列的定義、性質(zhì)理解錯(cuò)誤

  等差數(shù)列的前n項(xiàng)和在公差不為零時(shí)是關(guān)于n的常數(shù)項(xiàng)為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項(xiàng)和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數(shù)列。

  數(shù)列中的.最值錯(cuò)誤

  數(shù)列問題中其通項(xiàng)公式、前n項(xiàng)和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點(diǎn)認(rèn)識(shí)和理解數(shù)列問題。數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系是高考的命題重點(diǎn),解題時(shí)要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點(diǎn)要根據(jù)正整數(shù)距離二次函數(shù)的對(duì)稱軸的遠(yuǎn)近而定。

  錯(cuò)位相減求和項(xiàng)處理不當(dāng)致誤

  錯(cuò)位相減求和法的適用條件:數(shù)列是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對(duì)應(yīng)項(xiàng)的乘積所組成的,求其前n項(xiàng)和;痉椒ㄊ窃O(shè)這個(gè)和式為Sn,在這個(gè)和式兩端同時(shí)乘以等比數(shù)列的公比得到另一個(gè)和式,這兩個(gè)和式錯(cuò)一位相減,就把問題轉(zhuǎn)化為以求一個(gè)等比數(shù)列的前n項(xiàng)和或前n-1項(xiàng)和為主的求和問題.這里最容易出現(xiàn)問題的就是錯(cuò)位相減后對(duì)剩余項(xiàng)的處理。

  不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時(shí)一定要準(zhǔn)確,特別是不等式兩端同時(shí)乘以或同時(shí)除以一個(gè)數(shù)式、兩個(gè)不等式相乘、一個(gè)不等式兩端同時(shí)n次方時(shí),一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會(huì)出現(xiàn)錯(cuò)誤。

  忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時(shí),務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號(hào)成立的條件。對(duì)形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時(shí),一定要注意ax,bx的符號(hào),必要時(shí)要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號(hào)能否取到。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

  易錯(cuò)點(diǎn)1 遺忘空集致誤

  錯(cuò)因分析:由于空集是任何非空集合的真子集,因此,對(duì)于集合B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,就有B=A,φ≠B高三經(jīng)典糾錯(cuò)筆記:數(shù)學(xué)A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導(dǎo)致解題結(jié)果錯(cuò)誤。尤其是在解含有參數(shù)的集合問題時(shí),更要充分注意當(dāng)參數(shù)在某個(gè)范圍內(nèi)取值時(shí)所給的集合可能是空集這種情況?占且粋(gè)特殊的集合,由于思維定式的原因,考生往往會(huì)在解題中遺忘了這個(gè)集合,導(dǎo)致解題錯(cuò)誤或是解題不全面。 易錯(cuò)點(diǎn)2 忽視集合元素的三性致誤

  錯(cuò)因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對(duì)解題的影響最大,特別是帶有字母參數(shù)的集合,實(shí)際上就隱含著對(duì)字母參數(shù)的一些要求。在解題時(shí)也可以先確定字母參數(shù)的范圍后,再具體解決問題。

  易錯(cuò)點(diǎn)3 四種命題的結(jié)構(gòu)不明致誤

  錯(cuò)因分析:如果原命題是“若 A則B”,則這個(gè)命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這里面有兩組等價(jià)的命題,即“原命題和它的逆否命題等價(jià),否命題與逆命題等價(jià)”。在解答由一個(gè)命題寫出該命題的其他形式的命題時(shí),一定要明確四種命題的結(jié)構(gòu)以及它們之間的等價(jià)關(guān)系。另外,在否定一個(gè)命題時(shí),要注意全稱命題的否定是特稱命題,特稱命題的

  否定是全稱命題。如對(duì)“a,b都是偶數(shù)”的否定應(yīng)該是“a,b不都是偶數(shù)”,而不應(yīng)該是“a ,b都是奇數(shù)”。

  易錯(cuò)點(diǎn)4 充分必要條件顛倒致誤

  錯(cuò)因分析:對(duì)于兩個(gè)條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時(shí)最容易出錯(cuò)的就是顛倒了充分性與必要性,所以在解決這類問題時(shí)一定要根據(jù)充要條件的概念作出準(zhǔn)確的判斷。

