圓的概念及性質(zhì)
在一個(gè)平面內(nèi),一動(dòng)點(diǎn)以一定點(diǎn)為中心,以一定長(zhǎng)度為距離旋轉(zhuǎn)一周所形成的封閉曲線叫做圓。圓有無數(shù)條對(duì)稱軸。
在同一平面內(nèi),到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫做圓。圓可以表示為集合{M||MO|=r},其中O是圓心,r 是半徑。圓的標(biāo)準(zhǔn)方程是(x-a)2+(y-b)2=r2,其中點(diǎn)(a,b)是圓心,r是半徑。
圓形是一種圓錐曲線,由平行于圓錐底面的平面截圓錐得到。圓是一種幾何圖形。根據(jù)定義,通常用圓規(guī)來畫圓。 同圓內(nèi)圓的直徑、半徑的長(zhǎng)度永遠(yuǎn)相同,圓有無數(shù)條半徑和無數(shù)條直徑。圓是軸對(duì)稱、中心對(duì)稱圖形。對(duì)稱軸是直徑所在的直線。同時(shí),圓又是“正無限多邊形”,而“無限”只是一個(gè)概念。當(dāng)多邊形的邊數(shù)越多時(shí),其形狀、周長(zhǎng)、面積就都越接近于圓。所以,世界上沒有真正的圓,圓實(shí)際上只是一種概念性的圖形。