中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

3的倍數(shù)特征反思

時間:2024-03-09 17:58:38 好文 我要投稿

[熱]3的倍數(shù)特征反思15篇

  在快速變化和不斷變革的今天,教學(xué)是我們的工作之一,反思指回頭、反過來思考的意思。那么你有了解過反思嗎?以下是小編幫大家整理的3的倍數(shù)特征反思,歡迎大家分享。

[熱]3的倍數(shù)特征反思15篇

3的倍數(shù)特征反思1

  站在跳板上學(xué)習(xí)數(shù)學(xué)——3的倍數(shù)的特征教學(xué)反思

  《3的倍數(shù)的特征》看似一節(jié)知識簡單的課,但從教學(xué)實際來看,是我想得過于簡單了,教師注重的不應(yīng)該僅僅是對知識的掌握,更應(yīng)該使學(xué)生站在跳板上學(xué)習(xí)數(shù)學(xué),關(guān)注數(shù)學(xué)思維的發(fā)展 。

  “3的倍數(shù)的特征”屬于數(shù)論的范疇,離學(xué)生的生活較遠(yuǎn),有一定的難度。而2、5的倍數(shù)的特征是學(xué)生學(xué)習(xí)這一課的基礎(chǔ)。所以,在教學(xué)“3的倍數(shù)的特征”時,我首先以學(xué)生原有認(rèn)知為基礎(chǔ),激發(fā)學(xué)生的探究欲望,利用學(xué)生剛學(xué)完“2、5的倍數(shù)的特征”產(chǎn)生的負(fù)遷移,直接拋出問題,激活了學(xué)生的原有認(rèn)知,學(xué)生自然而然地會將“2、5的倍數(shù)的特征”遷移到“3的倍數(shù)的特征”的問題中,由此產(chǎn)生認(rèn)知沖突,萌發(fā)疑問,激發(fā)強(qiáng)烈的探究欲望,因此學(xué)生很快進(jìn)入問題情境,猜測、否定、反思、觀察、討論,使得大部分學(xué)生漸漸進(jìn)入了探究者的角色。但針對這樣的環(huán)節(jié),也有老師提出反對意見,他們認(rèn)為教師在教學(xué)中不僅要注重知識的正遷移,還要防止負(fù)遷移的產(chǎn)生,要能正確地預(yù)見學(xué)生學(xué)習(xí)中可能出現(xiàn)的錯誤,采取適當(dāng)措施,防患于未然,達(dá)到所謂“防微杜漸”的目的;他們滿足于學(xué)生的一路凱歌,陶醉于學(xué)生的盡善盡美,視學(xué)生的差錯為洪水猛獸。但是課堂就是學(xué)生出錯的地方,出錯是學(xué)生的權(quán)利,學(xué)生的錯誤是勞動的成果,關(guān)鍵是要看我們教師如何看待學(xué)生的錯誤,有個教育專家說得好:“課堂上的錯誤是教學(xué)的巨大財富”。正式因為如此,我們的新課堂也呼喚“自主、合作、探究”,而真探究必然伴隨大量差錯的生成,學(xué)生總會出現(xiàn)各種各樣的錯誤,我們的課堂教學(xué)不應(yīng)該有意識地去避免學(xué)生犯錯誤。因此,我們教師在課堂中要有沉著冷靜的心理、海納百川的境界和從容應(yīng)變的機(jī)智,給學(xué)生一個出錯的'機(jī)會和權(quán)利。

  其次,看一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位。個位是0、2、4、6、8的數(shù)就是2的倍數(shù),個位是0、5的數(shù)就是5的倍數(shù)。而3的倍數(shù)特征則不然,一個數(shù)是不是3的倍數(shù),不能只看個位,而要看它所有所有數(shù)位上的數(shù)的和是不是3的倍數(shù)。在教學(xué)中,我和大多數(shù)的教師一樣,更多的是關(guān)注兩者的不同,注重讓學(xué)生對兩種特征進(jìn)行區(qū)分,因此,教學(xué)中往往刻意對比強(qiáng)化,凸顯這種差異。但這樣的處理很明顯在數(shù)論的角度上割裂了兩者的共同點。實際上教師在引導(dǎo)學(xué)生發(fā)現(xiàn)3的倍數(shù)的獨特特征的同時,也應(yīng)該注意引導(dǎo)學(xué)生歸納2、3、5倍數(shù)特征的共同點。別小看這寥寥數(shù)言的引導(dǎo),實質(zhì)它蘊(yùn)藏著深意。因為從數(shù)論角度講一個數(shù)能否被2、3、5乃至被其它數(shù)整除,其研究的理論基礎(chǔ)是一樣的:即如果各個數(shù)位上的數(shù)被某數(shù)除,所得的余數(shù)的和能夠被某數(shù)整除,那么這個數(shù)也一定能被某數(shù)整除。當(dāng)然,小學(xué)生由于知識和思維特點的限制,還不可能從數(shù)論的高度去建構(gòu)與理解。但是,這并不意味著教師不可以作相應(yīng)的滲透。事實上,正是由于有了教師看似無心實則有意的點撥:“其實3的倍數(shù)特征與2、5的倍數(shù)特征其實有一點還是很像的,不知同學(xué)們注意到?jīng)]有?”學(xué)生才可能從2、3、5倍數(shù)特征孤立、割裂、甚至是相互對立的表象中跳離出來,朦朧地感受到這三者之間的聯(lián)系:2、3、5倍數(shù)特征可以看作是一樣的,都是看它是不是誰的倍數(shù),只不過判斷一個數(shù)是不是2、5的倍數(shù),只需看這個數(shù)的個位是不是2、5的倍數(shù),而判斷一個數(shù)是不是3的倍數(shù)就要看它所有數(shù)位的和是不是3的倍數(shù)。

3的倍數(shù)特征反思2

  課堂上經(jīng)常會出現(xiàn)類似上述案例中的“超前行為”,即有些學(xué)生提前把要探究的新知識和盤托出。我們的習(xí)慣做法就是變“探索”為“驗證”,當(dāng)然有些知識的教學(xué)采用這種方式是有效的,然而本課中“驗證”的過程真能取代“探究發(fā)現(xiàn)”的過程嗎?僅僅舉幾個例子試一試,驗證方法單一,思維含量低,學(xué)生充其量只能算是執(zhí)行操作命令的“計算器”,又能獲得哪些有益的發(fā)展?如果經(jīng)常進(jìn)行這樣的教學(xué),還容易使學(xué)生形成浮躁淺薄,不求甚解,甚至只要結(jié)論的不良學(xué)習(xí)風(fēng)氣。怎么辦,置之不理嗎?如果這樣,不僅沒有尊重學(xué)生已有的知識經(jīng)驗,而且在已經(jīng)揭開“謎底”的情況下,再試圖引導(dǎo)學(xué)生進(jìn)行猜想、實驗、發(fā)現(xiàn),體驗遭受挫折后取得成功的'那種激動,也只能是一種奢望。那么又該如何激發(fā)學(xué)生探究的熱情,促使學(xué)生進(jìn)行深入探究呢?

