中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2023-08-03 19:00:15 數(shù)學(xué)說(shuō)課稿 我要投稿

高中數(shù)學(xué)說(shuō)課稿20篇

  作為一名默默奉獻(xiàn)的教育工作者,時(shí)常要開(kāi)展說(shuō)課稿準(zhǔn)備工作,借助說(shuō)課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。說(shuō)課稿應(yīng)該怎么寫(xiě)才好呢?以下是小編整理的高中數(shù)學(xué)說(shuō)課稿,僅供參考,大家一起來(lái)看看吧。

高中數(shù)學(xué)說(shuō)課稿20篇

  高中數(shù)學(xué)說(shuō)課稿 1

各位老師:

  大家好!我叫小王。我說(shuō)課的題目是《系統(tǒng)抽樣》,內(nèi)容選自于蘇教版必修3第二章第一節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過(guò)程分析等五大方面來(lái)闡述我對(duì)這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  學(xué)生已初步了解掌握了簡(jiǎn)單隨機(jī)抽樣的兩種方法,即抽簽法與隨機(jī)數(shù)表法,在此基礎(chǔ)上進(jìn)一步學(xué)習(xí)系統(tǒng)抽樣,它也是“統(tǒng)計(jì)學(xué)”的重要組成部分,通過(guò)對(duì)系統(tǒng)抽樣的學(xué)習(xí),更加突出統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位。

  2 、教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計(jì)問(wèn)題。

  難點(diǎn):當(dāng) 不是整數(shù)時(shí)的處理辦法,個(gè)體編號(hào)具有某種周期性時(shí),“壞樣本”的理解。

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo):

 。1)正確理解系統(tǒng)抽樣的概念;

  (2)掌握系統(tǒng)抽樣的一般步驟;

 。3)正確理解系統(tǒng)抽樣與簡(jiǎn)單隨機(jī)抽樣的關(guān)系;

  2、過(guò)程與方法目標(biāo):

  通過(guò)對(duì)實(shí)際問(wèn)題的探究,歸納應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的方法,理解分類討論的數(shù)學(xué)方法高考資源

  3、情感態(tài)度與價(jià)值觀目標(biāo):

  通過(guò)數(shù)學(xué)活動(dòng),感受數(shù)學(xué)對(duì)實(shí)際生活的需要,體會(huì)現(xiàn)實(shí)世界和數(shù)學(xué)知識(shí)的聯(lián)系

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué)。

  2.教學(xué)手段:通過(guò)各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。

  四、教學(xué)過(guò)程分析

  (一)新課引入

  1、復(fù)習(xí)提問(wèn):

 。1)什么是簡(jiǎn)單隨機(jī)抽樣?有哪兩種方法?

 。2)抽簽法與隨機(jī)數(shù)表法的一般步驟是什么?

 。3)簡(jiǎn)單隨機(jī)抽樣應(yīng)注意哪兩個(gè)原則?

 。4)什么樣的總體適合簡(jiǎn)單隨機(jī)抽樣?為什么?

  [設(shè)計(jì)意圖]通過(guò)復(fù)習(xí)提問(wèn)進(jìn)一步理解掌握簡(jiǎn)單隨機(jī)抽樣的概念方法和步驟?為新課學(xué)習(xí)打基礎(chǔ)

  2、實(shí)例探究

  實(shí)例:某學(xué)校為了了解高一年級(jí)學(xué)生對(duì)教師教學(xué)的意見(jiàn),打算從高一年級(jí)500名學(xué)生中抽取50名進(jìn)行調(diào)查,除了用簡(jiǎn)單隨機(jī)抽樣獲取樣本外,你能否設(shè)計(jì)其他抽取樣本的方法?

  當(dāng)總體數(shù)量較多時(shí),應(yīng)當(dāng)如何抽?結(jié)合具體事例探究問(wèn)題,設(shè)計(jì)你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學(xué)生自主探究后小組討論回答。

  [設(shè)計(jì)意圖]通過(guò)設(shè)置問(wèn)題情境,讓學(xué)生參與問(wèn)題解決的全過(guò)程,引導(dǎo)學(xué)生探究發(fā)現(xiàn)新知識(shí)新方法,完成從總體中抽取樣本,并發(fā)現(xiàn)“等距抽樣”的特性,從而形成感性的系統(tǒng)抽樣的概念與方法。這樣做既充分體現(xiàn)學(xué)生的主體地位和教師的.主導(dǎo)作用,同時(shí)也較好地貫徹新課程所倡導(dǎo)“自主探究、合作交流”的學(xué)習(xí)方式。

 。ǘ┬抡n講授

  1、系統(tǒng)抽樣的概念方法步驟

 。▽W(xué)生閱讀課本上的內(nèi)容,教師引導(dǎo)學(xué)生總結(jié)歸納得出“系統(tǒng)抽樣”的概念,并點(diǎn)明課題)

  [設(shè)計(jì)意圖]經(jīng)歷實(shí)例探究過(guò)程,學(xué)生對(duì)系統(tǒng)抽樣的概念方法步驟應(yīng)有大致了解,輔以教師引導(dǎo),從具體到一般,本節(jié)新課題的學(xué)習(xí)便水到渠成。

  2、典型例題精析

  例1、某校高中三年級(jí)的300名學(xué)生已經(jīng)編號(hào)為1,2,……,300,為了了解學(xué)生的學(xué)習(xí)情況,要按10%的比例抽取一個(gè)樣本,請(qǐng)用系統(tǒng)抽樣的方法進(jìn)行抽取,并寫(xiě)出過(guò)程。

 。ń處燁}意分析,引導(dǎo)學(xué)生應(yīng)用新知識(shí)新方法,學(xué)生分析思考,探究解題,小組討論后口述解題過(guò)程)

  [設(shè)計(jì)意圖]實(shí)例鞏固,在得出新課的有關(guān)知識(shí)之后,再次讓學(xué)生在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步理解掌握系統(tǒng)抽樣的方法步驟,達(dá)到學(xué)以致用的技能,培養(yǎng)“學(xué)數(shù)學(xué),用數(shù)學(xué)”的意識(shí)。

  例2、某單位在職職工共624人,為了調(diào)查工人用于上班途中的時(shí)間,決定抽取10%的工人進(jìn)行調(diào)查,試采用系統(tǒng)抽樣方法抽取所需的樣本。

  [設(shè)計(jì)意圖]當(dāng) 不是整數(shù)時(shí),設(shè)置本題讓學(xué)生嘗試回答,并形成一般思路與方法。

  (三) 練習(xí)鞏固

  1、將全班學(xué)生按男女生交替排成一路縱隊(duì),用擲骰的方法在前6名學(xué)生中任選一名,用 表示該名學(xué)生在隊(duì)列中的序號(hào),將隊(duì)列中序號(hào)為 ,(k=1,2,3,…)的學(xué)生抽出作為樣本,這種抽樣方法叫做系統(tǒng)抽樣嗎?為什么?其樣本的代表性與公平性如何?