 。3)定義與充要條件

  數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。

  顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。

  “充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”!皟H當(dāng)”表示“必要”。

 。4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

  高考數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)

  1、集合的概念

  集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。

  集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。

  2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。

  3、集合中元素的特性

 。1)確定性:設(shè)A是一個(gè)給定的集合,x是某一具體對(duì)象,則x或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。

 。2)互異性:“集合張的元素必須是互異的”,就是說“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。

 。3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。

  4、集合的分類

  集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:

  有限集:含有有限個(gè)元素的集合。如“方程3x+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。

  無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。

  特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{x?R|+1=0}。

  5、特定的集合的表示

  為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的.數(shù)集表示方法,請牢記。

 。1)全體非負(fù)整數(shù)的集合通常簡稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。

 。2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N;騈+。

 。3)全體整數(shù)的集合通常簡稱為整數(shù)集Z。

 。4)全體有理數(shù)的集合通常簡稱為有理數(shù)集,記做Q。

 。5)全體實(shí)數(shù)的集合通常簡稱為實(shí)數(shù)集,記做R。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

 、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  不等式的判定:

 、俪R姷牟坏忍(hào)有“>”“<”“≤”“≥”及“≠”。分別讀作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

 、谠诓坏仁健癮>b”或“a

  ③不等號(hào)的開口所對(duì)的數(shù)較大,不等號(hào)的尖頭所對(duì)的數(shù)較。

 、茉诹胁坏仁綍r(shí),一定要注意不等式關(guān)系的關(guān)鍵字,如:正數(shù)、非負(fù)數(shù)、不大于、小于等等。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12

  一、集合與函數(shù)

  1.進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進(jìn)行求解。

  2.在應(yīng)用條件時(shí),易A忽略是空集的情況

  3.你會(huì)用補(bǔ)集的思想解決有關(guān)問題嗎?

  4.簡單命題與復(fù)合命題有什么區(qū)別?四種命題之間的相互關(guān)系是什么?如何判斷充分與必要條件?

  5.你知道“否命題”與“命題的否定形式”的區(qū)別。

  6.求解與函數(shù)有關(guān)的問題易忽略定義域優(yōu)先的原則。

  7.判斷函數(shù)奇偶性時(shí),易忽略檢驗(yàn)函數(shù)定義域是否關(guān)于原點(diǎn)對(duì)稱。

  8.求一個(gè)函數(shù)的解析式和一個(gè)函數(shù)的反函數(shù)時(shí),易忽略標(biāo)注該函數(shù)的定義域。

  9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個(gè)函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。例如:。

  10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值, 作差, 判正負(fù))和導(dǎo)數(shù)法

  11. 求函數(shù)單調(diào)性時(shí),易錯(cuò)誤地在多個(gè)單調(diào)區(qū)間之間添加符號(hào)“∪”和“或”;單調(diào)區(qū)間不能用集合或不等式表示。

  12.求函數(shù)的值域必須先求函數(shù)的定義域。

  13.如何應(yīng)用函數(shù)的單調(diào)性與奇偶性解題?①比較函數(shù)值的大小;②解抽象函數(shù)不等式;③求參數(shù)的范圍(恒成立問題).這幾種基本應(yīng)用你掌握了嗎?

  14.解對(duì)數(shù)函數(shù)問題時(shí),你注意到真數(shù)與底數(shù)的限制條件了嗎?

  (真數(shù)大于零,底數(shù)大于零且不等于1)字母底數(shù)還需討論

  15.三個(gè)二次(哪三個(gè)二次?)的關(guān)系及應(yīng)用掌握了嗎?如何利用二次函數(shù)求最值?

  16.用換元法解題時(shí)易忽略換元前后的等價(jià)性,易忽略參數(shù)的范圍。

  17.“實(shí)系數(shù)一元二次方程有實(shí)數(shù)解”轉(zhuǎn)化時(shí),你是否注意到:當(dāng)時(shí),“方程有解”不能轉(zhuǎn)化為。若原題中沒有指出是二次方程,二次函數(shù)或二次不等式,你是否考慮到二次項(xiàng)系數(shù)可能為的零的情形?