  1.找準(zhǔn)知識間的沖突,激發(fā)探究的愿望。

  學(xué)生剛剛學(xué)習(xí)了2、5的倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)的特征時,自然會把“看個位”這一方法遷移過來。而實際上,3的倍數(shù)的特征,卻要把各個位上的數(shù)加起來研究。于是新舊知識之間的矛盾沖突使學(xué)生產(chǎn)生了困惑,“為什么2或5的倍數(shù)只看個位?”“為什么3的倍數(shù)要把各個位上的數(shù)加起來研究?”……學(xué)生急于想了解這些為什么,便會自覺地進(jìn)入到自主探究的狀態(tài)之中。

  2.激活學(xué)習(xí)中的困惑,讓探究走向深入。

  創(chuàng)造和發(fā)現(xiàn)往往是由驚訝和困惑開始。對比兩次教學(xué),第一次教學(xué)由于忽視了學(xué)習(xí)中的困惑,學(xué)生對于3的倍數(shù)的特征理解并不透徹,探索的體驗也并不深刻。第二次教學(xué)留給學(xué)生質(zhì)疑的時空,巧設(shè)沖突,讓學(xué)生進(jìn)行新舊知識的對比,將困惑激發(fā)出來,通過學(xué)生間相互啟發(fā)、相互質(zhì)疑,對問題的思考漸漸完整而清晰。學(xué)生不但經(jīng)歷由困惑到明了的過程,而且思維不斷走向深入,獲得了更有價值的發(fā)現(xiàn),探究能力也得到切實提高。當(dāng)然,學(xué)生在學(xué)習(xí)中可能產(chǎn)生怎樣的困惑,面對這一困惑又該如何恰當(dāng)引導(dǎo),尚需要教師課前精心預(yù)設(shè)。

3的倍數(shù)特征反思3

  《3的倍數(shù)的特征》是人教版義務(wù)教材新課程第八冊的教學(xué)內(nèi)容,對這節(jié)課的教學(xué)設(shè)計,有從2、5的倍數(shù)的特征中引入的、有讓學(xué)生通過擺火柴棒研究的,其中不乏好點子好設(shè)計。但是,大部分老師都要拋出一個問題讓學(xué)生思考:“火柴棒的總根數(shù)跟3的倍數(shù)有什么聯(lián)系?”或者干脆問“3的倍數(shù)和數(shù)位上的數(shù)字的和有什么關(guān)系?”總覺得教師對學(xué)生的引導(dǎo)過于直接,對于五年級的學(xué)生,經(jīng)過這樣的提問,一般都能找到3的倍數(shù)的特征,也能用語言來表述。我認(rèn)為,我們的關(guān)鍵不但要讓學(xué)生找到3的倍數(shù)的特征,更應(yīng)該引導(dǎo)學(xué)生怎樣去發(fā)現(xiàn)數(shù)位上的數(shù)字的和與3的倍數(shù)之間的關(guān)系。我考慮,能不能在本節(jié)課中運用分類,讓學(xué)生自主探究呢?以下是兩個教學(xué)片段:

  教學(xué)片段一:

  讓學(xué)生用30秒時間,寫3的倍數(shù),大部分學(xué)生都從小到大寫了25個左右

  老師板演了10個:105、111、156、273、300、339、504、918、1527、2442……然后提出探究的任務(wù)。

  師:請你給自己寫的3的倍數(shù)分類,看看能不能找到規(guī)律。限時2分鐘。

  (結(jié)束)學(xué)生回答。

  生1:3、6、9;12、15、18、21、24……按位數(shù)分類。(有3人和他一樣分)師:按位數(shù)分類,那么3位數(shù)里哪些是3的倍數(shù)呢:103、208是3的倍數(shù)

  嗎?(學(xué)生答不出)

  生2:3、6、9、12、15、18、21、24、27、30;

  33、36、39、42、45、48、51、54、57、60

  63、66……

 。ㄓ32人和他一樣)

  師:你分類的標(biāo)準(zhǔn)是什么?

  生2:個位是0——9的都?xì)w為一類,共兩類。

  生3:共十類。個位是0的一類,個位是1的一類,個位是2的一類,到個位是9的一類。

  師:懂了。3、33、63是一類;6、36、66是一類,共十類。那21253是不是3的倍數(shù),能迅速判斷嗎?(生無語)

  師:看來,分類的方法很多。但是,哪一種分類才能幫助我們發(fā)現(xiàn)3的倍數(shù)的特征,是有價值的呢?(學(xué)生陷入沉思)

  以上學(xué)生的分類方法,都有不同的標(biāo)準(zhǔn),從單一分類的角度來看,沒有問題。但是對于尋求3的倍數(shù)的特征,卻沒有意義。大部分學(xué)生是從2、5的倍數(shù)的特征中受到啟示,這是學(xué)生的經(jīng)驗,卻是一種負(fù)遷移。課前,我也想到了,那么是不是就一定要先提醒學(xué)生,不要走彎路呢?我認(rèn)為,負(fù)遷移也是一種寶貴的經(jīng)驗,經(jīng)歷過挫折,對知識的理解就會更加深刻,無需刻意回避。

  教學(xué)片段二:

  師:繼續(xù)觀察這些數(shù),還有其它分類方法嗎?限時5分鐘。(陸續(xù)有學(xué)生舉手,5分鐘后,共有15位學(xué)生舉手,巡視一遍。)

  師:誰來介紹自己新的分類方法?

  生1:3、21、30;

  6、15、24、33、42;

  9、18、36、45、63;

  12、39、48、57;

  ……

  師:你的分類標(biāo)準(zhǔn)是什么?

