因數(shù)和倍數(shù)教學(xué)反思
教學(xué)反思是老師們經(jīng)常使用的一種實用型文書,教學(xué)反思是一種學(xué)習(xí)方法,越來越被我們來使用,下面是小編為您分享的因數(shù)和倍數(shù)教學(xué)反思(精選21篇),感謝您的參閱。
因數(shù)和倍數(shù)教學(xué)反思1
這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個很好的訓(xùn)練。通過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點的學(xué)習(xí)和掌握上還存在一些問題:
1、最大公因數(shù)和最小公倍數(shù)
教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情況,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時每節(jié)課都有三到五個訓(xùn)練,并進行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。
2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)
這四個概念按照兩個不同的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
3、235倍數(shù)的特征
如果單獨讓學(xué)生去說去判斷一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進行反應(yīng),數(shù)的感覺不佳。
以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。
因數(shù)和倍數(shù)教學(xué)反思2
本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學(xué)生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系,是本課程教學(xué)的重點和難點。同時,學(xué)習(xí)整理知識是這門課教學(xué)的靈魂。
成功:
1.構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的關(guān)系。在教學(xué)中,我首先通過一個聯(lián)想紙牌游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生用因子和復(fù)數(shù)的知識來描述數(shù)字2。學(xué)生很容易認為2是最小的素數(shù),2是偶數(shù),2的因子是1和2的倍數(shù),2的倍數(shù)特征是一個位為0、2、4、6、8的數(shù)字,學(xué)生回答后,教師及時掌握關(guān)鍵詞,引出本單元的所有概念:因子、倍數(shù)、素數(shù)、復(fù)合數(shù)、奇數(shù)、偶數(shù)、公因子、最大公因子、公倍數(shù)、最小公倍數(shù)、,多重特征2、多重特征3和多重特征5。如何使這些雜亂的概念更簡潔、更有序、更能反映知識之間的關(guān)系?通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學(xué)生相互學(xué)習(xí),相互學(xué)習(xí),逐漸對這些概念之間的關(guān)系有了進一步的理解。然后,在選擇了幾個學(xué)生的作品進行展示和評價后,最后,教師和學(xué)生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡(luò)體系。
2.教學(xué)生如何組織知識。在教學(xué)中,教人釣魚比教人釣魚更好。作為一名教師,最好教給學(xué)生必要的學(xué)習(xí)方法。在本課的整理和復(fù)習(xí)中,我要求學(xué)生在課前總結(jié)第二單元中因子和倍數(shù)的概念。涉及的概念有:因子、倍數(shù)、公因子、公倍數(shù)、最大公因子、最小公倍數(shù)、素數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的多重特征、3的多重特征、5的多重特征,并提出了具體要求:第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;第三,它們可以用你喜歡的方式表達,也可以用數(shù)學(xué)手寫報紙的形式呈現(xiàn)。課前設(shè)計完成后,我提前收集了一些有代表性的作品,放在課件中,供學(xué)生欣賞,互相學(xué)習(xí),互相學(xué)習(xí),共同提高。通過小組討論和課堂交流,教師和學(xué)生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡(luò)圖。
在本課程的整個設(shè)計過程中,通過學(xué)生的聯(lián)想,回憶以前學(xué)到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學(xué)中的每一個單元、每一卷知識、小學(xué)數(shù)學(xué)知識,讓學(xué)生體會思維導(dǎo)圖法的威力。學(xué)生在感嘆這種方法的魅力的同時,也可以將這種方法推廣到其他學(xué)科,讓學(xué)生真正掌握知識整理的方法,并將其應(yīng)用到以后的單元知識整理中。
3.進一步回顧實踐中的概念。在實踐環(huán)節(jié),我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是通過實踐促進復(fù)習(xí),在實踐中更好地理解這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在實踐過程中,學(xué)生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點的概念有了更清晰的理解,起到了復(fù)習(xí)和復(fù)習(xí)舊知識的作用。
缺點:
1、個別學(xué)生不會在展覽評價中進行評價,而只是思考設(shè)計的美,而不是解釋知識之間的關(guān)系。老師應(yīng)該在這一點上給他們指導(dǎo)。
2、有些學(xué)生甚至連最小的偶數(shù)都不懂,因為第二單元的知識是在開學(xué)時學(xué)的,有些知識點已經(jīng)忘記了。因此,他們在學(xué)習(xí)每一單元后,會繼續(xù)鞏固和實踐自己的知識。
3、由于知識點太多,實踐時間不足,基本實踐時間可以保證,但需要擴展的知識沒有得到更好的呈現(xiàn)。
再教育設(shè)計:
1、掌握數(shù)學(xué)知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導(dǎo)學(xué)生從數(shù)學(xué)本質(zhì)出發(fā)思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學(xué)思維品質(zhì)。
2、我們應(yīng)該繼續(xù)深入探索數(shù)學(xué)的思想、靈魂和方法來指導(dǎo)課堂教學(xué),讓學(xué)生掌握未來學(xué)習(xí)知識的鑰匙,學(xué)會打開知識的大門。
因數(shù)和倍數(shù)教學(xué)反思3
一、教材與知識點的對比與區(qū)別。
1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心!耙驍(shù)與倍數(shù)”的認識與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在教師必須要認真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認識不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。
2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別。“倍”的概念比“倍數(shù)”要廣。我們可以說“1.5是0.3的5倍”但不能說”1.5是0.3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。
二、教法的運用實踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分數(shù)無關(guān)與負數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。