  2、若按體重大小次序排成一路縱隊(duì)呢?

  [設(shè)計(jì)意圖]配合課本第60頁(yè)“邊空”問(wèn)題:“請(qǐng)將這種抽樣方法與簡(jiǎn)單隨機(jī)抽樣做一個(gè)比較,你認(rèn)為系統(tǒng)抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個(gè)體編號(hào)具有某種周期性時(shí),樣本代表性較差的特點(diǎn)。同時(shí)分析系統(tǒng)抽樣的優(yōu)點(diǎn)與缺點(diǎn)。

  (四)回顧小結(jié)

  1、師生共同回顧系統(tǒng)抽樣的概念方法與步驟

  2、與簡(jiǎn)單隨機(jī)抽樣比較,系統(tǒng)抽樣適合怎樣的總體情況?

  3、當(dāng) 不是整數(shù)時(shí),一般步驟是什么?此時(shí)樣本的公平性與代表性如何?

 。ㄎ澹┎贾米鳂I(yè)

  課本第61頁(yè)的練習(xí)第1,2,3題

  設(shè)計(jì)意圖:課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

  高中數(shù)學(xué)說(shuō)課稿 2

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來(lái)學(xué)習(xí)如何預(yù)測(cè)不確定事件(隨機(jī)事件)發(fā)生的可能性的大小。"用概率預(yù)測(cè)隨機(jī)發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識(shí),無(wú)論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會(huì)實(shí)踐活動(dòng)都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機(jī)事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點(diǎn)與難點(diǎn)。

  重點(diǎn):對(duì)概率意義的理解,經(jīng)過(guò)多次重復(fù)實(shí)驗(yàn),用頻率預(yù)測(cè)概率的方法,以及用列舉法求概率的方法。

  難點(diǎn):對(duì)概率意義的理解和用列舉法求概率過(guò)程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識(shí)與技能:掌握用頻率預(yù)測(cè)概率和用列舉法求概率方法。

  過(guò)程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗(yàn)和統(tǒng)計(jì)的結(jié)果,進(jìn)而進(jìn)行分析、歸納、總結(jié),了解并感受概率的定義的過(guò)程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語(yǔ)言描述客觀世界。

  情感態(tài)度價(jià)值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)活動(dòng)充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的`對(duì)立統(tǒng)一規(guī)律,同時(shí)為概率的精準(zhǔn)、新穎、獨(dú)特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強(qiáng)對(duì)數(shù)學(xué)價(jià)值觀的認(rèn)識(shí)。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(shí)(概率定義計(jì)算公式)的產(chǎn)生和發(fā)展過(guò)程,讓學(xué)生在數(shù)學(xué)活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計(jì)教學(xué)情境,有序組織學(xué)生活動(dòng),讓課堂充滿生機(jī)活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過(guò)程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計(jì)問(wèn)題一,學(xué)生經(jīng)過(guò)對(duì)問(wèn)題一的探究,一方面復(fù)習(xí)前面學(xué)過(guò)的"確定事件和不確定事件"的知識(shí),為學(xué)好本節(jié)資料理清知識(shí)障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測(cè)隨機(jī)事件可能性發(fā)生大小)。引導(dǎo)學(xué)生對(duì)問(wèn)題二的探究與觀察實(shí)驗(yàn)數(shù)據(jù),使學(xué)生了解概率這一重要概念的實(shí)際背景,感受并相信隨機(jī)事件的發(fā)生中存在著統(tǒng)計(jì)規(guī)律性,感受數(shù)學(xué)規(guī)律的真實(shí)的發(fā)現(xiàn)過(guò)程。

  2、歸納概括

  學(xué)生從試驗(yàn)中得到的統(tǒng)計(jì)數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來(lái)。

  引導(dǎo)學(xué)生重新對(duì)問(wèn)題一和問(wèn)題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進(jìn)行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問(wèn)題本事,又讓學(xué)生明確用列舉法求概率這一簡(jiǎn)便快捷方法的合理性。

  3、舉例應(yīng)用

  ⑴引導(dǎo)學(xué)生對(duì)教材書(shū)例題、問(wèn)題一、問(wèn)題二中問(wèn)題的進(jìn)一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

  ⑵引導(dǎo)學(xué)生對(duì)練習(xí)中的問(wèn)題思考與探究,鞏固對(duì)概率公式的應(yīng)用及加深對(duì)概率意義的理解。

  4、深化發(fā)展

  ⑴設(shè)置3個(gè)小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對(duì)知識(shí)與方法的理解,并學(xué)會(huì)靈活運(yùn)用。

  ⑵讓學(xué)生設(shè)計(jì)活動(dòng)資料,對(duì)知識(shí)進(jìn)行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運(yùn)用知識(shí)思考問(wèn)題和解決問(wèn)題,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新本事。

  高中數(shù)學(xué)說(shuō)課稿 3

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問(wèn)題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對(duì)于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì)求閉區(qū)間上連續(xù)開(kāi)區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學(xué)難點(diǎn)

  高三年級(jí)學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對(duì)求函數(shù)極值還不熟練,特別是對(duì)優(yōu)化解題過(guò)程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

  4、教學(xué)關(guān)鍵

  本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

  【教學(xué)目標(biāo)】

  根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

  1、知識(shí)和技能目標(biāo)

 。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

  (2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

  (3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

  2、過(guò)程和方法目標(biāo)

 。1)了解開(kāi)區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

 。3)會(huì)求閉區(qū)間上連續(xù),開(kāi)區(qū)間內(nèi)可導(dǎo)的函數(shù)的`最大、最小值。

  3、情感和價(jià)值目標(biāo)

 。1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問(wèn)題,分析問(wèn)題并最終解決問(wèn)題。

 。3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過(guò)程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過(guò)觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過(guò)程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導(dǎo)】

  對(duì)于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問(wèn)題就是有沒(méi)有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問(wèn)題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

  【教學(xué)過(guò)程】

  本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

  高中數(shù)學(xué)說(shuō)課稿 4

  今天我說(shuō)課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問(wèn)題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過(guò)程五方面逐一加以分析和說(shuō)明。

  一、說(shuō)教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動(dòng)變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔须A段,通過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí)。在高中階段,用符號(hào)語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1、知識(shí)與技能

  (1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

  (2)會(huì)判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  2、過(guò)程與方法

 。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識(shí)及能力;