  生1:第一類,每個數(shù)數(shù)位上的數(shù)字的和是3;第二類,每個數(shù)數(shù)位上的數(shù)字的和是6;第三類,每個數(shù)數(shù)位上的數(shù)字的和是9;第四類,每個數(shù)數(shù)位上的數(shù)字的和是12;以此類推。

  師:誰來幫他“以此類推”?

  生2:每個數(shù)數(shù)位上的數(shù)字的和是15,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是18,也是3的倍數(shù)。

  生3:每個數(shù)數(shù)位上的數(shù)字的和是21,也是3的倍數(shù);每個數(shù)數(shù)位上的數(shù)字的和是24,也是3的倍數(shù)。

  師:你能用一句話來表達(dá)嗎?

  生4:每個數(shù)位上的數(shù)字的和是3、6、9、12、15、18等,這個數(shù)就是3的倍數(shù)。

  生5:每個數(shù)位上的數(shù)字的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。

  師:很厲害。但是,我們需要驗證。判斷老師剛才寫的3的倍數(shù)(前5個)105、111、156、273、300。

  生4:1加0加5等于6,6是3的倍數(shù),105也是3的倍數(shù)。

  生5:1加1加1等于3,3是3的倍數(shù),111也是3的倍數(shù)。

  ……

 。ㄒ粋學(xué)生根據(jù)規(guī)律回答,其他學(xué)生用豎式驗證。)

  生6:3的倍數(shù)的特征是找到了,但這樣的分類太亂。我一共分3類:

  第一類:每個數(shù)數(shù)位上的數(shù)字的和是3:3、12、21、30;

  第二類:每個數(shù)數(shù)位上的數(shù)字的和是6:6、15、24、42、51;

  第三類:每個數(shù)數(shù)位上的數(shù)字的和是9:9、18、27、36、45……,

  這樣的數(shù)是3的倍數(shù)。

  師:那老師的這些數(shù):339、504、918、1527、2442屬于哪一類呢?

  生6:339,3加3加9等于15,然后1加5等于6,分到第二類;918,9加1加8等于18,然后1加8等于9,分到第三類;1527分到第二類;2442分到第一類。所有3的倍數(shù)沒有超出這三類的。

  師:厲害。ㄗ屍渌麑W(xué)生說了兩個四位數(shù),用他的方法來判斷是不是3的倍數(shù),大概有三十個左右的學(xué)生能用這樣的方法分析。老師又舉了一個反例。)

  師:誰能用幾句話來概括?

  生6:一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。

  師:真佩服你們!

  第二天,有學(xué)生告訴我他發(fā)現(xiàn)了一種更快判斷3的倍數(shù)的方法,不用把數(shù)位上的數(shù)都加起來,比如538,3是3的倍數(shù)就不要管它了,只要5加8加一下,13不是3的倍數(shù),538就不是3的倍數(shù)。我又說了一個五位數(shù)20xx,學(xué)生分析,6是3的倍數(shù),不去管它,2加7是9,9是3的倍數(shù),整個數(shù)就是3的倍數(shù)。

  學(xué)生的探究能力如此之強(qiáng),是我沒想到的,學(xué)生快速判斷3的倍數(shù)的方法,實際上已經(jīng)綜合了很多的知識,盡管不能很明確地用語言來表達(dá),但是,方法是完全正確的,其實這又是一個學(xué)生新的.探究的開始。

  從本節(jié)課中,我有幾點小小的感悟:

  一、教師不要害怕學(xué)生探究的失敗。學(xué)生第一次探究的失敗,完全是正常的,這是他們運用已有的經(jīng)驗,進(jìn)行探究后的結(jié)果。盡管這種經(jīng)驗的遷移是負(fù)作用的,但是從失敗到成功的過程,記憶是深刻的。負(fù)遷移在教學(xué)中比比皆是,我們不但不能回避,而且要好好利用,要讓學(xué)生積累對數(shù)學(xué)活動的經(jīng)驗,同時能將“經(jīng)驗材料組織化”。

  二、教師要給學(xué)生創(chuàng)造探究的機(jī)會。學(xué)生的探究能力其實是老師意想不到的。最后一位學(xué)生對3的倍數(shù)的概括(一個數(shù),每個數(shù)位上的數(shù)字的和是3、6、9,如果和大于9的,數(shù)位上的數(shù)再加,直到出現(xiàn)一位數(shù),如果是3、6、9,那么這個數(shù)就是3的倍數(shù)。),盡管實際的意義不是很大,但是它更具有橫向的關(guān)聯(lián),2的倍數(shù)特征是:個位是0、2、4、6、8的數(shù)是2的倍數(shù);5的倍數(shù)的特征是個位是0或5的數(shù)是5的倍數(shù);蛟S,這種類比聯(lián)想更容易讓學(xué)生理解新的知識,更何況是學(xué)生自己探究出來的。其實很多教學(xué)內(nèi)容我們都可以讓學(xué)生進(jìn)行探究,關(guān)鍵是教師如何給學(xué)生提供一個探究的載體,一種探究的環(huán)境。

  三、教師對學(xué)過的知識要經(jīng)常地進(jìn)行整合。新教材的特點是有些知識點分得比較散,所以教師要經(jīng)常把學(xué)生學(xué)過的知識,在新知中不知不覺地再應(yīng)用,再鞏固。溫故而知新,在復(fù)習(xí)與鞏固中,學(xué)生會對舊知有更高的認(rèn)識,更深的理解,也容易排除學(xué)生對新知的畏難思想。同時要經(jīng)常地對各種知識進(jìn)行串聯(lián),編織學(xué)生知識的網(wǎng)絡(luò),使學(xué)生認(rèn)識到各種知識之間是相互關(guān)聯(lián)相互作用的,以利于學(xué)生解決一些實際問題或綜合性問題。