2、在進行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。
因數(shù)和倍數(shù)教學(xué)反思4
倍數(shù)和因數(shù)本教材與原教材大不相同。在舊教材中,首先確立了除法的概念,然后在此基礎(chǔ)上認識了因子倍數(shù)。目前,在不知道劃分的情況下,直接識別倍數(shù)和因子。數(shù)學(xué)中的“初始概念”通常很難教授。這部分信息是學(xué)生第一次很難掌握的。首先,這個名字相對抽象,在現(xiàn)實生活中不常接觸。對于這樣的概念教學(xué),學(xué)生要真正理解、掌握和確定它,需要一個長期的消化和理解過程。
在本課程中,我充分體現(xiàn)了學(xué)生是主體,為學(xué)生的探索和發(fā)現(xiàn)提供了充足的時間和空間,并提供了適當(dāng)?shù)闹笇?dǎo)。同時,為了提高課堂教學(xué)的有效性,我在本課程的教學(xué)中體現(xiàn)了自主性、主動性、合作性和親和力,做到了以下幾點:
。ㄒ唬┎僮鲗嵺`,實例內(nèi)化,對倍數(shù)和因子的理解
我創(chuàng)造了一個有效的數(shù)學(xué)學(xué)習(xí)環(huán)境,將數(shù)字與形狀結(jié)合起來,并將抽象化為直覺。首先,讓學(xué)生操作,將12個小正方形放入不同的矩形中,然后讓學(xué)生寫出不同的乘法公式,從而得出因子和倍數(shù)的含義。這樣,在學(xué)生已有知識的基礎(chǔ)上,從動手操作到直觀感知,概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),使學(xué)生能夠獨立體驗數(shù)與形的結(jié)合,然后形成要素和倍數(shù)的含義。使學(xué)生初步建立“因素與多元”的概念。這樣,我們就可以充分學(xué)習(xí)、利用和挖掘教材,利用學(xué)生已有的數(shù)學(xué)知識,引出新的知識,減緩難度,效果良好。
(二)自主探究、意義建構(gòu)、發(fā)現(xiàn)倍數(shù)和因素
整個教學(xué)過程試圖反映學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者和參與者。在整個課堂上,教師總是為學(xué)生營造一種輕松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)和理解倍數(shù)和因子的意義,探索和掌握尋找一個數(shù)的倍數(shù)和因子的方法,引導(dǎo)學(xué)生滿口獨立獲取知識,手和腦。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式。多元合作教學(xué)不僅能使學(xué)生在合作中表達自己的觀點、參與討論、獲取知識、發(fā)現(xiàn)特色,還能培養(yǎng)學(xué)生的合作學(xué)習(xí)技能,初步形成合作與競爭意識。
查找數(shù)字因子是本課的難點。在教學(xué)過程中,讓學(xué)生自主探究。在隨后的檢查中,我發(fā)現(xiàn)很多學(xué)生完成的不是很好,所以我決定先溝通,讓學(xué)生們發(fā)現(xiàn)。就這樣,花了很多時間。最后,我沒有太多時間練習(xí)。我認為雖然我用了太多的時間,但我認為學(xué)生們已經(jīng)充分探索和收獲了。對于剛剛對多因素有了感性認識的學(xué)生來說,如何在沒有重復(fù)和遺漏的情況下找到36個因素是一件很困難的事情,這樣他們才能充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。首先,讓學(xué)生獨立找出36的因子。我檢查了三分之一的學(xué)生可以有序地思考,大多數(shù)學(xué)生沒有按照必要的順序?qū)懝。然后讓學(xué)生討論兩個問題
因數(shù)和倍數(shù)教學(xué)反思5
本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識的基礎(chǔ)上進行教學(xué)的。
課堂中,我首先讓學(xué)生理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進行分類,同時思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭論與交流中達成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的含義,特別強調(diào)的是對于因數(shù)和倍數(shù)的含義要符合兩個條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
其次,厘清概念倍數(shù)和幾倍,注重強調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進行研究,它的研究范圍較之倍數(shù)范圍大一些。
本節(jié)課的不足之處:
1.練習(xí)設(shè)計容量少了一些,導(dǎo)致課堂有剩余時間。
2.對因數(shù)和倍數(shù)的含義還應(yīng)該進行歸納
因數(shù)和倍數(shù)教學(xué)反思6
因數(shù)和倍數(shù)是蘇教版五年級下冊第三單元的內(nèi)容。這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認識因數(shù)倍數(shù)。而教材是通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。我在教學(xué)時做了一些下的改動,例題從12個相同的正方形拼長方形開始教學(xué),學(xué)生對這個活動已經(jīng)很熟悉,幾乎人人都知道有不同的拼法,都能順利地拼出三種不同的長方形。因此,我要求不用12個正方形拼,而是在腦子里“想像拼”,不能想象的就在本子上“畫拼”,“拼”好后,我也要求只用一個乘法算式表示你的拼法,這樣不僅節(jié)省了不少時間,更主要的是我覺得這樣的操作活動,雖然看起來不熱鬧,但學(xué)生的學(xué)習(xí)興趣被激發(fā)了、思維被調(diào)動起來了,主動參與到了知識的學(xué)習(xí)中去了。
能不重復(fù)、不遺漏,有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快可找出12的因數(shù),接著再提問:你是怎么看出來的?根據(jù)一個乘法算式可以得到12的幾個因數(shù)?在學(xué)生回答之后,我接著請同學(xué)們用剛才的方法自己找一找36的因數(shù)有哪些。在匯報時,重點解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。雖然這樣的教學(xué)設(shè)計,看起來學(xué)生的主動探索過程好像削弱了好多,但根據(jù)試上這課時的情況看,這樣的設(shè)計比直接讓學(xué)生自主探索36的因數(shù)有哪些學(xué)習(xí)效果要好一些。直接探索36的因數(shù)有哪些,放得太開,學(xué)生無從下手,暴露出了許多問題,有的不知道該如何找因數(shù),有的沒有找全,而學(xué)生在教師的引導(dǎo)下,發(fā)現(xiàn)了找一個數(shù)因數(shù)的方法后接著去找36的因數(shù),那么他所關(guān)注的是如何有序地找出一個數(shù)的因數(shù),這樣的思考更有針對性,目標(biāo)也更明確,對知識的掌握也能做得更好。
因數(shù)和倍數(shù)教學(xué)反思7
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,a能整除b。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣編排對于學(xué)生來說更容易理解和掌握。但是若老師對整除的概念不做講解的話,今后的知識學(xué)習(xí)可能會造成一些缺陷,因此我在這課時中,結(jié)合老教材的知識給學(xué)生進行了滲透,學(xué)生學(xué)習(xí)起來掌握的很好。利用除法、乘法都能很快的找到一個數(shù)的因數(shù)與倍數(shù)。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用生活與數(shù)學(xué)之間的聯(lián)系,來幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。比如,我上課前利用班級中學(xué)生的父子關(guān)系和朋友關(guān)系來說明“朋友、父子”詞語的含義,它是指兩個人之間的一種關(guān)系,只能造句為“某人是某人的朋友”。這樣的話局把生活中的相互依存關(guān)系遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計較自然貼切,讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)和因數(shù)之間的相互依存關(guān)系。
