在數(shù)學(xué)中,對數(shù)是對求冪的逆運算,正如除法是乘法的倒數(shù),反之亦然。 這意味著一個數(shù)字的對數(shù)是必須產(chǎn)生另一個固定數(shù)字(基數(shù))的指數(shù)。 在簡單的情況下,乘數(shù)中的對數(shù)計數(shù)因子。更一般來說,乘冪允許將任何正實數(shù)提高到任何實際功率,總是產(chǎn)生正的結(jié)果,因此可以對于b不等于1的任何兩個正實數(shù)b和x計算對數(shù)。
如果a的x次方等于N(a>0,且a≠1),那么數(shù)x叫做以a為底N的對數(shù)(logarithm),記作x=loga N。其中,a叫做對數(shù)的底數(shù),N叫做真數(shù)。
對數(shù)在數(shù)學(xué)內(nèi)外有許多應(yīng)用。這些事件中的一些與尺度不變性的概念有關(guān)。例如,鸚鵡螺的殼的每個室是下一個的大致副本,由常數(shù)因子縮放。這引起了對數(shù)螺旋。Benford關(guān)于領(lǐng)先數(shù)字分配的定律也可以通過尺度不變性來解釋。對數(shù)也與自相似性相關(guān)。例如,對數(shù)算法出現(xiàn)在算法分析中,通過將算法分解為兩個類似的較小問題并修補其解決方案來解決問題。