  四、教師要經(jīng)常在教學(xué)中滲透一些數(shù)學(xué)思想。分類是一種數(shù)學(xué)思想,同時也是一種數(shù)學(xué)思維的工具。人教版小學(xué)數(shù)學(xué)第一冊學(xué)生就接觸了分類《整理房間》,第七冊《角的分類》、第八冊《三角形的分類》,讓學(xué)生對分類有了更多的理解。其實在生活中,無處不在的分類:超市貨物的擺放、自己書本的整理、性別之間、班級之間等等。對于分類的標(biāo)準(zhǔn),分類的原則,學(xué)生在不知不覺中有了感悟。借助分類,有40%的學(xué)生找到了3的倍數(shù)的特征,學(xué)生完全是在觀察、嘗試、驗證的基礎(chǔ)上探究的,是自主的行為研究。在小學(xué)數(shù)學(xué)中,滲透了很多數(shù)學(xué)思想,如集合、對應(yīng)、假設(shè)、比較、類比、轉(zhuǎn)化、分類、統(tǒng)計思想等,在教學(xué)中合理地運用這些數(shù)學(xué)思想,對學(xué)生學(xué)習(xí)數(shù)學(xué)的影響是深遠(yuǎn)的,也會讓我們的數(shù)學(xué)探究活動更有意義,更有價值。

3的倍數(shù)特征反思4

  在執(zhí)教《2、5、3的倍數(shù)的特征》后,我針對本節(jié)課的教學(xué)情況進(jìn)行反思。

  一、跨年級學(xué)習(xí)新數(shù)學(xué)知識,知識銜接不上,不符合學(xué)生的認(rèn)知規(guī)律。

  雖然2、5、3的倍數(shù)的特征看起來很簡單,探究的過程可能沒有什么困難之處,但要內(nèi)容讓學(xué)生學(xué)懂,首先存在知識銜接問題,整除、倍數(shù)、因數(shù)這些概念學(xué)生都從未接觸過,因此,我在課開始安排了整除、倍數(shù)、因數(shù)新概念的介紹,在我看來,這些概念比較抽象,學(xué)生一時難以掌握。

  二、為了體現(xiàn)“容量大”,教學(xué)延堂。

  備課時也參考了不少資料,大多數(shù)教學(xué)設(shè)計都是將這一內(nèi)容分成兩節(jié)課來學(xué)習(xí),一節(jié)學(xué)《2、5的倍數(shù)的特征》,一節(jié)學(xué)《3的倍數(shù)的特征》,我確定用一節(jié)課教學(xué)《2、5、3的'倍數(shù)的特征》,其目的是為了體現(xiàn)容量大,我的設(shè)計內(nèi)容多,相應(yīng)的學(xué)生自學(xué)、展示、鞏固練習(xí)的時間和機(jī)會就壓縮的比較少了。而3的倍數(shù)的特征與2、5的又完全不同,學(xué)生接受起來可能會有一定的難度,最好單獨作為一課時學(xué)習(xí)。最后的環(huán)節(jié)達(dá)標(biāo)測試拖堂了。

  三、學(xué)生合作學(xué)習(xí)的效果較好,但展示未體現(xiàn)立體式。

  高效課堂要充分發(fā)揮學(xué)生的主體作用,要體現(xiàn)學(xué)生會學(xué),學(xué)會,在本節(jié)課上,學(xué)生合作學(xué)習(xí)的熱情高,通過展示,發(fā)現(xiàn)學(xué)生學(xué)懂了,總結(jié)出了2、5、3的倍數(shù)的特征,在展示環(huán)節(jié),學(xué)生講的、板書的相互干擾,于是,我臨時安排按先后順序進(jìn)行,沒體現(xiàn)出高效課堂的“立體式”這一特點。

3的倍數(shù)特征反思5

  3的倍數(shù)的特征比較隱蔽,學(xué)生一般想不到從“各位上數(shù)的和”去研究,本課注重引導(dǎo)學(xué)生經(jīng)歷探索的過程。上課開始先讓學(xué)生回顧舊知,2的倍數(shù)和5的倍數(shù)有什么特征,學(xué)生們發(fā)現(xiàn)都只要看一個數(shù)個位上的數(shù)就行了,于是很順地設(shè)下了陷阱:同學(xué)們,那猜猜看3的倍數(shù)有什么特征呢?猜測是一種常用的數(shù)學(xué)思考方法,讓學(xué)生猜測3的倍數(shù)有什么特征,能較好地調(diào)動學(xué)生的學(xué)習(xí)積極性。由于受2的倍數(shù)和5的倍數(shù)的特征的影響,有學(xué)生很自然猜測到:“個位上是0,3,6,9的數(shù)一定是3的倍數(shù)”,還有學(xué)生猜測:“各位上的.數(shù)字加起來是3,6,9一定是3的倍數(shù)”,能想到這點應(yīng)該說是了不起的。本課到這里都很順利,因為完全在我的預(yù)設(shè)之中。

  下面進(jìn)入驗證環(huán)節(jié),先學(xué)生判斷自己的學(xué)號是不是3的倍數(shù),再在這些學(xué)號中挑出個位上是0,3,6,9的數(shù),通過交流這些數(shù)不一定都是3的倍數(shù)。學(xué)生初步發(fā)現(xiàn)了3的倍數(shù)的特征與2和5的倍數(shù)不同,不表現(xiàn)在數(shù)的個位上,那3的倍數(shù)究竟與什么有關(guān)系呢。于是進(jìn)入到動手操作環(huán)節(jié),在此基礎(chǔ)上,利用計數(shù)器轉(zhuǎn)移探索的方向,讓學(xué)生用3顆算珠在計數(shù)器上任意擺數(shù),得出結(jié)果:擺出的數(shù)都是3的倍數(shù),到這里有幾個學(xué)生顯得很興奮。隨后用5顆算珠實驗,發(fā)現(xiàn)擺出的數(shù)都不是3的倍數(shù),到這里學(xué)生中已經(jīng)有一些議論,他們都有了發(fā)現(xiàn)。為了讓更多的學(xué)生看出其中的神奇,我將自主權(quán)交給了學(xué)生們,自己選擇算珠的顆數(shù)進(jìn)行了第三次實驗,然后板書出每組的實驗結(jié)果,從結(jié)果的數(shù)據(jù)中,學(xué)生們都很興奮地發(fā)現(xiàn)了所用算珠的顆數(shù)是3顆,6顆,9顆,撥出的數(shù)都是3的倍數(shù),每個數(shù)所用算珠的顆數(shù),也是每個數(shù)各位上數(shù)的和。把算珠顆數(shù)抽象成各位上數(shù)的和,是理解3的倍數(shù)特征的關(guān)鍵。