教育家第斯多惠曾說過:“一個壞的教師奉送真理,一個好的教師則教人發(fā)現(xiàn)真理。”因此教學(xué)中,教師要重視學(xué)生的主體地位,給學(xué)生提供充分思考和自我表現(xiàn)的空間,引導(dǎo)他們利用已有的知識去探索發(fā)現(xiàn)新的知識。如何找一個數(shù)的因數(shù)是這節(jié)課的重點也是難點。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法(除法)算式“一對對”地找出18、15、24的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的找因數(shù),能既找全又不遺漏。在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。學(xué)生在自己找因數(shù)和倍數(shù)練習(xí)后又總結(jié)了最大的因數(shù)和最小的倍數(shù)都是它本身。我想這應(yīng)該比教師的傳授要好百倍。
一節(jié)課下來,學(xué)生學(xué)習(xí)起來十分輕松,教學(xué)設(shè)計盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,學(xué)生樂學(xué),思路清晰。以上是自己教學(xué)后的一點感悟。
因數(shù)和倍數(shù)教學(xué)反思8
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課又是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學(xué)生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。
一、設(shè)計情境,引起思考。
改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎么擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎么列式求出一共有多少方塊?由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。從而理解決因數(shù)與倍數(shù)的意義。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。
如何找一個數(shù)的因數(shù)是這節(jié)課的重點,首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。
根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進行,才能達到教學(xué)的目的。
因數(shù)和倍數(shù)教學(xué)反思9
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這局部內(nèi)容同學(xué)初次接觸,對于同學(xué)來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕獲生活與數(shù)學(xué)之間的聯(lián)系,協(xié)助同學(xué)理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和小朋友們玩了一個小游戲。用“ 我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。同學(xué)對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來協(xié)助同學(xué)理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義動身,而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但實質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓同學(xué)明白什么情況下才干討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。二是要同學(xué)注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強調(diào),協(xié)助小朋友們認真理解辨析,所以同學(xué)一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
因數(shù)和倍數(shù)教學(xué)反思10
《倍數(shù)和因數(shù)》這一節(jié)的主要內(nèi)容是讓學(xué)生在已有知識和經(jīng)驗的基礎(chǔ)上,自主探索和總結(jié)找一個數(shù)的倍數(shù)和因數(shù)的方法;用“列舉法”研究一個數(shù)的倍數(shù)的特點和一個數(shù)的因數(shù)的特點。 這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。 這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
(一) 操作實踐,舉例內(nèi)化,認識倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,使數(shù)與形做到了有機的結(jié)合。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,降低了難度,效果較好。
。ǘ┳灾魈骄浚饬x建構(gòu),找倍數(shù)和因數(shù)
一個數(shù)的倍數(shù)與因數(shù)的特征,單憑記憶也不難接受,為防止學(xué)生進行“機械學(xué)習(xí)”,我提出“任何一個不是0的自然數(shù)的因數(shù)有什么特點,”讓學(xué)生觀察12,20,16,36的因數(shù),思考:一個數(shù)的因數(shù)的個數(shù)是有限的還是無限的?其中最大的因數(shù)是幾?最小的呢?讓學(xué)生的思維有了明確的指向。整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。
(三)抓住學(xué)生思維的“最近發(fā)展區(qū)”
讓學(xué)生在“獨立思考——集體交流——互相討論”的過程中,促使學(xué)生學(xué)會有序思考,從而形成基本的技能與方法,既關(guān)注了過程,又關(guān)注了結(jié)果。
找一個數(shù)的因數(shù)的方法是本節(jié)課的難點,在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流再讓學(xué)生尋找,這樣就用了很多時間,最后就沒有很多的時間去練習(xí),我認為雖然時間用的過多,但我認為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。
。ㄋ模┳兪酵卣,實踐應(yīng)用---—促進智能內(nèi)化
練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
(五)重視數(shù)學(xué)意義的滲透與拓展
力求用數(shù)學(xué)的本質(zhì)吸引學(xué)生,樹立為學(xué)生的繼續(xù)學(xué)習(xí)和終身發(fā)展服務(wù)的意識。本節(jié)課的設(shè)計,我就關(guān)注了學(xué)生的學(xué)習(xí)后勁。如列舉法的介紹,有序思考的解決問題的策略等。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認真鉆研了教材,仔細分析了教案,看哪些地方時間安排的可以少一些,所以我讓學(xué)生先進性了預(yù)習(xí),做好了一定的準(zhǔn)備工作。在第一部分認識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時間,直接出示,實際效果我認為是比較理想的。課上還應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