 。2)體會(huì)數(shù)形結(jié)合、分類討論的'數(shù)學(xué)思想。

  3、情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望,突出學(xué)生的主觀能動(dòng)性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過(guò)以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡(jiǎn)單函數(shù)的單調(diào)性。

  難點(diǎn):

  1、函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語(yǔ)言到符號(hào)語(yǔ)言的轉(zhuǎn)化;

  (2)常量到變量的轉(zhuǎn)化。

  2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對(duì)教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過(guò)合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過(guò)程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來(lái)進(jìn)行我的教學(xué)。

 。ㄒ唬┲R(shí)導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過(guò)程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過(guò)學(xué)生自主探究,從知識(shí)產(chǎn)生、發(fā)展的過(guò)程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動(dòng)性。

  (二)講授新課

  1.問(wèn)題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過(guò)學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動(dòng)情況,引導(dǎo)學(xué)生能用自然語(yǔ)言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說(shuō),老師逐步修正、完善學(xué)生的說(shuō)法,最后給出正確答案。

  2、觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問(wèn)題:

 。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1< p="">

 。3)如何用數(shù)學(xué)符號(hào)語(yǔ)言來(lái)描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說(shuō)函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過(guò)來(lái),如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過(guò)對(duì)以上問(wèn)題的分析,從正、反兩方面領(lǐng)會(huì)函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1< p="">,仿照單調(diào)增函數(shù)定義,由學(xué)生說(shuō)出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說(shuō),一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

 。ㄎ覍⒔o出函數(shù)y=x2,并畫(huà)出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過(guò)程中,學(xué)生把對(duì)圖像的感性認(rèn)識(shí)轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過(guò)程有利于學(xué)生對(duì)概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說(shuō)出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。

  練習(xí)2:練習(xí)2:判斷下列說(shuō)法是否正確

  ①定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

  ②定義在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)< p="">

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說(shuō)出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x上的單調(diào)性。通過(guò)這種練習(xí)的方式,幫助學(xué)生鞏固對(duì)知識(shí)的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過(guò)程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過(guò)程做好準(zhǔn)備。

 。ㄎ澹┎贾米鳂I(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

  高中數(shù)學(xué)說(shuō)課稿 5

  我擔(dān)任高職單招輔導(dǎo)班的數(shù)學(xué)科教學(xué),可以說(shuō)每節(jié)課都是復(fù)習(xí)課。今天,我說(shuō)的是復(fù)習(xí)課這種課型。內(nèi)容是《函數(shù)》這一章中的“反函數(shù)”這一節(jié)。

  一、教材分析:

  反函數(shù)這一節(jié)在《函數(shù)》這章中是一個(gè)難點(diǎn),篇幅不多(課時(shí)少),在高考考綱中的要求也比較簡(jiǎn)單。但我個(gè)人這樣認(rèn)為,復(fù)習(xí)課應(yīng)盡量把與本節(jié)內(nèi)容相關(guān)的新舊知識(shí)系統(tǒng)地串在一起,所以在備課時(shí)要找一條能把知識(shí)點(diǎn)連在一起的線索。這線索就是函數(shù)的三要素:

  (一)教學(xué)目標(biāo):

 、偈箤W(xué)生掌握反函數(shù)的概念并能求出簡(jiǎn)單函數(shù)的反函數(shù)(考綱要求)。

 、诨榉春瘮(shù)的兩個(gè)函數(shù)具有的性質(zhì),以及這些性質(zhì)在解題中的運(yùn)用。

  ③通過(guò)知識(shí)的系統(tǒng)性,培養(yǎng)學(xué)生的.逆向思維能力和邏輯思維能力。

 。ǘ┲攸c(diǎn)、難點(diǎn):

 、僦攸c(diǎn):使學(xué)生能求出簡(jiǎn)單函數(shù)的反函數(shù)。

 、陔y點(diǎn):反函數(shù)概念的理解。

  二、教學(xué)方法:

  整節(jié)課采用傳統(tǒng)的講解法。

  首先要認(rèn)識(shí)反函數(shù)應(yīng)先有函數(shù)的概念這知識(shí),用例子來(lái)說(shuō)明反函數(shù)的求法以及讓學(xué)生來(lái)完成一題沒(méi)有反函數(shù)的函數(shù),從而得出一個(gè)不滿足函數(shù)定義的關(guān)系式,通過(guò)分析來(lái)得到一個(gè)函數(shù)具有反函數(shù)的條件。這里是用“欲擒故縱”的手法,加深對(duì)概念的理解,也是突破難點(diǎn)的關(guān)鍵。

  三、學(xué)生學(xué)習(xí)方法:

  學(xué)生認(rèn)識(shí)了反函數(shù)的求法(步驟),在老師的引導(dǎo)下得出三個(gè)結(jié)論,并運(yùn)用這些結(jié)論來(lái)解題。希望能達(dá)到提高學(xué)生性質(zhì)的解題能力和思維能力的目標(biāo)。

  四、教學(xué)過(guò)程:

 。ㄒ唬毓剩汉瘮(shù)的概念、三要素

 。ǘ┬抡n:例1:求y=2x+1的反函數(shù)

  解:

  即(x∈R)

  注意步驟,新關(guān)系式滿足從R到R是一個(gè)函數(shù)關(guān)系式。

  互這反函數(shù)的特點(diǎn):

 、龠\(yùn)算互逆;②順序倒置

  例2:y=x2(x∈R)用y的代數(shù)表示x

  得x=這x不是y的函數(shù),不滿足函數(shù)定義

  若對(duì),y=x2的定義域改為x≥0

  可得x=,即y=(x≥0)

  當(dāng)逆對(duì)應(yīng)滿足函數(shù)定義,原函數(shù)才存在反函數(shù)。

  得到結(jié)論①互為反函數(shù)的定義域、值域交換

  即

  分別在同一坐標(biāo)上畫(huà)出以上互為反函數(shù)的圖象

  得到結(jié)論②圖象關(guān)于y=x對(duì)稱

 、蹎握{(diào)性一致

 。ㄈ┚毩(xí)

  1、求的反函數(shù),并求出反函數(shù)的值域。

  2、函數(shù)的圖象關(guān)于對(duì)稱,求a的值。

  講評(píng):略。

 。ㄋ模┬〗Y(jié):

  (五)布置作業(yè):

  高中數(shù)學(xué)說(shuō)課稿 6

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

  【過(guò)程與方法】

  經(jīng)歷三角函數(shù)的'單調(diào)性的探索過(guò)程,提升邏輯推理能力。

  【情感態(tài)度價(jià)值觀】

  在猜想計(jì)算的過(guò)程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

  【教學(xué)難點(diǎn)】

  探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過(guò)程。

  三、教學(xué)過(guò)程

 。ㄒ唬┮胄抡n

  提出問(wèn)題:如何研究三角函數(shù)的單調(diào)性

  (四)小結(jié)作業(yè)

  提問(wèn):今天學(xué)習(xí)了什么?