  “試一試”是教學(xué)的第三步,如果一個數(shù)不是3的倍數(shù),那么這個數(shù)各位數(shù)的和不是3的倍數(shù)。利用反例進(jìn)一步證實3的倍數(shù)的特征,體現(xiàn)了數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性。可惜在這一點上,我很倉促地指著黑板上算珠顆數(shù)是4顆,5顆,7顆,8顆時,所擺出的數(shù)都不是3的倍數(shù),直接告訴了學(xué)生,而沒有讓學(xué)生自己舉出反例。隨后設(shè)計了一系列習(xí)題,使學(xué)生得到鞏固提高。

  整節(jié)課只能說順利地走了下來,對于教者我來說從中發(fā)現(xiàn)了自己教學(xué)上的不足之處,在今后的教學(xué)中,我將不斷學(xué)習(xí),及時總結(jié),虛心請教,以進(jìn)一步提高自己的教學(xué)業(yè)務(wù)水平。

3的倍數(shù)特征反思6

  《3的倍數(shù)的特征》是五年級下冊數(shù)學(xué)第二單元“因數(shù)與倍數(shù)”中的一個知識點,是在學(xué)生已經(jīng)認(rèn)識倍數(shù)和因數(shù)、2和5倍數(shù)的特征的基礎(chǔ)上進(jìn)行教學(xué)的。由于2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出——根據(jù)個位數(shù)的特點就可以判斷出來。但是3的倍數(shù)的特征卻不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。

  因而在《3的倍數(shù)的特征》的開始,我先復(fù)習(xí)了2、5的倍數(shù)的特征,然后學(xué)生猜一猜什么樣的數(shù)是3的倍數(shù),學(xué)生自然而然地會將“2.5的倍數(shù)的特征”遷移到“3的倍數(shù)特征的問題中,得出:個位上是3、6、9的數(shù)是3的倍數(shù),后被學(xué)生補(bǔ)充到“個位上是0—9的任何一個數(shù)字都有可能是3的倍數(shù),”其特征不明顯,也就是說3的倍數(shù)和一個數(shù)的個位數(shù)沒有關(guān)系,因此要從另外的角度來觀察和思考。在問題情境中讓學(xué)生產(chǎn)生認(rèn)知沖突產(chǎn)生疑問,激發(fā)強(qiáng)烈的探究欲望。接著提供給每位學(xué)生一張百數(shù)表,讓他們?nèi)Τ鏊?的倍數(shù),拋出問題:把3的倍數(shù)的各位上的數(shù)相加,看看你有什么發(fā)現(xiàn),引導(dǎo)學(xué)生換角度思考3的倍數(shù)特征。接下來,經(jīng)過進(jìn)一步提示,引導(dǎo)學(xué)生觀察各位上數(shù)的和,發(fā)現(xiàn)各位上的和是3的倍數(shù)。于是,形成新的猜想:一個數(shù)如果是3的倍數(shù),那么它各位上數(shù)的和也是3的倍數(shù)。

  為了驗證這一猜想,我補(bǔ)充了一些其他的.數(shù),如49×3=147,166×3=498等,使學(xué)生進(jìn)一步確認(rèn)這一結(jié)論的正確性。還可以任意寫一個數(shù),利用這一結(jié)論來驗證,如3697,3+6+9+7=25,25不是3的倍數(shù),而3697÷3也不能得到整數(shù)商,因此,它不是3的倍數(shù)。通過這樣的方式也使學(xué)生認(rèn)識到:找出某個規(guī)律后,還要找出一些正面的、反面的例子進(jìn)行檢驗,看是不是普遍適用。

  為了使學(xué)生更好地掌握3的倍數(shù)的特征,進(jìn)行課堂練習(xí)時,我還把一些數(shù)各個數(shù)位上的數(shù)經(jīng)過不同的排列,再讓學(xué)生判斷,以加深對“各位上數(shù)的和是3的倍數(shù)”的理解。如完成“做一做”第1題時,學(xué)生判斷完45是3的倍數(shù)后,教師可以再讓學(xué)生判斷一下54是不是3的倍數(shù)。

  利用2、5、3的倍數(shù)的特征來判斷一個數(shù)是不是2、5或3的倍數(shù),其方法是比較容易掌握的,但要形成較好的數(shù)感,達(dá)到熟練判斷的程度,也不是一、兩節(jié)課所能解決的,還需要進(jìn)行較多的練習(xí)進(jìn)行鞏固。

  這節(jié)課結(jié)束后,我感到自主學(xué)習(xí)和合作探究是這節(jié)課中最重要的兩種學(xué)習(xí)方式,學(xué)生通過自主選擇研究內(nèi)容,舉例驗證等獨立思考和小組討論,相互質(zhì)疑等合作探究活動,獲得了數(shù)學(xué)知識。學(xué)生的學(xué)習(xí)能動性和潛在能力得到了激發(fā)。在自主探索的過程中,學(xué)生體驗到了學(xué)習(xí)成功的愉悅,同時也促進(jìn)了自身的發(fā)展。但最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化。

3的倍數(shù)特征反思7

  本學(xué)期第一次師徒活動,我的師傅秦老師聽了我《3的倍數(shù)的特征》一課,課后與秦老師溝通交流了本節(jié)課我的設(shè)計意圖,秦老師也針對我的課給我進(jìn)行了說課,F(xiàn)結(jié)合說課及課后反思,總結(jié)如下:

  3的倍數(shù)的特征的教學(xué),應(yīng)著力讓學(xué)生在學(xué)習(xí)過程中獲得“山窮水盡”,“柳暗花明”的探究體驗,為此,課前我沒有安排預(yù)習(xí)的作業(yè)。設(shè)計了以下幾個環(huán)節(jié):

  一、課前熱身,舊知復(fù)習(xí)

  我設(shè)計了一些練習(xí)題,如填一填、寫一寫、想一想,把舊知2、5倍數(shù)的特征的知識復(fù)習(xí)到位,讓學(xué)生通過口答、動筆使學(xué)生動腦、動口、動手,在課的開始就讓學(xué)生動起來,大大提高了學(xué)生的學(xué)習(xí)興趣。

  二、認(rèn)知沖突,揭題板書

  復(fù)習(xí)舊知后,我緊接著追問:“判斷一個數(shù)是不是2或5的倍數(shù),只要看什么”,這樣的特征同樣適用于今天我們要學(xué)習(xí)的3的倍數(shù)的特征嗎?以誘發(fā)、強(qiáng)化認(rèn)知沖突,揭題板書,從而讓學(xué)生產(chǎn)生質(zhì)疑,帶著疑問,有一種急切的心情,產(chǎn)生學(xué)習(xí)新知的欲望。