因數(shù)和倍數(shù)教學(xué)反思11
一、數(shù)形結(jié)合減緩難度
《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間,激活學(xué)生的形象思維,而通過數(shù)學(xué)潛在的“形”與“數(shù)”的關(guān)系,為下面研究“因數(shù)與倍數(shù)”概念,由形象思維轉(zhuǎn)入抽象思維打下了良好基礎(chǔ),有效地實現(xiàn)了原有知識與新學(xué)知識之間的鏈接。在學(xué)生已有的知識基礎(chǔ)上,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。
二、自主探究,合作學(xué)習(xí)
放手讓每個同學(xué)找出36的所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。通過觀察12,36,30,18的因數(shù)和2,4,5,7的倍數(shù),讓學(xué)生自己說一說發(fā)現(xiàn)了什么?由于提供了豐富的觀察對象,保證了觀察的目的性。誘發(fā)學(xué)生探索與學(xué)習(xí)的欲望,從而激活學(xué)生的思維。讓學(xué)生在許多的不同中通過合作交流找到相同。
三、在游戲中體驗學(xué)習(xí)的快樂
在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。這樣由淺入深的設(shè)計符合學(xué)生跳一跳就能摘到果子的心理,同時也讓學(xué)生在游戲中再次體驗因數(shù)與倍數(shù)的特點,如找完因數(shù)朋友時我以你是我的最大的因數(shù)朋友點出一個數(shù)的因數(shù)的個數(shù)是有限的,找倍數(shù)朋友時起來的學(xué)生非常多,讓學(xué)生再次體驗一個數(shù)的倍數(shù)的個數(shù)是無限的。找共同的朋友則是一個思維的升華過程,能有效地激活學(xué)生的思維,在求知欲的支配下去進行有效地思考。這一環(huán)節(jié)使課堂氣氛更加熱烈,也讓學(xué)生在輕松的氛圍中體驗到學(xué)習(xí)的快樂。
這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。如在教學(xué)找36的因數(shù)這一環(huán)節(jié)時,由于擔(dān)心孩子們是第一次接觸因數(shù),對于因數(shù)的概念不夠了解,而犯這樣或那樣的錯誤,所以引導(dǎo)的過多講解的過細,因此給他們自主探究的空間太小了,沒能很好的體現(xiàn)學(xué)生的主體性。雖然是新理念但卻沿用了舊模式,在今后的教學(xué)中我還要不斷改進自己的教法,讓學(xué)生成為課堂的真正主人。
這堂課我的個人語言過于隨意,數(shù)學(xué)是嚴(yán)謹?shù)模S意性的語言會對學(xué)生的學(xué)習(xí)理解造成一定的影響。由于長期的教學(xué)習(xí)慣和自身的性格特點造成了我的語言在某些時候不夠嚴(yán)謹。這一點我心里非常清楚,在日常的教學(xué)中也在不斷地改正,但這節(jié)課有的地方還是沒有注意到。因此在今后的教學(xué)中我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機會,通過各種渠道不斷的學(xué)習(xí),提高自己的素質(zhì)。多反思認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。
感謝各位老師給我這么一個寶貴的學(xué)習(xí)機會,并在這個過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴(yán)格要求自己,爭取在今后的工作中做的更好!
因數(shù)和倍數(shù)教學(xué)反思12
《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。
本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個學(xué)生都能參加到數(shù)學(xué)知識的學(xué)習(xí)中去,調(diào)動學(xué)生學(xué)習(xí)的興趣和主動性。本節(jié)課主要從以下幾個方面進行教學(xué)的。
一、動手操作 探究方法.
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,變抽象為具體。
二、倍數(shù)教學(xué),發(fā)現(xiàn)特點。
利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:
。1)3的倍數(shù)應(yīng)該是3與一個數(shù)相乘的積。
(2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點奠定基礎(chǔ)。
最后讓學(xué)生通過討論發(fā)現(xiàn):
。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。
。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。
三、因數(shù)教學(xué),發(fā)現(xiàn)特點。
找一個數(shù)因數(shù)的方法是本節(jié)課的難點。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進一步理解。強調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點:
。1)一個數(shù)因數(shù)的個數(shù)是有限的。
(2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1)
四、練習(xí)反饋情況
從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯的,有部分基礎(chǔ)差的學(xué)生,有如下幾點錯誤出現(xiàn):
1、倍數(shù)沒有加省略號。
2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。
3、因數(shù)有遺漏的情況。
從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補差工作;同時要注意教學(xué)中細節(jié)的處理。
因數(shù)和倍數(shù)教學(xué)反思13
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:
一、尊重教材,引導(dǎo)學(xué)生實現(xiàn)從形象向抽象的飛躍。
教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,
二、細化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。
倍數(shù)和因數(shù)的意義是本單元的重要知識,其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會12也是4的倍數(shù),指名說后,再強化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強。這時再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個數(shù)是哪個數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點特別的兩句。
整個過程處理細致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。
三、由點及面,巧架平臺,讓學(xué)生在師生互動中建立完整的數(shù)學(xué)模型。
找一個數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個數(shù)的倍數(shù)或因數(shù)的方法時,重點是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。
探索求一個數(shù)因數(shù)的方法是本課的難點,例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進,先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個數(shù)的因數(shù)的方法。