  二、不等式

  1.利用均值不等式求最值時(shí),你是否注意到:“一正;二定;三等”.

  2.絕對(duì)值不等式的解法及其幾何意義是什么?

  3.解分式不等式應(yīng)注意什么問題?用“根軸法”解整式(分式)不等式的注意事項(xiàng)是什么?

  4.解含參數(shù)不等式的通法是“定義域?yàn)榍疤幔瘮?shù)的單調(diào)性為基礎(chǔ),分類討論是關(guān)鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

  5. 在求不等式的解集、定義域及值域時(shí),其結(jié)果一定要用集合或區(qū)間表示;不能用不等式表示。

  6. 兩個(gè)不等式相乘時(shí),必須注意同向同正時(shí)才能相乘,即同向同正可乘;同時(shí)要注意“同號(hào)可倒”即a>b>0,a

  三、數(shù)列

  1.解決一些等比數(shù)列的前項(xiàng)和問題,你注意到要對(duì)公比及兩種情況進(jìn)行討論了嗎?

  2.在“已知,求”的問題中,你在利用公式時(shí)注意到了嗎?(時(shí),應(yīng)有)需要驗(yàn)證,有些題目通項(xiàng)是分段函數(shù)。

  3.你知道存在的條件嗎?(你理解數(shù)列、有窮數(shù)列、無窮數(shù)列的概念嗎?你知道無窮數(shù)列的前項(xiàng)和與所有項(xiàng)的和的不同嗎?什么樣的無窮等比數(shù)列的所有項(xiàng)的和必定存在?

  4.數(shù)列單調(diào)性問題能否等同于對(duì)應(yīng)函數(shù)的單調(diào)性問題?(數(shù)列是特殊函數(shù),但其定義域中的值不是連續(xù)的。)

  5.應(yīng)用數(shù)學(xué)歸納法一要注意步驟齊全,二要注意從到過程中,先假設(shè)時(shí)成立,再結(jié)合一些數(shù)學(xué)方法用來證明時(shí)也成立。

  四、三角函數(shù)

  1.正角、負(fù)角、零角、象限角的概念你清楚嗎,若角的終邊在坐標(biāo)軸上,那它歸哪個(gè)象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

  2.三角函數(shù)的定義及單位圓內(nèi)的三角函數(shù)線(正弦線、余弦線、正切線)的定義你知道嗎?

  3. 在解三角問題時(shí),你注意到正切函數(shù)、余切函數(shù)的定義域了嗎?你注意到正弦函數(shù)、余弦函數(shù)的有界性了嗎?

  4. 你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉(zhuǎn)化出現(xiàn)特殊角。 異角化同角,異名化同名,高次化低次)

  5. 反正弦、反余弦、反正切函數(shù)的取值范圍分別是

  6.你還記得某些特殊角的三角函數(shù)值嗎?

  7.掌握正弦函數(shù)、余弦函數(shù)及正切函數(shù)的圖象和性質(zhì)。你會(huì)寫三角函數(shù)的單調(diào)區(qū)間嗎?會(huì)寫簡單的三角不等式的解集嗎?(要注意數(shù)形結(jié)合與書寫規(guī)范,可別忘了),你是否清楚函數(shù)的圖象可以由函數(shù)經(jīng)過怎樣的變換得到嗎?

  五、平面向量

  1..數(shù)0有區(qū)別,的模為數(shù)0,它不是沒有方向,而是方向不定?梢钥闯膳c任意向量平行,但與任意向量都不垂直。

  2..數(shù)量積與兩個(gè)實(shí)數(shù)乘積的區(qū)別:

  在實(shí)數(shù)中:若,且ab=0,則b=0,但在向量的數(shù)量積中,若,且,不能推出。

  已知實(shí)數(shù),且,則a=c,但在向量的數(shù)量積中沒有。

  在實(shí)數(shù)中有,但是在向量的數(shù)量積中,這是因?yàn)樽筮吺桥c共線的向量,而右邊是與共線的向量。

  3.是向量與平行的充分而不必要條件,是向量和向量夾角為鈍角的必要而不充分條件。

  六、解析幾何

  1.在用點(diǎn)斜式、斜截式求直線的方程時(shí),你是否注意到不存在的情況?