  引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過(guò)程。

  課后作業(yè):

  思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

  高中數(shù)學(xué)說(shuō)課稿 7

  教學(xué)目標(biāo)

 。1)正確理解排列的意義。能利用樹(shù)形圖寫(xiě)出簡(jiǎn)單問(wèn)題的所有排列;

 。2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列;

 。3)掌握排列數(shù)公式,并能根據(jù)具體的問(wèn)題,寫(xiě)出符合要求的排列數(shù);

 。4)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

 。5)通過(guò)對(duì)排列應(yīng)用問(wèn)題的學(xué)習(xí),讓學(xué)生通過(guò)對(duì)具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本小節(jié)的重點(diǎn)是排列的定義、排列數(shù)及排列數(shù)的公式,并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。難點(diǎn)是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理和乘法原理的掌握和運(yùn)用,并將這兩個(gè)原理的基本思想方法貫穿在解決排列應(yīng)用問(wèn)題當(dāng)中。

  從n個(gè)不同元素中任取m(m≤n)個(gè)元素,按照一定的順序排成一列,稱為從n個(gè)不同元素中任取m個(gè)元素的一個(gè)排列。因此,兩個(gè)相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個(gè)不同元素中任取m(m≤n)個(gè)元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計(jì)算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個(gè)概念,前者是具有m個(gè)元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的有序集,相當(dāng)于一個(gè)排列,而這種有序集的個(gè)數(shù),就是相應(yīng)的排列數(shù)。

  公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。要重點(diǎn)分析好的推導(dǎo)。

  排列的應(yīng)用題是本節(jié)教材的難點(diǎn),通過(guò)本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問(wèn)題的'能力。

  在分析應(yīng)用題的解法時(shí),教材上先畫(huà)出框圖,然后分析逐次填入時(shí)的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時(shí)也應(yīng)盡量采用。

  在教學(xué)排列應(yīng)用題時(shí),開(kāi)始應(yīng)要求學(xué)生寫(xiě)解法要有簡(jiǎn)要的文字說(shuō)明,防止單純的只寫(xiě)一個(gè)排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問(wèn)題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

  三、教法建議

  ①在講解排列數(shù)的概念時(shí),要注意區(qū)分“排列數(shù)”與“一個(gè)排列”這兩個(gè)概念。一個(gè)排列是指“從n個(gè)不同元素中,任取出m個(gè)元素,按照一定的順序擺成一排”,它不是一個(gè)數(shù),而是具體的一件事;排列數(shù)是指“從n個(gè)不同元素中取出m個(gè)元素的所有排列的個(gè)數(shù)”,它是一個(gè)數(shù)。例如,從3個(gè)元素a,b,c中每次取出2個(gè)元素,按照一定的順序排成一排,有如下幾種:

  ab,ac,ba,bc,ca,cb,其中每一種都叫一個(gè)排列,共有6種,而數(shù)字6就是排列數(shù),符號(hào)表示排列數(shù)。

  ②排列的定義中包含兩個(gè)基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

  從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時(shí),才是同一個(gè)排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

  在定義中“一定順序”就是說(shuō)與位置有關(guān),在實(shí)際問(wèn)題中,要由具體問(wèn)題的性質(zhì)和條件來(lái)決定,這一點(diǎn)要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

  在排列的定義中,如果有的書(shū)上叫選排列,如果,此時(shí)叫全排列。

  要特別注意,不加特殊說(shuō)明,本章不研究重復(fù)排列問(wèn)題。

 、坳P(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來(lái)講解。課本上用的是不完全歸納法,先推導(dǎo),…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

  導(dǎo)出公式后要分析這個(gè)公式的構(gòu)成特點(diǎn),以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時(shí)候把公式寫(xiě)錯(cuò)。這個(gè)公式的特點(diǎn)可見(jiàn)課本第229頁(yè)的一段話:“其中,公式右邊第一個(gè)因數(shù)是n,后面每個(gè)因數(shù)都比它前面一個(gè)因數(shù)少1,最后一個(gè)因數(shù)是,共m個(gè)因數(shù)相乘。”這實(shí)際是講三個(gè)特點(diǎn):第一個(gè)因數(shù)是什么?最后一個(gè)因數(shù)是什么?一共有多少個(gè)連續(xù)的自然數(shù)相乘。

  公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對(duì)這個(gè)公式指出兩點(diǎn):

  (1)在一般情況下,要計(jì)算具體的排列數(shù)的值,常用前一個(gè)公式,而要對(duì)含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個(gè)公式,教材中第230頁(yè)例2就是用這個(gè)公式證明的問(wèn)題;

  (2)為使這個(gè)公式在時(shí)也能成立,規(guī)定,如同時(shí)一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

 、芙ㄗh應(yīng)充分利用樹(shù)形圖對(duì)問(wèn)題進(jìn)行分析,這樣比較直觀,便于理解。

 、輰W(xué)生在開(kāi)始做排列應(yīng)用題的作業(yè)時(shí),應(yīng)要求他們寫(xiě)出解法的簡(jiǎn)要說(shuō)明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實(shí)。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

  高中數(shù)學(xué)說(shuō)課稿 8

  教學(xué)目標(biāo):

  1、使學(xué)生了解角的形成,理解角的概念掌握角的各種表示法;

  2、通過(guò)觀察、操作培養(yǎng)學(xué)生的觀察能力和動(dòng)手操作能力。

  3、使學(xué)生掌握度、分、秒的進(jìn)位制,會(huì)作度、分、秒間的單位互化

  4、采用自學(xué)與小組合作學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生主動(dòng)參與、勇于探究的精神。

  教學(xué)重點(diǎn):

  理解角的概念,掌握角的三種表示方法

  教學(xué)難點(diǎn):

  掌握度、分、秒的進(jìn)位制, ,會(huì)作度、分、秒間的單位互化

  教學(xué)手段:

  教具:電腦課件、實(shí)物投影、量角器

  學(xué)具:量角器需測(cè)量的角

  教學(xué)過(guò)程:

  一、建立角的概念

  (一)引入角(利用課件演示)

  1、從生活中引入

  提問(wèn):

  A、以前我們?cè)?jīng)認(rèn)識(shí)過(guò)角,那你們能從這兩個(gè)圖形中指出哪些地方是角嗎?

  B、在我們的生活當(dāng)中存在著許許多多的角。一起看一看。誰(shuí)能從這些常用的物品中找出角?

  2、從射線引入

  提問(wèn):

  A、昨天我們認(rèn)識(shí)了射線,想從一點(diǎn)可以引出多少條射線?