  三、合作探究,學(xué)習(xí)新知

  這個環(huán)節(jié)我沒有急切地讓學(xué)生直接去找3的倍數(shù)的特征。學(xué)習(xí)新知的模式為:猜想——觀察——驗證——歸納。所以我先讓學(xué)生去猜想,然后用兩種方法進(jìn)行觀察并驗證:擺小棒和百數(shù)表。擺小棒,我采用合作探究的學(xué)習(xí)方式,4人一組,分工明確,代表發(fā)言,發(fā)現(xiàn)了規(guī)律。雖然學(xué)生們的結(jié)論不是很精確,但是總結(jié)的還是很清楚,說明學(xué)生們通過動手操作,真正經(jīng)歷了知識形成的過程。然后再用百數(shù)表圈數(shù)的.方法觀察發(fā)現(xiàn)并驗證規(guī)律,從而歸納出3的倍數(shù)的特征的具體概念。緊接著在進(jìn)行2、5倍數(shù)的特征和3的倍數(shù)的特征的對比,讓學(xué)生們加深理解。

  四、鞏固練習(xí),內(nèi)化提升

  練習(xí)的設(shè)計上也是由基礎(chǔ)到提升再到拓展,從抽象的數(shù)到解決問題,體會數(shù)學(xué)知識與生活的密切聯(lián)系。

  亮點:

  舊知復(fù)習(xí)全面,新知探究讓學(xué)生全員參與,真正動起來,讓學(xué)生經(jīng)歷了新知形成的過程,練習(xí)的設(shè)計上新穎,有梯度。

  不足:

  1、在讓學(xué)生產(chǎn)生質(zhì)疑的同時,要讓學(xué)生有思考的時間,充分給學(xué)生辯論的時間。

  2、在讓學(xué)生動手?jǐn)[小棒時,要求不太明確,應(yīng)先舉個例子,讓學(xué)生明確小棒的根數(shù)就是所擺的數(shù)位上數(shù)的和。

  3、在對比2、5倍數(shù)的特征和3的倍數(shù)的特征時,應(yīng)給予充分的時間讓學(xué)生消化一下,或讓學(xué)生舉例,然后再把結(jié)論板書,這樣學(xué)生印象更深刻。

  評價:多動腦、動口、動手,調(diào)動學(xué)生的多種感官參與學(xué)習(xí),概念學(xué)習(xí)就不會枯燥。如果每節(jié)新課過后都能這樣反思,你會愈加成熟!

3的倍數(shù)特征反思8

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2.5倍數(shù)特征之后的又一內(nèi)容,因為2.5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。

  1、找準(zhǔn)知識沖突激發(fā)探索愿望。

  找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的特征,知道只要看一個數(shù)的個位,因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

  2、激發(fā)學(xué)習(xí)中的.困惑,讓探究走向深入。

  找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,而我從孩子們的學(xué)號為入重點,讓孩子們判斷自己的學(xué)號是否是3的倍數(shù),并再次探究3的倍數(shù)特征,并且發(fā)現(xiàn)3的倍數(shù)和數(shù)字排列順序的有關(guān)系。但和這個數(shù)的個位上的數(shù)字有關(guān)。使之所探究的問題是漸漸完整而清晰,而后我又組織孩子們用擺小棒的方法來探究和驗證,這種層層遞進(jìn)環(huán)環(huán)相扣的方法,促使探究活動走向深入,讓學(xué)生獲得更大的發(fā)展。

  3、課后反思使之完美。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后點選了的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而老練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得可持續(xù)發(fā)展的動力。

3的倍數(shù)特征反思9

  “能被3整除數(shù)的數(shù)”一課,能體現(xiàn)新的教育理念、教育思想。仔細(xì)分析,有以下幾個特點:

  1、確立了基本技能目標(biāo)和發(fā)展性目標(biāo)并重的教學(xué)目標(biāo)。

  本節(jié)課不僅重視學(xué)生掌握能被3整除數(shù)的特征,并能運用特征進(jìn)行正確判斷,同時十分重視學(xué)生學(xué)習(xí)過程的體驗和方法的滲透,讓學(xué)生通過“猜測——驗證——提出新的假設(shè)——驗證”的探索過程來發(fā)現(xiàn)知識,獲得結(jié)論,并感悟方法。

  2、理性處理教材,使教學(xué)內(nèi)容生活化。

  教科書只是提供了學(xué)生學(xué)習(xí)活動的基本線索。教學(xué)中,教師要充分發(fā)揮主觀能動性,創(chuàng)造性的使用教科書,本節(jié)課重新設(shè)計例題,通過用“0——9”十個數(shù)字組成能被整除的三位數(shù)讓學(xué)生探索特征,這樣處理使教學(xué)內(nèi)容有較強(qiáng)的靈活性,促進(jìn)了學(xué)生思維的發(fā)展。教學(xué)內(nèi)容生活化不僅能激發(fā)學(xué)生興趣,產(chǎn)生親切感,而且使學(xué)生認(rèn)識到現(xiàn)實生活中蘊(yùn)藏著豐富的數(shù)學(xué)問題。開課時收集的.數(shù)據(jù)一方面激發(fā)了學(xué)生學(xué)習(xí)的興趣,同時也縮短了教師和學(xué)生的距離,課后“你再長幾歲,這個歲數(shù)就能被3整除”這一開放題富有情趣,給學(xué)生留下了深刻的印象。

  3、著力改變學(xué)生的學(xué)習(xí)方式。

  學(xué)習(xí)方式的轉(zhuǎn)變是本節(jié)課的主要特色。本節(jié)課始終以自主探索、合作交流為主要的學(xué)習(xí)方式,讓學(xué)生通過自主選教學(xué)內(nèi)容,舉例驗證等獨立思考和小組討論等合作探究活動,獲得教學(xué)知識、感悟方法。如在課的第二階段,設(shè)計三個層次的教學(xué)活動,讓學(xué)生充分探索、討論、交流,使學(xué)生真正成為學(xué)習(xí)的主人。第一層通過學(xué)生猜測、舉例、選數(shù)字組數(shù),使學(xué)生產(chǎn)生兩次認(rèn)知沖突;第二層通過交換三位數(shù)數(shù)字的位置,仍然沒能發(fā)現(xiàn)特征,產(chǎn)生第三次認(rèn)知沖突;第三層次通過計算各位上的數(shù)的“和、差、積、商”使結(jié)論逐漸顯露。這一過程不僅培養(yǎng)了學(xué)生探究精神,磨練了意志,同時也使學(xué)生品嘗了成功的喜悅。