  2.用到角公式時(shí),易將直線l1、l2的斜率k1、k2的順序弄顛倒。

  3.直線的傾斜角、到的角、與的夾角的取值范圍依次是。

  4. 定比分點(diǎn)的坐標(biāo)公式是什么?(起點(diǎn),中點(diǎn),分點(diǎn)以及值可要搞清),在利用定比分點(diǎn)解題時(shí),你注意到了嗎?

  5. 對(duì)不重合的兩條直線

  (建議在解題時(shí),討論后利用斜率和截距)

  6. 直線在兩坐標(biāo)軸上的截距相等,直線方程可以理解為,但不要忘記當(dāng)時(shí),直線在兩坐標(biāo)軸上的截距都是0,亦為截距相等。

  7.解決線性規(guī)劃問題的'基本步驟是什么?請你注意解題格式和完整的文字表達(dá)。

 、僭O(shè)出變量,寫出目標(biāo)函數(shù)

 、趯懗鼍性約束條件

  ③畫出可行域

 、茏鞒瞿繕(biāo)函數(shù)對(duì)應(yīng)的系列平行線,找到并求出最優(yōu)解

  ⑤應(yīng)用題一定要有答。

  8.三種圓錐曲線的定義、圖形、標(biāo)準(zhǔn)方程、幾何性質(zhì),橢圓與雙曲線中的兩個(gè)特征三角形你掌握了嗎?

  9.圓、和橢圓的參數(shù)方程是怎樣的?常用參數(shù)方程的方法解決哪一些問題?

  10.利用圓錐曲線第二定義解題時(shí),你是否注意到定義中的定比前后項(xiàng)的順序?如何利用第二定義推出圓錐曲線的焦半徑公式?如何應(yīng)用焦半徑公式?

  11. 通徑是拋物線的所有焦點(diǎn)弦中最短的弦。(想一想在雙曲線中的結(jié)論?)

  12. 在用圓錐曲線與直線聯(lián)立求解時(shí),消元后得到的方程中要注意:二次項(xiàng)的系數(shù)是否為零?橢圓,雙曲線二次項(xiàng)系數(shù)為零時(shí)直線與其只有一個(gè)交點(diǎn),判別式的限制。(求交點(diǎn),弦長,中點(diǎn),斜率,對(duì)稱,存在性問題都在下進(jìn)行).

  13.解析幾何問題的求解中,平面幾何知識(shí)利用了嗎?題目中是否已經(jīng)有坐標(biāo)系了,是否需要建立直角坐標(biāo)系?

  七、立體幾何

  1.你掌握了空間圖形在平面上的直觀畫法嗎?(斜二測畫法)。

  2.線面平行和面面平行的定義、判定和性質(zhì)定理你掌握了嗎?線線平行、線面平行、面面平行這三者之間的聯(lián)系和轉(zhuǎn)化在解決立幾問題中的應(yīng)用是怎樣的?每種平行之間轉(zhuǎn)換的條件是什么?

  3.三垂線定理及其逆定理你記住了嗎?你知道三垂線定理的關(guān)鍵是什么嗎?(一面、四線、三垂直、立柱即面的垂線是關(guān)鍵)一面四直線,立柱是關(guān)鍵,垂直三處見

  4.線面平行的判定定理和性質(zhì)定理在應(yīng)用時(shí)都是三個(gè)條件,但這三個(gè)條件易混為一談;面面平行的判定定理易把條件錯(cuò)誤地記為”一個(gè)平面內(nèi)的兩條相交直線與另一個(gè)平面內(nèi)的兩條相交直線分別平行”而導(dǎo)致證明過程跨步太大。

  5.求兩條異面直線所成的角、直線與平面所成的角和二面角時(shí),如果所求的角為90°,那么就不要忘了還有一種求角的方法即用證明它們垂直的方法。

  6.異面直線所成角利用“平移法”求解時(shí),一定要注意平移后所得角等于所求角(或其補(bǔ)角),特別是題目告訴異面直線所成角,應(yīng)用時(shí)一定要從題意出發(fā),是用銳角還是其補(bǔ)角,還是兩種情況都有可能。

  7.你知道公式:和中每一字母的意思嗎?能夠熟練地應(yīng)用它們解題嗎?

