什么是導數(shù)
導數(shù)(Derivative),也叫導函數(shù)值。又名微商,是微積分中的重要基礎概念。當函數(shù)y=f(x)的自變量x在一點x0上產(chǎn)生一個增量Δx時,函數(shù)輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數(shù),記作f'(x0)或df(x0)/dx。
導數(shù)是函數(shù)的局部性質(zhì)。一個函數(shù)在某一點的導數(shù)描述了這個函數(shù)在這一點附近的變化率。如果函數(shù)的自變量和取值都是實數(shù)的`話,函數(shù)在某一點的導數(shù)就是該函數(shù)所代表的曲線在這一點上的切線斜率。導數(shù)的本質(zhì)是通過極限的概念對函數(shù)進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數(shù)就是物體的瞬時速度。
求導是什么
求導是數(shù)學計算中的一個計算方法,它的定義就是,當自變量的增量趨于零時,因變量的增量與自變量的增量之商的極限。在一個函數(shù)存在導數(shù)時,稱這個函數(shù)可導或者可微分?蓪У暮瘮(shù)一定連續(xù)。不連續(xù)的函數(shù)一定不可導。
注意事項
1.不是所有的函數(shù)都可以求導;
2.可導的函數(shù)一定連續(xù),但連續(xù)的函數(shù)不一定可導(如y=|x|在y=0處不可導)。