教學(xué)4的倍數(shù)時,學(xué)生在4×4=16的鋪墊下,很容易找到一個或幾個4的倍數(shù),但是想要“一個不漏且有序的找全,并體會出4的倍數(shù)的個數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。
這樣搭建了有效的平臺、形成了師生互動生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點及面向有序、完整的思維邁進,有效的建構(gòu)了數(shù)學(xué)模型。
因數(shù)和倍數(shù)教學(xué)反思14
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機,每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。
2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。
3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強調(diào),幫助學(xué)生認真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。
因數(shù)和倍數(shù)教學(xué)反思15
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,是比較抽象的,本冊教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。本節(jié)課是這一單元的的教學(xué)重點。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進行。第一課時只讓學(xué)生認識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法。
一、設(shè)計情境,引起思考。
創(chuàng)造性的使用教材,引起學(xué)生思考,板書15÷0.3=50,1.5÷3=0.5,1.5÷0.3=5,15÷3=5引出除盡和整除的含義,從而明確了因數(shù)倍數(shù)的研究范圍,進而理解決因數(shù)與倍數(shù)的意義。對于因數(shù)與倍數(shù)的依存關(guān)系,學(xué)生在理解時比較抽象,我就放到具體算式里,算式由學(xué)生舉例,反復(fù)去說誰是誰的倍數(shù),誰是誰的因數(shù),在課堂中反復(fù)強調(diào),幫助學(xué)生認真理解辨析,從而理解了因數(shù)與倍數(shù)之間的相互依存關(guān)系。學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。
二、引導(dǎo)學(xué)生探求找因數(shù)的方法。
如何找一個數(shù)的因數(shù)是這節(jié)課的又一個重點,首先讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不同的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點。
根據(jù)學(xué)生的學(xué)習(xí)特點,靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進行,才能達到教學(xué)的目的。在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),充分運用多媒體,通過演示18、24、77、1的因數(shù),讓學(xué)生直觀地看到了“順序”,學(xué)會有序思考,體會到了求一個數(shù)的因數(shù)的方法。與此同時學(xué)生直觀觀察發(fā)現(xiàn)一個數(shù)的因數(shù)都有1和它本身,最小的因數(shù)是1,最大的因數(shù)是它本身,不是數(shù)字越大因數(shù)個數(shù)就越多,一個數(shù)的因數(shù)的個數(shù)是有限的等等重要相關(guān)知識,這些發(fā)現(xiàn)與課堂練習(xí)息息相關(guān),形成本節(jié)課完整的知識體系,還為后面的學(xué)習(xí)做好鋪墊。課堂練習(xí)完成的很好,起到學(xué)以致用的學(xué)習(xí)效果。培養(yǎng)學(xué)生的概括能力、歸納能力,抽象能力得以進一步發(fā)展。
因數(shù)和倍數(shù)教學(xué)反思16
曾經(jīng)有人將公開課比喻成“摸著過河的石頭”,“通向峰頂?shù)那坌÷贰薄J前,因為對岸花香彌撒,因為峰頂風(fēng)光無限,但眾所周知,這個過程是艱難而曲折的,多少次要掉進河里,多少次想放棄攀登,但這個過程又可以使人“改頭換面”,使人學(xué)習(xí)到許多以前沒有學(xué)到的知識和技能。正是一節(jié)全國的數(shù)學(xué)公開課,讓我經(jīng)歷了這個過程,也使我真真正正地“蛻變”了一次,經(jīng)歷了從思想到實際教學(xué)水平的一次飛躍,毫不夸張地說,這節(jié)課是我教學(xué)成長的一個催化劑。
一、有壓力才有動力
經(jīng)過市里、省里的層層選拔,6月中旬當(dāng)拿到全國公開課的入場券時,我是既歡喜,又擔(dān)憂。歡喜的是:領(lǐng)導(dǎo)這么信任我,讓我有這樣一個難得的機會鍛煉提升自己?蓺g喜過后,心頭又有了些許擔(dān)憂,畢竟我才工作了兩年,教學(xué)經(jīng)驗不足,萬一講不好怎么辦?說實話,當(dāng)時我的壓力特別大。
正是這股壓力,轉(zhuǎn)化為一股促我前進的動力,也使我最終有所收獲。在準(zhǔn)備這節(jié)全國公開課時,正是這股力量使我深入地、不厭其煩地去研究教材,全身心地投入到教學(xué)準(zhǔn)備中,這個過程也真正起到了提高我駕馭教材能力的作用。記得晉主任和孫老師幫我備課時,有很多我當(dāng)時接受不了的東西,每到這個時候,我都羞愧萬分,過后就會再從各個方面,多角度的研究教材,借助網(wǎng)絡(luò)、參考書等一切可以運用的教材輔助資料去理解教材。這一過程是艱苦的,但也就是在這艱苦的過程中,我駕馭教材的能力也在潛移默化中得到了提升。
也是這種對自己不甚滿意的態(tài)度讓我提醒自己不斷去學(xué)習(xí),在自我加壓中,許多原本薄弱的技能也得到了加強。在教學(xué)公開課之前,我對課件的研究不是很深。但為了這節(jié)課更加完美,我就主動地去查找這方面的資料,學(xué)習(xí)這方面的知識,實在不懂的就請教學(xué)校的微機老師。讓我欣喜的是,通過這次講課,我制作課件的水平也得到了質(zhì)的飛躍。從原來的不懂,到現(xiàn)在的非常熟練。當(dāng)我的課件得到大家的認同時,我心里有一種成就感,真正體會到了“有一份耕耘,就有一份收獲”的涵義。
“以人為鑒,可明得失”。這節(jié)課為我提供了一個學(xué)習(xí),交流的平臺。在進行準(zhǔn)備的漫長的過程中,我聽了包括張齊華老師、程校長和王主任等多位名師講的這節(jié)課,在聽課當(dāng)中我領(lǐng)略到了大家的風(fēng)范,感受體會到了教學(xué)的魅力,認清了自己的不足和差距。自己試講過后,晉主任等也都會給我提出寶貴的建議,讓我更加深刻地認識了自己,促使我及時改掉缺點,不斷提高教學(xué)水平。
這節(jié)課帶給我的收獲是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。
二、反思我的課堂
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。
數(shù)學(xué)課程標(biāo)準(zhǔn)“以人為本”的理念決定著數(shù)學(xué)教學(xué)目標(biāo)的指向:適應(yīng)并促進學(xué)生的發(fā)展。根據(jù)本節(jié)課知識的特點和學(xué)生的認知規(guī)律,我采用了角色轉(zhuǎn)換、數(shù)形結(jié)合、合作學(xué)習(xí)等發(fā)展性教學(xué)手段進行教學(xué),在教學(xué)中我注重體現(xiàn)以學(xué)生為主體的新理念,努力為學(xué)生的探究發(fā)現(xiàn)提供足夠的空間。在課堂中,我主要圍繞以下幾方面來進行教學(xué):
(1)捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。
因數(shù)和倍數(shù)是揭示兩個整數(shù)之間的一種相互依存關(guān)系,在課前談話中我利用一個腦筋急轉(zhuǎn)彎,滲透相互依存的關(guān)系。
師:今天王老師給大家?guī)砹艘粡堈掌,不過我先不給你們看,先讓你們來猜猜。照片有兩個爸爸兩個兒子。請你猜猜照片上至少幾個人?
生:3個。
師:你是怎么想的?