  B、如果從一點(diǎn)出發(fā)任意取兩條射線,那出現(xiàn)的是什么圖形?

  C、哪兩條射線可以組成一個(gè)角?誰(shuí)來(lái)指一指。

 。ǘ┱J(rèn)識(shí)角,總結(jié)角的定義

  3、 過(guò)渡:角是怎么形成的呢?一起看

  (1)、演示:老師在這畫(huà)上一個(gè)點(diǎn),現(xiàn)在從這點(diǎn)出發(fā)引出一條射線,再?gòu)倪@點(diǎn)出發(fā)引出第二條射線。

  提問(wèn):觀察從這點(diǎn)引出了幾條射線?此時(shí)所組成的圖形是什么圖形?

 。2)、判斷下列哪些圖形是角。

 。ā蹋 (×) (√) (×) (√)

  為何第二幅和第四幅圖形不是角?(學(xué)生回答)

  誰(shuí)能用自己的話來(lái)概括一下怎樣組成的圖形叫做角?

  總結(jié):有公共端點(diǎn)的兩條射線所組成的圖形叫做角(angle)

  角的第二定義:角也可以看做由一條射線繞端點(diǎn)旋轉(zhuǎn)所形成的圖形.如下圖中的角,可以看做射線OA繞端點(diǎn)0按逆時(shí)針?lè)较蛐D(zhuǎn)到OB所形成的我們把OA叫做角的始邊,OB叫做角的終邊.

  B0 A

  4、認(rèn)識(shí)角的各部分名稱,明確頂點(diǎn)、邊的作用

 。1)觀看角的.圖形提問(wèn):這個(gè)點(diǎn)叫什么?這兩條射線叫什么?(學(xué)生邊說(shuō)師邊標(biāo)名稱)

 。2)角可以畫(huà)在本上、黑板上,那角的位置是由誰(shuí)決定的?

  (3)頂點(diǎn)可以確定角的位置,從頂點(diǎn)引出的兩條邊可以組成一個(gè)角。

  5、學(xué)會(huì)用符號(hào)表示角

  提問(wèn):那么,角的符號(hào)是什么?該怎么寫(xiě),怎么讀的呢?(電腦顯示)

 。1)可以標(biāo)上三個(gè)大寫(xiě)字母,寫(xiě)作:∠ABC或∠CBA,讀作:角ABC或角CBA.

  (2)觀察這兩種方法,有什么特點(diǎn)?(字母B都在中間)

 。3)所以,在只有一個(gè)角的時(shí)候,我們還可以寫(xiě)作: ∠B,讀作:角B

 。4)為了方便,有時(shí)我們還可以標(biāo)上數(shù)字,寫(xiě)作∠1,讀作:角1

  (5)注:區(qū)別 “∠”和“<”的不同。請(qǐng)同學(xué)們指著用學(xué)具折出的一個(gè)角,訓(xùn)練一下這三種讀法。

  6、強(qiáng)調(diào)角的大小與兩邊張開(kāi)的程度有關(guān),與兩條邊的長(zhǎng)短無(wú)關(guān)。

  二、 角的度量

  1、學(xué)習(xí)角的度量

 。1)教學(xué)生認(rèn)識(shí)量角器

  (2) 認(rèn)識(shí)了量角器,那怎樣使用它去測(cè)量角的度數(shù)呢?這部分知識(shí)請(qǐng)同學(xué)們合作學(xué)習(xí)。

  提出要求:小組合作邊學(xué)習(xí)測(cè)量方法邊嘗試測(cè)量第一個(gè)角,想想有幾種方法?

  1、要求合作學(xué)習(xí)探究、測(cè)量。

  2、反饋匯報(bào):學(xué)生邊演示邊復(fù)述過(guò)程

  3、教師利用課件演示正確的操作過(guò)程,糾正學(xué)生中存在的問(wèn)題。

  4、歸納概括測(cè)量方法(兩重合一對(duì))

 。1)用量角器的中心點(diǎn)與角的頂點(diǎn)重合

 。2)零刻度線與角的一邊重合(可與內(nèi)零度刻度線重合;也可與外零度刻度線重合)

 。3)另一條邊所對(duì)的角的度數(shù),就是這個(gè)角的度數(shù)。

  5、小結(jié):同一個(gè)角無(wú)論是用內(nèi)刻度量角,還是用外刻度量角,結(jié)果都一樣。

  6、獨(dú)立練習(xí)測(cè)量角的度數(shù)(書(shū)做一做中第一題1,3與第二題)

 。1) 獨(dú)立測(cè)量,師注意查看學(xué)生中存在的問(wèn)題。

 。2) 課件演示糾正問(wèn)題

  三、度、分、秒的進(jìn)位制及這些單位間的互化

  為了更精細(xì)地度量角,我們引入更小的角度單位:分、秒.把1°的角等分成60份,每份叫做1分記作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒記作1″.

  1°=60′,1′=60″;

  1′=( )°,1″=( )′.

  例1 將57.32°用度、分、秒表示.

  解:先把0.32°化為分,

  0.32°=60′×0.32=19.2′.

  再把0.2′化為秒,

  0.2′=60″×0.2=12″.

  所以 57.32″=57°19′12″.

  例2 把10°6′36″用度表示.

  解:先把36″化為分,

  36″=( )′×36=0.6′

  6′+0.6′=6.6′.

  再把6.6′化為度,

  6.6′=( )°×6.6=0.11°.

  所以 10°6′36″=10.11°.

  四、鞏固練習(xí)

  課本P122練習(xí)

  五、總結(jié):請(qǐng)大家回憶一下,今天都學(xué)了那些知識(shí),通過(guò)學(xué)習(xí)你想說(shuō)些什么?

  六、作業(yè):課本P123 3、4.(1)(3)、5.(2)(4)

  高中數(shù)學(xué)說(shuō)課稿 9

  教學(xué)目標(biāo)

  (1)了解算法的含義,體會(huì)算法思想。

  (2)會(huì)用自然語(yǔ)言和數(shù)學(xué)語(yǔ)言描述簡(jiǎn)單具體問(wèn)題的算法;

  (3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問(wèn)題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

  教學(xué)重難點(diǎn)

  重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。

  難點(diǎn):把自然語(yǔ)言轉(zhuǎn)化為算法語(yǔ)言。

  情境導(dǎo)入

  電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對(duì)他來(lái)說(shuō)也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

  第二步:瞄準(zhǔn)目標(biāo);

  第三步:計(jì)算(或估測(cè))風(fēng)速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

  第五步:開(kāi)槍;

  第六步:迅速轉(zhuǎn)移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

  課堂探究

  預(yù)習(xí)提升

  1、定義:

  算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問(wèn)題。

  2、描述方式

  自然語(yǔ)言、數(shù)學(xué)語(yǔ)言、形式語(yǔ)言(算法語(yǔ)言)、框圖。

  3、算法的要求

  (1)寫(xiě)出的算法,必須能解決一類問(wèn)題,且能重復(fù)使用;

  (2)算法過(guò)程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過(guò)有限步后能得出結(jié)果。

  4、算法的特征

  (1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

  (2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

  (4)順序性:算法從初始步驟開(kāi)始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。

  (5)不唯一性:解決同一問(wèn)題的算法可以是不唯一的

  課堂典例講練

  命題方向1對(duì)算法意義的理解

  例1、下列敘述中,

 、僦矘(shù)需要運(yùn)苗、挖坑、栽苗、澆水這些步驟;

 、诎错樞蜻M(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動(dòng)車到濟(jì)南,再?gòu)臐?jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開(kāi)幕式;

  ④3x>x+1;

 、萸笏心鼙3整除的正數(shù),即3,6,9,12。

  能稱為算法的個(gè)數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無(wú)窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結(jié)]

  1、正確理解算法的概念及其特點(diǎn)是解決問(wèn)題的關(guān)鍵、

  2、針對(duì)判斷語(yǔ)句是否是算法的問(wèn)題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問(wèn)題、

  【變式訓(xùn)練】下列對(duì)算法的理解不正確的是________

  ①一個(gè)算法應(yīng)包含有限的步驟,而不能是無(wú)限的

  ②算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

  ④一個(gè)問(wèn)題只能設(shè)計(jì)出一個(gè)算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

  由對(duì)于同一個(gè)問(wèn)題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個(gè)算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒(méi)有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過(guò)回代方程求出方程組的解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結(jié)]1、本題用了2種方法求解,對(duì)于問(wèn)題的求解過(guò)程,我們既要強(qiáng)調(diào)對(duì)“通法、通解”的理解,又要強(qiáng)調(diào)對(duì)所學(xué)知識(shí)的.靈活運(yùn)用。

  2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問(wèn)題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。

  【變式訓(xùn)練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問(wèn)題的算法設(shè)計(jì)

  例3、設(shè)計(jì)一個(gè)算法,對(duì)任意3個(gè)整數(shù)a、b、c,求出其中的最小值

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過(guò)程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。

  【變式訓(xùn)練】在下列數(shù)字序列中,寫(xiě)出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

  命題方向4非數(shù)值性問(wèn)題的算法

  例4、一個(gè)人帶三只狼和三只羚羊過(guò)河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒(méi)有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。

  (1)設(shè)計(jì)安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

  高中數(shù)學(xué)說(shuō)課稿 10

  一、單元教學(xué)內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語(yǔ)句:輸入、輸出、賦值、條件、循環(huán)語(yǔ)句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計(jì)算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會(huì)發(fā)展中發(fā)揮著越來(lái)越大的作用,并日益融入社會(huì)生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國(guó)古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對(duì)具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問(wèn)題中的作用;通過(guò)模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的.過(guò)程;體會(huì)算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力

  三、單元教學(xué)課時(shí)安排:

  1、算法的基本概念3課時(shí)

  2、程序框圖與算法的基本結(jié)構(gòu)5課時(shí)

  3、算法的基本語(yǔ)句2課時(shí)

  四、單元教學(xué)目標(biāo)分析

  1、通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析體會(huì)算法的思想,了解算法的含義

  2、通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)程序框圖表達(dá)解決問(wèn)題的過(guò)程。在具體問(wèn)題的解決過(guò)程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問(wèn)題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過(guò)程,理解幾種基本算法語(yǔ)句:輸入、輸出、斌值、條件、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。

  4、通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  五、單元教學(xué)重點(diǎn)與難點(diǎn)分析

  1、重點(diǎn)

  (1)理解算法的含義

  (2)掌握算法的基本結(jié)構(gòu)

  (3)會(huì)用算法語(yǔ)句解決簡(jiǎn)單的實(shí)際問(wèn)題

  2、難點(diǎn)

  (1)程序框圖

  (2)變量與賦值

  (3)循環(huán)結(jié)構(gòu)

  (4)算法設(shè)計(jì)

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過(guò)對(duì)實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  七、單元展開(kāi)方式與特點(diǎn)

  1、展開(kāi)方式

  自然語(yǔ)言→程序框圖→算法語(yǔ)句

  2、特點(diǎn)

  (1)螺旋上升分層遞進(jìn)

  (2)整合滲透前呼后應(yīng)

  (3)三線合一橫向貫通

  (4)彈性處理多樣選擇

  八、單元教學(xué)過(guò)程分析

  1.算法基本概念教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)對(duì)解決具體問(wèn)題過(guò)程與步驟的分析(喝茶,如二元一次方程組求解問(wèn)題),體會(huì)算法的思想,了解算法的含義,能用自然語(yǔ)言描述算法。

  2.算法的流程圖教學(xué)過(guò)程分析

  對(duì)生活中的實(shí)際問(wèn)題通過(guò)模仿、操作、探索,經(jīng)歷通過(guò)設(shè)計(jì)流程圖表達(dá)解決問(wèn)題的過(guò)程,了解算法和程序語(yǔ)言的區(qū)別;在具體問(wèn)題的解決過(guò)程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會(huì)用流程圖表示算法。

  3.基本算法語(yǔ)句教學(xué)過(guò)程分析

  經(jīng)歷將具體生活中問(wèn)題的流程圖轉(zhuǎn)化為程序語(yǔ)言的過(guò)程,理解表示的幾種基本算法語(yǔ)句:賦值語(yǔ)句、輸入語(yǔ)句、輸出語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。能用自然語(yǔ)言、流程圖和基本算法語(yǔ)句表達(dá)算法,

  4.通過(guò)閱讀中國(guó)古代數(shù)學(xué)中的算法案例,體會(huì)中國(guó)古代數(shù)學(xué)對(duì)世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。

  九、單元評(píng)價(jià)設(shè)想

  1.重視對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)過(guò)程的評(píng)價(jià)

  關(guān)注學(xué)生在數(shù)學(xué)語(yǔ)言的學(xué)習(xí)過(guò)程中,是否對(duì)用集合語(yǔ)言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問(wèn)題充滿興趣;在學(xué)習(xí)過(guò)程中,能否體會(huì)集合語(yǔ)言準(zhǔn)確、簡(jiǎn)潔的特征;是否能積極、主動(dòng)地發(fā)展自己運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行交流的能力。

  2.正確評(píng)價(jià)學(xué)生的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識(shí),主要包括算法的基本結(jié)構(gòu)、基本語(yǔ)句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法