  4、合理定位教師角色,營造民主、和諧的學(xué)習(xí)氛圍。

  課堂教學(xué)中只有擺正了師生關(guān)系,才可能使學(xué)生得到發(fā)展。本節(jié)課學(xué)生始終是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者。可以從以下兩方面看出:一是從師生活動的時間分配上,二是從分層探究、有針對性的適當(dāng)引導(dǎo)上。這節(jié)課從開始到結(jié)束,氣氛始終處在民主、和諧之中,生活化的學(xué)習(xí)材料、平等的師生關(guān)系和開放的探究方式,

3的倍數(shù)特征反思10

  找準(zhǔn)知識之間的沖突并巧妙激發(fā)出來,這是一節(jié)課的出彩之處,剛開始我們先采用課本上百數(shù)表來研究,結(jié)果在一個班實踐后認(rèn)為效果并不是很理想,由于數(shù)太多,讓學(xué)生觀察3的倍數(shù)的這些數(shù)時,并從中找出相同的地方,結(jié)果,很多同學(xué)找了與本節(jié)課毫無關(guān)系的東西,浪費了很多時間。在評課的.時候,我們又討論是不是找一些數(shù)代表百數(shù)表,于是我設(shè)計了一個表格,讓學(xué)生用除法計算的方法找到3的倍數(shù)的特征,并觀察這些數(shù),這些數(shù)的個位分別從0到9都有,讓學(xué)生知道3的倍數(shù)的特征跟數(shù)的個位沒有關(guān)系,然后從中又把像45和54,75和57,123和321等特殊的數(shù)單獨展示出來,讓學(xué)生觀察從中找出規(guī)律。結(jié)果我又重新上了這節(jié)課,效果比上節(jié)課要好。

  這節(jié)課結(jié)束后,我感覺最大的缺憾之處,最后總結(jié)3的倍數(shù)特征時,應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。而練習(xí)題方面,也應(yīng)形式面多樣化,如用卡片練習(xí)判斷,或通過打手勢的方法或先聽老師——這樣效率更高,課堂氛圍好,課堂不是同步,學(xué)生的發(fā)展始終是教學(xué)的落腳點。我們的教學(xué)應(yīng)著眼于學(xué)生對解決問題方法的感悟,這樣才可獲得最佳的效果。

3的倍數(shù)特征反思11

  3的倍數(shù)的特征的教學(xué)與2、5倍數(shù)的特征難度上有不同,因為2、5的倍數(shù)的特征從數(shù)的表面的特點就可以很容易看出(根據(jù)個位數(shù)的特點就可以判斷出來),但是3的倍數(shù)的特征卻不能從表面去判斷,因而我特設(shè)以下環(huán)節(jié)突破重難點預(yù)習(xí)題。

  1、給出一些數(shù)讓學(xué)生先判斷哪些數(shù)是3的倍數(shù)。并讓學(xué)生說一說你是怎么判斷的.?

  2、從以上的3的倍數(shù)進(jìn)行思考:

 。1)、3的倍數(shù)與它個位上的數(shù)有關(guān)系嗎?

 。2)、 3的倍數(shù)的各位上的數(shù)的和都是3的倍數(shù)嗎?

  新課時讓學(xué)生從上面的練習(xí)中去發(fā)現(xiàn)了什么,從而歸納3的倍數(shù)的特征:一個數(shù)的各個數(shù)位上的數(shù)字和是3的倍數(shù),這個數(shù)就是3的倍數(shù)

  然后再讓每個同學(xué)任意寫一個3的倍數(shù),再看看這個數(shù)的各個數(shù)位上的數(shù)的和是不是3的倍數(shù)。要求學(xué)生說出方法和思路。

  經(jīng)過以上這些活動后學(xué)生都能對一個數(shù)是不是3的倍數(shù)進(jìn)行簡單的判斷。特別是學(xué)生對3的倍數(shù)特征的判斷大多數(shù)的學(xué)生能先求出各個數(shù)位的數(shù)字之和是不是3的倍數(shù),然后再進(jìn)行判斷,效果很好。

3的倍數(shù)特征反思12

  《3的倍數(shù)的特征》是學(xué)生在學(xué)習(xí)過2和5倍數(shù)特征之后的又一內(nèi)容,因為2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的`特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出3的倍數(shù)特征。

  但上課的過程中,學(xué)生并沒有按照我想的思路去進(jìn)行,一個學(xué)生在我沒有預(yù)想的前提下說出了3的倍數(shù)的特征,所以我準(zhǔn)備讓四人小組去合作交流發(fā)現(xiàn)3的倍數(shù)的特征也沒有進(jìn)行。只是讓學(xué)生兩人去再說一說剛才那個學(xué)生的發(fā)現(xiàn),加以理解,鞏固。

  這節(jié)課結(jié)束后,我感覺以下方面做得不好。

  1、備課不充分。自己在備課時沒有好好的去備學(xué)生,沒有做好多方面的預(yù)設(shè);

  2、在觀察百數(shù)表到后面總結(jié)3的倍數(shù)特征時,都應(yīng)放手讓孩子們多說,說透,這樣更有助于鍛煉孩子的概括歸納能力。老師不要著急,學(xué)生能說出的盡量讓學(xué)生說,多放手,相信學(xué)生。

3的倍數(shù)特征反思13

  《3的倍數(shù)的特征》的教學(xué)是五年級數(shù)學(xué)上冊第三單元“因數(shù)與倍數(shù)”中一個重要知識點,是學(xué)生在學(xué)習(xí)了2和5的倍數(shù)特征之后的新內(nèi)容。

  3的倍數(shù)的特征與2和5的倍數(shù)的特征有很大差別,2和5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判斷,必須把其他各位上的數(shù)相加,看所得的和是否為3的倍數(shù)來判斷,學(xué)生理解起來有一定的困難。我在本節(jié)課設(shè)計理念上,突出以學(xué)生為主體,教師為主導(dǎo),方法為主線的原則,從現(xiàn)象到本質(zhì),從質(zhì)疑到解疑。當(dāng)然本節(jié)課也存在很多問題,下面我進(jìn)行做幾點反思。