生:兒子的爸爸是一個爸爸,爸爸的爸爸又是一個爸爸,所以有兩個爸爸。爺爺?shù)膬鹤邮且粋兒子,爸爸的兒子又是一個兒子,所以有兩個爸爸。
師:正像同學(xué)所說的,爸爸或兒子是不能隨便叫的,是相對與另一個人而言的。得說清楚誰是誰的爸爸,誰是誰的兒子。
師:看來人和人之間是具有一定關(guān)系的。我們都是學(xué)數(shù)學(xué)的,那數(shù)和數(shù)之間是否也具有一定關(guān)系呢?這節(jié)課我們就要研究數(shù)和數(shù)之間的關(guān)系。
通過生活中人與人之間的關(guān)系,遷移到數(shù)學(xué)中的數(shù)和數(shù)之間的關(guān)系,這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)了對數(shù)學(xué)的興趣,又潛移默化地幫助學(xué)生理解了因數(shù)倍數(shù)之間的相互依存關(guān)系。在教學(xué)中,也達到了預(yù)期的效果,學(xué)生對因數(shù)和倍數(shù)相互依存的關(guān)系理解的比較深刻。
(2)角色轉(zhuǎn)換,讓學(xué)生親身體驗數(shù)和數(shù)之間的聯(lián)系。
因數(shù)和倍數(shù)這節(jié)課研究的是數(shù)和數(shù)之間的關(guān)系,知識內(nèi)容比較抽象。因而,我采用了“擬人化”的教學(xué)手段,每人一張數(shù)字卡片,學(xué)生和老師都變成了數(shù)學(xué)王國里的一名成員。當(dāng)學(xué)生想回答問題時都會高高地舉起自己的號碼,整節(jié)課學(xué)生都沉浸在自己的角色體驗中,學(xué)生都把自己當(dāng)成了一個數(shù)。通過對自己一個數(shù)的認識,舉一反三,從而理解了數(shù)與數(shù)之間的因數(shù)和倍數(shù)關(guān)系,既充分激發(fā)了學(xué)生的學(xué)習(xí)興趣,又十分有效地突破了教學(xué)難點。
。3)數(shù)形結(jié)合,讓學(xué)生帶著已有知識走進數(shù)學(xué)課堂。
“數(shù)形結(jié)合”是一種重要的數(shù)學(xué)思想。對教師來說則是一種教學(xué)策略,是一種發(fā)展性課堂教學(xué)手段;對學(xué)生來說又是一種學(xué)習(xí)方法。如果長期滲透,運用恰當(dāng),則使學(xué)生形成良好的數(shù)學(xué)意識和思想,長期穩(wěn)固地作用于學(xué)生的數(shù)學(xué)學(xué)習(xí)生涯中。開課教師引導(dǎo)學(xué)生進行空間想象:
師:首先,先請大家閉上眼睛,我們一起來想象。有一個長方形,它的長和寬都是整數(shù),它的面積是12,那長和寬可能是多少呢?想好了就可以把眼睛睜開。
生1:長是6,寬是2。
生2:長是4,寬是3。
生3:長是12,寬是1。
師:長是7行嗎?為什么?
生:不行,因為找不到一個整數(shù)與7相乘得12。
師:7不行,長是8行嗎?
生:不行。
由于學(xué)生對于長方形的面積=長×寬這個知識非常熟悉,我創(chuàng)新使用教材,在學(xué)生已有知識的基礎(chǔ)上,讓學(xué)生想象長和寬的情況,并通過“反正法”:長是7行嗎?為什么?讓學(xué)生充分的想象和思考,從而滲透“整數(shù)”的含義,這時數(shù)和形也在學(xué)生頭腦中有機結(jié)合。同時借助多媒體手段將長方形面積與長、寬的關(guān)系更直觀、形象的表現(xiàn)出來。這個過程也正好滲透了找一個數(shù)因數(shù)的方法,便于學(xué)生理解和掌握概念。這樣較好地把握了教學(xué)的起點,學(xué)生由已知走向未知的課堂,為后面教學(xué)的展開做好了鋪墊。
。4)重組教材,根據(jù)學(xué)生的實際情況,多種形式探究找因數(shù)倍數(shù)的方法。
教材上,探究因數(shù)這部分的例題比較少,只有一個:找18的因數(shù)。根據(jù)學(xué)生的實際情況,我進行了重組教材,先讓學(xué)生根據(jù)乘法算式“一對對”地找出15的因數(shù),在此基礎(chǔ)上再讓學(xué)生探究18的因數(shù)。通過“質(zhì)疑”:有什么辦法能保證既找全又不遺漏呢?讓學(xué)生思考并發(fā)現(xiàn):按照一定的順序一對對的`找因數(shù),能既找全又不遺漏。進而又借助體態(tài)語言——打手勢,讓學(xué)生說出20和24的因數(shù),達到了鞏固練習(xí)的目的。這樣設(shè)計由易到難,由淺入深,符合了學(xué)生的認知規(guī)律。而在探究倍數(shù)時,我則大膽的放手,讓學(xué)生自主探索找一個數(shù)倍數(shù)的方法,給學(xué)生提供了廣闊的思維空間。這樣通過多種形式的教學(xué),既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又極大地提高了課堂教學(xué)的實效性。
(5)收放有度,處理好講授與探究的關(guān)系。
講授與探究是不相矛盾的,接受與發(fā)現(xiàn)對學(xué)生來說都是有益的學(xué)習(xí)方法。在數(shù)學(xué)知識領(lǐng)域,有許多內(nèi)容是人為規(guī)定的,這時教師就要發(fā)揮“傳道”的作用。比如本節(jié)課初步介紹因數(shù)和倍數(shù)的概念時,我采用講授的方法,幫助學(xué)生初步建立概念。
師:看來兩個整數(shù)相乘等于12只有這3種情況。那在這里,4,3,6,2,12,1就與12有著特殊的關(guān)系。在數(shù)學(xué)上,像4×3=12,這時4就是12的因數(shù),12就是4的倍數(shù)。今天我們就來研究因數(shù)和倍數(shù)。因數(shù)和倍數(shù)是研究兩個整數(shù)之間的關(guān)系,為了研究方便一般不包括0。
師:剛才我們說了4和12的關(guān)系,那3和12又有什么關(guān)系呢?誰來說?