  高中數(shù)學(xué)說(shuō)課稿 11

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。

  (2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。

  2.過(guò)程與方法

  學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。

  3.情感態(tài)度與價(jià)值觀

  (1)提高空間想象力與直觀感受。

  (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

  (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。

  2.教學(xué)用具:三角板、圓規(guī)

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭示課題

  1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱

  把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。

  2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

  (二)研探新知

  1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

  畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。

  練習(xí)反饋

  根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

  2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的'直觀圖

  教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

  教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。

  3.探求空間幾何體的直觀圖的畫(huà)法

  (1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

  教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。

  (2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

  4.平行投影與中心投影

  投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。

  5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

  三、歸納整理

  學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟

  四、作業(yè)

  1.書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題

  2.課外思考課本P16,探究(1)(2)

  高中數(shù)學(xué)說(shuō)課稿 12

  教學(xué)目的:

  掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問(wèn)題

  教學(xué)重點(diǎn):

  圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

  教學(xué)難點(diǎn):

  標(biāo)準(zhǔn)方程的靈活運(yùn)用

  教學(xué)過(guò)程:

  一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

  二、掌握知識(shí),鞏固練習(xí)

  練習(xí):

  1、說(shuō)出下列圓的方程

 、艌A心(3,—2)半徑為5

 、茍A心(0,3)半徑為3

  2、指出下列圓的圓心和半徑

 、牛▁—2)2+(y+3)2=3

  ⑵x2+y2=2

 、莤2+y2—6x+4y+12=0

  3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系

  4、圓心為(1,3),并與3x—4y—7=0相切,求這個(gè)圓的.方程

  三、引伸提高,講解例題

  例1、圓心在y=—2x上,過(guò)p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

  練習(xí):1、某圓過(guò)(—2,1)、(2,3),圓心在x軸上,求其方程。

  2、某圓過(guò)A(—10,0)、B(10,0)、C(0,4),求圓的方程。

  例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

  例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)

  四、小結(jié)練習(xí)P771,2,3,4

  五、作業(yè)P811,2,3,4

  高中數(shù)學(xué)說(shuō)課稿 13

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)掌握畫(huà)三視圖的基本技能

  (2)豐富學(xué)生的空間想象力

  2.過(guò)程與方法

  主要通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀

  (1)提高學(xué)生空間想象力

  (2)體會(huì)三視圖的作用

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):畫(huà)出簡(jiǎn)單組合體的三視圖

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體

  三、學(xué)法與教學(xué)用具

  1.學(xué)法:觀察、動(dòng)手實(shí)踐、討論、類比

  2.教學(xué)用具:實(shí)物模型、三角板

  四、教學(xué)思路

  (一)創(chuàng)設(shè)情景,揭開(kāi)課題

  “橫看成嶺側(cè)看成峰”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。

  在初中,我們已經(jīng)學(xué)習(xí)了正方體、長(zhǎng)方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫(huà)出空間幾何體的三視圖嗎?

  (二)實(shí)踐動(dòng)手作圖

  1.講臺(tái)上放球、長(zhǎng)方體實(shí)物,要求學(xué)生畫(huà)出它們的三視圖,教師巡視,學(xué)生畫(huà)完后可交流結(jié)果并討論;

  2.教師引導(dǎo)學(xué)生用類比方法畫(huà)出簡(jiǎn)單組合體的三視圖

  (1)畫(huà)出球放在長(zhǎng)方體上的三視圖

  (2)畫(huà)出礦泉水瓶(實(shí)物放在桌面上)的三視圖

  學(xué)生畫(huà)完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。

  作三視圖之前應(yīng)當(dāng)細(xì)心觀察,認(rèn)識(shí)了它的基本結(jié)構(gòu)特征后,再動(dòng)手作圖。

  3.三視圖與幾何體之間的相互轉(zhuǎn)化。

  (1)投影出示圖片(課本P10,圖1.2-3)

  請(qǐng)同學(xué)們思考圖中的三視圖表示的幾何體是什么?

  (2)你能畫(huà)出圓臺(tái)的`三視圖嗎?

  (3)三視圖對(duì)于認(rèn)識(shí)空間幾何體有何作用?你有何體會(huì)?

  教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對(duì)上述問(wèn)題的看法。

  4.請(qǐng)同學(xué)們畫(huà)出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。

  (三)鞏固練習(xí)

  課本P12練習(xí)1、2P18習(xí)題1.2A組1

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)課外練習(xí)

  1.自己動(dòng)手制作一個(gè)底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫(huà)出它的三視圖。

  2.自己制作一個(gè)上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺(tái)模型,并畫(huà)出它的三視圖。

  高中數(shù)學(xué)說(shuō)課稿 14

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

  四、教學(xué)目標(biāo)

  1、深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2、通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1、對(duì)圓錐曲線定義的理解

  2、利用圓錐曲線的定義求“最值”

  3、“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過(guò)程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當(dāng)?shù)亟o出例題1:

  (1)已知A(-2,0),B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)線段(D)不存在

  (2)已知?jiǎng)狱c(diǎn)M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是()。

  (A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折——如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25

  這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是,實(shí)軸長(zhǎng)為,焦距為。以深化對(duì)概念的理解。

  (二)理解定義、解決問(wèn)題

  例2:

  (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2),求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫(xiě)出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)。

  練習(xí):

  設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,

  可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1、圓錐曲線的第一定義

  2、圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1、雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

  2、|PF1||PF2|2P為等軸雙曲線x2y2a2上一點(diǎn),F(xiàn)1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3、在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4、例題:

  (1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  (2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的`右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1、本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2、利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

  高中數(shù)學(xué)說(shuō)課稿 15

  一、課程說(shuō)明

 。ㄒ唬┙滩姆治觯

  此次一對(duì)一家教所使用教材為北師大版高中數(shù)學(xué)必修5。輔導(dǎo)內(nèi)容為第一章第二節(jié)等差數(shù)列。前一節(jié)的內(nèi)容為數(shù)列,學(xué)生已初步了解到數(shù)列的概念,知道什么是首項(xiàng),什么是通項(xiàng)等等。以及了解到什么是遞增數(shù)列,什么是遞減數(shù)列。通過(guò)第一節(jié)的學(xué)習(xí)的鋪墊,可以讓學(xué)生更自主的探究,學(xué)習(xí)等差數(shù)列。而我也是在這些基礎(chǔ)上為她講解第二節(jié)等差數(shù)列。

 。ǘ 學(xué)生分析:

  此次所帶學(xué)生是一名高二的學(xué)生。聰明但是不踏實(shí),做題浮躁;A(chǔ)知識(shí)掌握不夠牢靠,知識(shí)的運(yùn)用能力較差,分析能力較弱,解題思路不清。每次她遇到會(huì)的題,就快快的草率做完,總會(huì)有因馬虎而犯的錯(cuò)誤。遇到稍不會(huì)的,總是很浮躁,不能冷靜下來(lái)慢慢思考。就由略不會(huì)變成不會(huì)。但她也是個(gè)虛心聽(tīng)教的孩子,給她講課,她也會(huì)很認(rèn)真地聽(tīng)講。