  1、瞄準(zhǔn)目標(biāo),把握關(guān)鍵

  在導(dǎo)入環(huán)節(jié),我通過復(fù)習(xí)舊知識進(jìn)行“熱身”。由于學(xué)生已經(jīng)掌握了2和5倍數(shù)的特征,知道只要看一個數(shù)的個位就能判斷一個數(shù)是不是2或5的倍數(shù),因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來,盡管是負(fù)遷移。實際上,鮮明的沖突讓學(xué)生發(fā)現(xiàn)卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的'愿望,這樣有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

  2、經(jīng)歷過程,授之以漁

  猜想3的倍數(shù)特征是基礎(chǔ),在學(xué)生得出猜想后,我便引導(dǎo)學(xué)生找出百數(shù)表中3的倍數(shù)去驗證,并在驗證中推翻了剛才的猜想。驗證也是有技巧的,30以內(nèi)即可發(fā)現(xiàn)3的倍數(shù)中,個位上可能是10個數(shù)字中的任何一個,之前的判斷已經(jīng)站不住腳。之后繼續(xù)探究,在100以內(nèi),基本可以發(fā)現(xiàn)規(guī)律,但為了嚴(yán)謹(jǐn),必須跳出百數(shù)表,在100以上的數(shù)中去驗證這個規(guī)律。最后,引導(dǎo)學(xué)生理解這個結(jié)論背后的原理,為什么它的規(guī)律和之前的規(guī)律不一樣?這樣一來,學(xué)生不僅學(xué)會本節(jié)課知識,更掌握了科學(xué)的探究方法。

  3、追求本真,知其所以然

  本節(jié)課的目標(biāo)定位上,我考慮到學(xué)生的已有認(rèn)知基礎(chǔ),我決定引導(dǎo)學(xué)生探索3的倍數(shù)的特征背后的道理。這一嘗試建立在我對學(xué)生學(xué)情把握的基礎(chǔ)上,因為3的倍數(shù)的特征的結(jié)論一但得出,運用起來沒有難度,后面的練習(xí)往往成了“休閑時間”,而進(jìn)一步提升探索難度,無疑是開發(fā)思維的良好契機(jī)。我運用數(shù)形結(jié)合的方法逐步深入,最后還是把話語權(quán)留給學(xué)生,這樣就給予不同學(xué)生各自適應(yīng)的個性化學(xué)習(xí)方略,真正做到了讓每位同學(xué)在數(shù)學(xué)上都得到發(fā)展。

3的倍數(shù)特征反思14

  今天我教學(xué)了3的倍數(shù)的特征,我首先復(fù)習(xí)2、5的倍數(shù)的特征,然后我出示了幾個不同的四位數(shù),問生:誰能很快判斷出哪些是3的倍數(shù)?想知道有什么竅門嗎?這們引入課題很順當(dāng),學(xué)生也很有興趣。下面,我先讓學(xué)生寫出50以內(nèi)3的倍數(shù),再觀察:3的倍數(shù)有什么特點?學(xué)生一時很難發(fā)現(xiàn),仍從個位上的數(shù)去觀察,但馬上被其他同學(xué)否定,當(dāng)時我心里有點擔(dān)心怎么看不來呢?,我啟發(fā)學(xué)生再看看個位和十位上的數(shù),通過交流后,在部分學(xué)生馬上發(fā)現(xiàn)把每個數(shù)的數(shù)字加起來的和除以3都是正好除的,我讓學(xué)生用這個發(fā)現(xiàn)對書上第76頁的表格100以內(nèi)的數(shù)進(jìn)行驗證一下,學(xué)生驗證后我又讓學(xué)生從100以外的'數(shù)來驗證。從而得出了3的倍數(shù)的特征。再通過用1、2、6可以寫成哪些三位數(shù)?這些三位數(shù)是3的倍數(shù)嗎?由此有什么發(fā)現(xiàn)?讓學(xué)生進(jìn)一步明白3的倍數(shù)跟數(shù)字的位置沒有關(guān)系,只跟各位上數(shù)的和有關(guān)系。這樣學(xué)生在完成想想做做第5題時學(xué)生思考時就不會漏寫了。最后,通過后面的練習(xí),我覺得在教學(xué)某些知識時,最好老師不要輕易下結(jié)論,只有讓他們自己在反復(fù)實踐中自己得出結(jié)論,才能牢固地掌握知識。

3的倍數(shù)特征反思15

  我決定在這節(jié)課中突出學(xué)生的自主探索,使學(xué)生猜想——觀察——再觀察——動手試驗的過程中,概括歸納出了3的倍數(shù)特征。

  找準(zhǔn)備知識中沖紛激發(fā)探索,在第一環(huán)節(jié)中我先讓學(xué)生復(fù)習(xí)2.5的倍數(shù)特征并對一些數(shù)據(jù)做出了判斷而后我們“誰來猜測一下3的倍數(shù)特征”激發(fā)學(xué)生探究的愿望。由于學(xué)生剛剛復(fù)習(xí)了2.5倍數(shù)的`特征,知道只要看一個數(shù)的個位。

  因此在學(xué)習(xí)3的倍數(shù)特征時,自然會把“看個位”這一方法遷移過來。但實際上,卻不是這樣,于是新舊知識間的矛盾沖突使學(xué)生產(chǎn)生了困惑,有了新舊知識的矛盾沖突,就能激發(fā)起學(xué)生探究的愿望,這樣不反有利于學(xué)生對新知識的掌握,有效的將新知識納入到原有的認(rèn)知結(jié)構(gòu)中去,還有利于培養(yǎng)學(xué)生深入探究的意識和能力。

【3的倍數(shù)特征反思】相關(guān)文章:

3的倍數(shù)特征反思03-09

能被3整除的數(shù)的特征實錄04-28

舉止禮儀的特征05-11

性格特征的詞語03-06

信息及信息的基本特征02-28

干性皮膚的特征及形成原因03-04

天蝎座的性格特征12-19

肌肉萎縮的臨床表現(xiàn)特征08-31

上班奴的特征與解決之道03-01

【經(jīng)典】性格特征的詞語5篇03-08