“師傅領(lǐng)進門,修行在個人”。這時學(xué)生只是停留在“鸚鵡學(xué)舌”的思維狀態(tài)中,關(guān)鍵是由表及里地理解因數(shù)和倍數(shù)的關(guān)系以及找因數(shù)、倍數(shù)的方法。因而后面的教學(xué)我大膽放手,通過對15、18、20、24幾個具體數(shù)的研究,讓學(xué)生逐步有順序、有規(guī)律的找出它的全部因數(shù)、倍數(shù),進而用自己的語言概括找因數(shù)、倍數(shù)的方法。
由于我經(jīng)驗不足,課堂調(diào)控能力差,心理緊張等原因。在教學(xué)這一部分內(nèi)容時,我沒有做到收放有度。在講因數(shù)這一環(huán)節(jié)里放得太過,學(xué)生匯報15、18的因數(shù)時,已經(jīng)把“既不重復(fù),又不遺漏”找因數(shù)的方法匯報的很到位,大部分學(xué)生都已經(jīng)熟練掌握。但由于我缺乏經(jīng)驗,沒有脫離教案這根“拐棍”,仍然按部就班地讓學(xué)生探究20、24的因數(shù),沒有能及時收回,這樣不僅浪費了時間,而且影響了后面的教學(xué)。因此,講倍數(shù)部分的時間就太倉促,到后半部分我只能趕時間,就直接讓學(xué)生上臺找朋友、介紹自己。沒有讓學(xué)生充分地對比發(fā)現(xiàn)規(guī)律,也沒有讓學(xué)生充分地展開練習(xí),最后幾個環(huán)節(jié)好像“走過場”,顯得不扎實。有好多學(xué)生“找朋友”的情緒還很高漲,我也只能遺憾的對他們說:“同學(xué)們,真的很遺憾,下課的時間到了,還有好多同學(xué)沒有找到自己的朋友,有興趣的同學(xué)下課的時候再和老師一起玩這個游戲吧!”由于我缺乏時間觀念,也導(dǎo)致后面有很多精彩的環(huán)節(jié)沒有展現(xiàn)出來,比如說“完美數(shù)”的精彩環(huán)節(jié)。我深刻反省自己,出現(xiàn)這樣的情況,與我平時的教學(xué)是分不開的,平時教學(xué)中我沒有嚴(yán)格要求自己,以至于到比賽時會“原形畢露”。這節(jié)課給我留下了很多的遺憾,也為我敲響了警鐘!
。6)趣味活動,擴大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
只有讓學(xué)生親身感受到數(shù)學(xué)知識內(nèi)在的智取因素,數(shù)學(xué)學(xué)習(xí)的無窮魅力才能深深地打動學(xué)生。這節(jié)課的練習(xí)設(shè)計緊緊把握概念的內(nèi)涵與外延,設(shè)計有效練習(xí),拓展知識空間。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂。但由于我缺乏時間觀念,這部分時間太倉促,沒有展開練習(xí),學(xué)生沒有盡興,也沒有達到充分地練習(xí)效果。
雖然,這次講課有很多遺憾和不足,但它帶給我收獲是頗多的。它使我更清楚地認識了自己,找準(zhǔn)了自己的起點,找到了自己今后努力的方向。在以后的教學(xué)中,我將以此為鑒,發(fā)揚自己的優(yōu)點,改正自己的不足,在以下幾方面需要更加地努力:
。1)多學(xué)習(xí),用教育理論武裝自己。通過講這次課,我深感自己的理論功底淺薄。為了使自己的成長的更快,我要多閱讀有關(guān)教育的書籍、資料,多看數(shù)學(xué)專業(yè)方面的課例、雜志。及時做好讀書筆記,不斷的關(guān)注課改前沿信息,用堅實的理論知識充實自己。
。2)多交流——不斷提高自己的教學(xué)水平。作為一名年輕教師,我要積極向其他老師學(xué)習(xí),多走進優(yōu)秀教師的課堂,多學(xué)多問。把握好各種學(xué)習(xí)機會,通過各種渠道不斷的學(xué)習(xí),提高自己的教學(xué)質(zhì)量。
。3)多思考——形成自己的教學(xué)風(fēng)格。針對自己的教學(xué)特點經(jīng)常地進行思考,使自己的教學(xué)水平逐步提高,教學(xué)經(jīng)驗日益豐富,尋找出一條適合自己的發(fā)展之路,爭取逐步形成自己的教學(xué)特色。
。4)多反思——不斷地進行反思性學(xué)習(xí)。在教學(xué)中對教材認真分析,認真設(shè)計每一節(jié)課,并及時對每節(jié)課進行反思,認真分析教學(xué)中出現(xiàn)的問題,通過不斷地反思提高自己業(yè)務(wù)水平。
我非常慶幸能參加這次講課活動,在這個過程當(dāng)中,我的教學(xué)智慧在磨礪中漸漸生長,我有了很大的進步和提高。感謝領(lǐng)導(dǎo)給我這么一個寶貴的學(xué)習(xí)機會,并在這個過程中給予我的指導(dǎo)和幫助。今后,我一定以這一節(jié)課為契機,不斷完善教學(xué),總結(jié)經(jīng)驗教訓(xùn),在各個方面嚴(yán)格要求自己,爭取在今后的工作中更上一層樓!