  8. 兩條異面直線所成的角的范圍:0°<α≤90°< p="">

  直線與平面所成的角的范圍:0o≤α≤90°

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13

  第一部分代數(shù)

  (一)集合和簡易邏輯

  1、解集合的意義及其表示方法,了解空集、全集、子集、交集、并集、補(bǔ)集的概念及其表示方法,了解符號(hào)各種跟集合相關(guān)的符號(hào)含義,并能運(yùn)用這些符號(hào)表示集合與集合、元素與集合的關(guān)系。

  2、了解充分條件、必要條件、充分必要條件的概念。

  (二)函數(shù)

  1、了解函數(shù)概念,會(huì)求一些常見函數(shù)的定義域。

  2、了解函數(shù)的單調(diào)性和奇偶性的概念,會(huì)判斷一些常見函數(shù)的單調(diào)性和奇偶性。

  3、理解一次函數(shù)、反比例函數(shù)的概念,掌握它們的圖像和性質(zhì),會(huì)求它們的解析式。

  4、理解二次函數(shù)的概念,掌握它的圖象和性質(zhì)以及函數(shù)y=ax?+bx+c(a≠0)與y=ax?(a≠0)的圖象間的關(guān)系;會(huì)求二次函數(shù)的解析式及最大值或最小值,能運(yùn)用二次函數(shù)的知識(shí)解決有關(guān)問題。

  5、理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖象和性質(zhì)。

  6、理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì)。

  (三)不等式和不等式組

  1、了解不等式的性質(zhì),會(huì)解一元一次不等式、一元一次不等式組各可化為一元一次不等式組的不等式,會(huì)解一元二次不等式。會(huì)表示不等式或不等式組的解集。

  2、會(huì)解形如1ax+b1≥c和1ax+b1≤c的絕對(duì)值不等式。

  (四)數(shù)列

  1、了解數(shù)列及其通項(xiàng)、前n項(xiàng)和的概念。

  2、理解等差數(shù)列、等差中項(xiàng)的概念,會(huì)靈活運(yùn)用等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式解決有關(guān)問題。

  3、理解等比數(shù)列、等比中項(xiàng)的概念,會(huì)運(yùn)用等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式解決有關(guān)問題。

  (五)導(dǎo)數(shù)

  1、理解導(dǎo)數(shù)的概念及其幾何意義。

  2、掌握函數(shù)y=c(c為常數(shù)),y=c(n∈N+)的導(dǎo)數(shù)公式,會(huì)求多項(xiàng)式函數(shù)的導(dǎo)數(shù)。

  3、了解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值。

  4、會(huì)求有關(guān)曲線的切線議程,會(huì)用導(dǎo)數(shù)求簡單實(shí)際問題的最大值與最小值。

  第二部分三角函數(shù)

  (一)三角函數(shù)及其有關(guān)概念

  1、了解任意角的概念,理解象限角和終邊相同的角的概念。

  2、了解弧度的概念,會(huì)進(jìn)行弧度與角度的換算。

  3、理解任意三角函數(shù)的概念,了解三角函數(shù)在各象限的符號(hào)和特殊角的三角函數(shù)值。

  (二)三角函數(shù)式的變換

  1、掌握同角三角函數(shù)間的基本關(guān)系式、誘導(dǎo)公式,會(huì)運(yùn)用它們進(jìn)行計(jì)算、化簡和證明。

  2、掌握兩角和、兩角差、二倍角的正弦、余弦、正切的公式,會(huì)用它們進(jìn)行計(jì)算、化簡和證明。

  (三)三角函數(shù)的圖象和性質(zhì)