因數(shù)和倍數(shù)教學(xué)反思17
本單元涉及到的因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)以及第四單元中出現(xiàn)的最大公因數(shù)、最小公倍數(shù)都屬于初等數(shù)論的基本內(nèi)容。是學(xué)生通過四年多數(shù)學(xué)學(xué)習(xí),已經(jīng)掌握了大量的整數(shù)知識,包括整數(shù)的認識、整數(shù)四則運算的基礎(chǔ)上進一步探索整數(shù)的性質(zhì)。
在教學(xué)中,通過教授學(xué)生認識“因數(shù)和倍數(shù)”,并掌握他們的特征:因數(shù)和倍數(shù)不能單獨存在,并通過觀察比較幾個數(shù)的因數(shù)(或倍數(shù)),知道幾個數(shù)公有的因數(shù)(或倍數(shù))叫做他們的公因數(shù)(或公倍數(shù)),且能夠在幾個數(shù)的因數(shù)(或倍數(shù)還)中找出他們的公因數(shù)(或公倍數(shù))。
接下來學(xué)習(xí)“2、3、5的倍數(shù)的特征”。發(fā)現(xiàn)2、5、3倍數(shù)的規(guī)律和特點。在此之前還要向?qū)W生教學(xué)什么是“奇數(shù)”什么是“偶數(shù)”,只有掌握了奇數(shù)與偶數(shù),學(xué)習(xí)“2、5的倍數(shù)”的特征就會簡單容易得多。而“3的倍數(shù)”的特征就是引導(dǎo)學(xué)生把各個數(shù)位上的數(shù)相加,的到的數(shù)如果是3的倍數(shù)的話,說明這個數(shù)就是3的倍數(shù)。
那么,又如何讓學(xué)生學(xué)習(xí)掌握質(zhì)數(shù)與合數(shù)呢?在教學(xué)中,我主要是讓學(xué)生把1~20的因數(shù)分別寫出來,并按照奇數(shù)為一列偶數(shù)為一列來讓學(xué)生進行觀察比較,然后歸類整理:只有1個因數(shù)的有哪些數(shù)?有兩個因數(shù)的有哪些數(shù)?有3個以上因數(shù)的有哪些數(shù)?學(xué)生分好之后,教師明確:向這樣只有2個因數(shù)的數(shù)叫做質(zhì)數(shù),有2個以上因數(shù)個數(shù)的數(shù)叫合數(shù),1既不是質(zhì)數(shù)也不是合數(shù)。那么自然數(shù)按因數(shù)的個數(shù)來分就可以分為“1、質(zhì)數(shù)、合數(shù)”三大類。
為了讓學(xué)生鞏固質(zhì)數(shù)與合數(shù),再讓學(xué)生找出1~100以內(nèi)的所有質(zhì)數(shù):先劃掉除了2以外所有2的倍數(shù),再劃掉3的倍數(shù)、劃掉5的倍數(shù)、最后劃掉7的倍數(shù),所剩下的數(shù)就是質(zhì)數(shù),并且讓學(xué)生數(shù)出、記住100以內(nèi)有25個質(zhì)數(shù)。也可以用同樣的方法去判定100以外的數(shù)是質(zhì)數(shù)還是合數(shù)。
最后,再學(xué)生講解介紹“分解質(zhì)因數(shù)”,知道用短除法來分解質(zhì)因數(shù)。然后對整個單元所學(xué)的知識進行梳理、歸類,讓學(xué)生熟記一些特殊的規(guī)律與數(shù)字,多做一些練習(xí),加強的后進生的關(guān)注和輔導(dǎo)。
因數(shù)和倍數(shù)教學(xué)反思18
《因數(shù)和倍數(shù)》是人教版五年級下冊第二章第一課時所學(xué)內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎(chǔ)上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識因數(shù)和倍數(shù)的,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。上完這節(jié)課覺得有以下幾點做得較好:
1、通過操作實踐,認識因數(shù)和倍數(shù)
我開門見山,直接入題,創(chuàng)設(shè)了有效的數(shù)學(xué)學(xué)習(xí)情境,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義,這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進而形成因數(shù)與倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。
2、通過自主化、活動化、合作化,找因數(shù)和倍數(shù)
整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、引導(dǎo)者、參與者,。整節(jié)課中,我始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解因數(shù)和倍數(shù)的意義,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。
3、通過變式拓展,培養(yǎng)學(xué)生能力
課前我精心設(shè)計練習(xí)題,力求不僅圍繞教學(xué)重點,而且注意到練習(xí)的層次性,趣味性。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂,感悟數(shù)學(xué)的魅力。
但是還存在一些不可忽視的問題:
1、課上應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。
2、課堂用語還不夠精煉,應(yīng)該進一步規(guī)范課堂用語,做到不拖泥帶水。
3、教者評價應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來,避免單一化。
因數(shù)和倍數(shù)教學(xué)反思19
因數(shù)與倍數(shù)屬于數(shù)論中的知識,是比較抽象的,學(xué)生學(xué)習(xí)理解起來有一定的難度,本節(jié)課是在充分借助學(xué)生已有的知識經(jīng)驗的基礎(chǔ)上切入課題。學(xué)生在此之前已經(jīng)認識了乘法各部分名稱,對“倍”葉有了初步的認識,從而本課由此入手,讓學(xué)生由熟悉的知識經(jīng)驗開始,結(jié)合問題引發(fā)學(xué)生提升思考并發(fā)現(xiàn)新的知識結(jié)構(gòu),體會到此“因數(shù)”非彼“因數(shù)”,感覺到“倍”與“倍數(shù)”的不同。
在探索找一個數(shù)的因數(shù)的方法時,為了讓學(xué)生更加形象地體會出“要按照一定的順序去找”才不會遺漏和重復(fù),本課制作了動態(tài)的數(shù)軸圖,通過演示18的因數(shù)有1、18(閃動),2、9(閃動),3、6(閃動)學(xué)生直觀地看到了“順序”,并且在觀察中看到區(qū)間不斷的縮小,到3至6時觀察區(qū)間,真正體會到了“找前了”這一學(xué)生難以真正理解的地方。
本課中還要注意到的就是學(xué)生在匯報找到了哪些數(shù)的因數(shù)時,教師根據(jù)學(xué)生匯報所選擇板書的數(shù)字要有多樣性,如選擇板書的數(shù)要有奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)等,雖然此時學(xué)生還不知道這些數(shù)的概念,但這時給學(xué)生一個全面的正面印象,有的數(shù)因數(shù)個數(shù)多,有的少,不是一個數(shù)越大因數(shù)的個數(shù)越多……為后面的學(xué)習(xí)做好鋪墊。
因數(shù)和倍數(shù)教學(xué)反思20
《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認識因數(shù)倍數(shù),而現(xiàn)在是在未認識整除的情況下直接認識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進的地方還有很多,我只有不斷地進行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
比如在認識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。
新課標(biāo)實施的過程是一個不斷學(xué)習(xí)、探究、研究和提高的過程,在這個過程中,需要我們認真反思、獨立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實踐和探索中不斷前進。
因數(shù)和倍數(shù)教學(xué)反思21
本單元注意以下幾個方面的教學(xué),可以促進學(xué)生鞏固基礎(chǔ)知識,促進學(xué)生發(fā)展基本思維能力。
1.加強概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。
本冊新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進記憶!
2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力
關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。
3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。
4.加強解決問題的教與學(xué),新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。
5.拓展學(xué)生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!
【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
倍數(shù)和因數(shù)的教學(xué)反思03-06
《倍數(shù)和因數(shù)》教學(xué)反思04-11
《因數(shù)和倍數(shù)》教學(xué)反思08-19
《因數(shù)和倍數(shù)》教學(xué)反思01-31