  1、掌握正弦函數(shù)、余弦函數(shù)的`圖象和性質(zhì),會(huì)用這兩個(gè)函數(shù)的性質(zhì)(定義域、值域、周期性、奇偶性和單調(diào)性)解決有關(guān)問題。

  2、了解正切函數(shù)的圖象和性質(zhì)。

  3、會(huì)求函數(shù)y=Asin(ωx+Ф)的周期、最大值和最小值。

  4、會(huì)由已知三角函數(shù)值求角,并會(huì)作符號(hào)arcsinx、arccosx,、arctanx表示。

  (四)解三角形

  1、掌握直角三角形的邊角關(guān)系,會(huì)用它們解直角三角形。

  2、掌握正弦定理和余弦定理,會(huì)用它們解斜三角形。

  第三部分平面解析幾何

  (一)平面向量

  1、理解向量的概念,掌握向量的幾何表示,了解共線向量的概念。

  2、掌握向量的加、減運(yùn)算,掌握數(shù)乘向量的運(yùn)算,了解兩個(gè)向量共線的條件。

  3、了解向量的分解定理。

  4、掌握向量數(shù)量積運(yùn)算,了解其幾何意義和在處理長度、角度及垂直問題的應(yīng)用4了解向量垂直的條件。

  5、了解向量的直角坐標(biāo)的概念,掌握向量的坐標(biāo)運(yùn)算。

  6、掌握平面內(nèi)兩點(diǎn)間的距離公式、線段的中點(diǎn)公式和平移公式。

  (二)直線

  1、理解直線的傾斜角和斜率的概念,會(huì)求直線的斜率。

  2、會(huì)求直線方程,會(huì)用直線方程解決有關(guān)問題。

  3了解兩條直線平行與垂直的條件以及點(diǎn)到直線的距離公式,會(huì)用它們解決有關(guān)問題。

  (三)圓錐曲線

  1、了解曲線和方程的關(guān)系,會(huì)求兩條曲線的交點(diǎn)。

  2、掌握圓的標(biāo)準(zhǔn)方程和一般方程式以及直線與圓的位置關(guān)系,能靈活運(yùn)用它們解決有關(guān)問題。

  3、理解橢圓、雙曲線、拋物線的概念,掌握它們的標(biāo)準(zhǔn)方程和性質(zhì),會(huì)用它們解決有關(guān)問題。

  第四部分概率與統(tǒng)計(jì)初步

  (一)排列、組合

  1、了解分類計(jì)數(shù)原理和分步計(jì)數(shù)原理。

  2、了解排列、組合的意義,會(huì)用排列數(shù)、組合數(shù)的計(jì)算公式。

  3、會(huì)解排列、組合的簡單應(yīng)用題。

  (二)概率初步

  1、了解隨機(jī)事件及其概率的意義。

  2、了解等可能性事件的概率的意義,會(huì)用計(jì)數(shù)方法和排列組合基本公式計(jì)算一些等可能性事件的概率。

  3、了解互斥事件的意義,會(huì)用互斥事件的概率加法公式計(jì)算一些事件的概率。

  4、了解相互獨(dú)立事件的意義,會(huì)用相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。

  5、會(huì)計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14

  符合一定條件的動(dòng)點(diǎn)所形成的圖形,或者說,符合一定條件的點(diǎn)的全體所組成的集合,叫做滿足該條件的點(diǎn)的軌跡。

  軌跡,包含兩個(gè)方面的問題:凡在軌跡上的點(diǎn)都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點(diǎn)都不符合給定的條件,也就是符合給定條件的點(diǎn)必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

  【軌跡方程】就是與幾何軌跡對(duì)應(yīng)的代數(shù)描述。

  一、求動(dòng)點(diǎn)的軌跡方程的.基本步驟

  1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);

  2、寫出點(diǎn)M的集合;

  3、列出方程=0;

  4、化簡方程為最簡形式;

  5、檢驗(yàn)。

  二、求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。

  1、直譯法:直接將條件翻譯成等式,整理化簡后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

  2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

  3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。

  4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

  5、交軌法:將兩動(dòng)曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  直譯法:求動(dòng)點(diǎn)軌跡方程的一般步驟

  ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

 、谠O(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);

 、哿惺健谐鰟(dòng)點(diǎn)p所滿足的關(guān)系式;

 、艽鷵Q——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個(gè)高中階段里最核心的板塊,在這個(gè)板塊里,重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析就是二次方程的分布的問題,這是第一個(gè)板塊。

  第二:平面向量和三角函數(shù)。

  重點(diǎn)考察三個(gè)方面:一個(gè)是劃減與求值,第一,重點(diǎn)掌握公式,重點(diǎn)掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。

  第四:空間向量和立體幾何。

  在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。

  第五:概率和統(tǒng)計(jì)。

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個(gè)方面,第一……等可能的概率,第二……事件,第三是獨(dú)立事件,還有獨(dú)立重復(fù)事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個(gè)試卷里難度比較大,計(jì)算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動(dòng)點(diǎn)問題,第三類是弦長問題,第四類是對(duì)稱問題,這也是2008年高考已經(jīng)考過的一點(diǎn),第五類重點(diǎn)問題,這類題時(shí)往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計(jì)算量很大,但是造成計(jì)算量大的原因,往往有這個(gè)原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復(fù)習(xí)時(shí),應(yīng)該重點(diǎn)不等式計(jì)算的方法,雖然說難度比較大,我建議考生,采取分部得分整個(gè)試卷不要留空白。這是高考所考的七大板塊核心的考點(diǎn)。

  高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 15

  第一部分集合

 。1)含n個(gè)元素的集合的子集數(shù)為2^n,真子集數(shù)為2^n—1;非空真子集的數(shù)為2^n—2;

 。2)注意:討論的時(shí)候不要遺忘了的情況。

  第二部分函數(shù)與導(dǎo)數(shù)

  1、映射:注意

 、俚谝粋(gè)集合中的元素必須有象;

 、谝粚(duì)一,或多對(duì)一。

  2、函數(shù)值域的求法:

 、俜治龇ǎ

 、谂浞椒ǎ

 、叟袆e式法;

  ④利用函數(shù)單調(diào)性;

 、輷Q元法;

 、蘩镁挡坏仁;

 、呃脭(shù)形結(jié)合或幾何意義(斜率、距離、絕對(duì)值的意義等);

 、嗬煤瘮(shù)有界性;

  ⑨導(dǎo)數(shù)法

  3、復(fù)合函數(shù)的有關(guān)問題

  (1)復(fù)合函數(shù)定義域求法:

 、偃鬴(x)的定義域?yàn)椤瞐,b〕,則復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出。

  ②若f[g(x)]的'定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域。

  (2)復(fù)合函數(shù)單調(diào)性的判定:

 、偈紫葘⒃瘮(shù)分解為基本函數(shù):內(nèi)函數(shù)與外函數(shù);

 、诜謩e研究內(nèi)、外函數(shù)在各自定義域內(nèi)的單調(diào)性;

  ③根據(jù)“同性則增,異性則減”來判斷原函數(shù)在其定義域內(nèi)的單調(diào)性。

  注意:外函數(shù)的定義域是內(nèi)函數(shù)的值域。

  4、分段函數(shù):值域(最值)、單調(diào)性、圖象等問題,先分段解決,再下結(jié)論。

  5、函數(shù)的奇偶性

 。1)函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件;

 。2)是奇函數(shù);

 。3)是偶函數(shù);

 。4)奇函數(shù)在原點(diǎn)有定義,則;

  (5)在關(guān)于原點(diǎn)對(duì)稱的單調(diào)區(qū)間內(nèi):奇函數(shù)有相同的單調(diào)性,偶函數(shù)有相反的單調(diào)性;

 。6)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先等價(jià)變形,再判斷其奇偶性;

【高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

高考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)06-28

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-25

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-23

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)03-25

成人高考數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)10-21

高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)10-27

高考數(shù)學(xué)知識(shí)點(diǎn)01-10

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)精選15篇11-02

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(15篇)11-02