 。ㄈ 教學(xué)目標(biāo):

  1、通過(guò)教與學(xué)的配合,讓她能夠懂得什么是等差數(shù)列,以及等差數(shù)列的通項(xiàng)公式。

  2、通過(guò)對(duì)公式的推導(dǎo),讓她加深對(duì)內(nèi)容的理解,以及學(xué)會(huì)自己對(duì)公式的推導(dǎo)。并且能夠靈活運(yùn)用。

  3、在教學(xué)中讓她通過(guò)對(duì)公式的推導(dǎo)來(lái)明白推理的藝術(shù),并且培養(yǎng)她學(xué)習(xí),做題條理清晰,思路縝密的好習(xí)慣。

  4、讓她在學(xué)習(xí),做題中一步步抽絲剝繭,尋找解決問(wèn)題的方法,培養(yǎng)她敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并培養(yǎng)她對(duì)克服困難和運(yùn)用知識(shí)。耐心地解決問(wèn)題。

  5、讓她在學(xué)習(xí)中發(fā)現(xiàn)數(shù)學(xué)的獨(dú)特的美,能夠愛(ài)上數(shù)學(xué)這門(mén)課。并且認(rèn)真對(duì)待,自主學(xué)習(xí)。

 。ㄋ模┙虒W(xué)重點(diǎn)

  1、讓學(xué)生正確掌握等差數(shù)列及其通項(xiàng)公式,以及其性質(zhì)。并能獨(dú)立的推導(dǎo)。

  2、能夠靈活運(yùn)用公式并且能把相應(yīng)公式與題相結(jié)合。

  (五) 教學(xué)難點(diǎn):

  1、讓學(xué)生掌握公式的推導(dǎo)及其意義。

  2、如何把所學(xué)知識(shí)運(yùn)用到相應(yīng)的題中。

  二、課前準(zhǔn)備

  (一) 教學(xué)器材

  對(duì)于一對(duì)一教教采用傳統(tǒng)講課。一張掛歷。

 。ǘ 教學(xué)方法

  通過(guò)對(duì)生活中的有規(guī)律數(shù)據(jù)的觀察來(lái)提出問(wèn)題,讓學(xué)生結(jié)合前一節(jié)所學(xué),思考有什么規(guī)律。從生活中著手有利于激發(fā)學(xué)生的興趣愛(ài)好,并能更積極地學(xué)習(xí)。讓學(xué)生先獨(dú)立的思考,不僅能讓她對(duì)所學(xué)知識(shí)映像更為深刻,并且培養(yǎng)她的縝密思維。讓她回答后,我再幫助她糾正,并且讓她提出心中所慮。經(jīng)過(guò)我給她講完課后,讓她回答自己先前的疑慮。并且讓她自己總結(jié),得出結(jié)論。最后讓她勤加練習(xí)。以一種“提出問(wèn)題—探究問(wèn)題—學(xué)習(xí)知識(shí)—解答問(wèn)題—得出結(jié)論—強(qiáng)加訓(xùn)練”的模式方法展開(kāi)教學(xué)。

 。ㄈ 課時(shí)安排

  課時(shí)大致分為五部分:

  1、聯(lián)系實(shí)際提出相關(guān)問(wèn)題,進(jìn)行思考。

  2、以我教她學(xué)的模式講授相關(guān)章節(jié)知識(shí)。

  3、讓學(xué)生練習(xí)相關(guān)習(xí)題,從所學(xué)知識(shí)中找其相應(yīng)解題方案。

  4、學(xué)生對(duì)知識(shí)總結(jié)概括,我再對(duì)其進(jìn)行補(bǔ)充說(shuō)明。

  5、布置作業(yè),讓她課后多做練習(xí)。

  三、課程設(shè)計(jì)

 。ㄒ唬┨岢鰡(wèn)題

  【引入】

  根據(jù)我們的掛歷上,一個(gè)月的日期數(shù)。通過(guò)觀察每一行日期和每一列日期它們有什么規(guī)律?

  思考 1 2 3 13579......246810......66666......

  這些每一行有什么規(guī)律?

 。ǘ 分析問(wèn)題并講解

  1、通過(guò)觀察每一個(gè)數(shù)與前一個(gè)數(shù)相差為同一個(gè)常數(shù)。再結(jié)合前一節(jié)所學(xué)數(shù)列的定義總結(jié)出“每一項(xiàng)與前一項(xiàng)的差為同一個(gè)常數(shù),我們稱這樣的數(shù)列為等差數(shù)列。”并且得出“這個(gè)常數(shù)為等差數(shù)列的'公差!

  2、設(shè)首項(xiàng)為 a1 ,公差為d。由思考題 1 2 3可觀察出什么?由學(xué)生通過(guò)她的發(fā)現(xiàn)來(lái)推導(dǎo)總結(jié)出ana1n1dnda1d

  3、通過(guò)分析通項(xiàng)公式的特點(diǎn),做下題(學(xué)生自己分析,思考來(lái)做。) 例:已知在等差數(shù)列{an}中,a520a2035,試求出數(shù)列的通項(xiàng)公式?

  通過(guò)學(xué)生做題再分析總結(jié),用詳細(xì)的語(yǔ)言講解總結(jié)等差數(shù)列的性質(zhì)

  4、由以上公式,性質(zhì),讓學(xué)生總結(jié)。

  講解等差數(shù)列的定義。并且掌握數(shù)列的遞增,遞減與公差d的關(guān)系。

  5、總結(jié),串講當(dāng)日所學(xué)

  給出題目:12349899100 讓她求其和Sn,并思考如何快速計(jì)算?

 。ㄈ 布置作業(yè)

  1、總結(jié)當(dāng)日所學(xué)。

  2、做練習(xí)冊(cè)上章節(jié)習(xí)題。

  3、根據(jù)當(dāng)日所學(xué)以及課上所講求 的思考題,找出快速運(yùn)算方法,并引導(dǎo)預(yù)習(xí)等差數(shù)列前n項(xiàng)和。

  四、設(shè)計(jì)理念

  以一種最簡(jiǎn)便,易懂的方式讓學(xué)生來(lái)學(xué)習(xí),一切以讓學(xué)生正確掌握知識(shí),并能正確運(yùn)用為理念。并能充分調(diào)動(dòng)學(xué)生和家教老師的積極性為理念來(lái)設(shè)計(jì)。

  五、教學(xué)設(shè)計(jì)反思

  本節(jié)課教程內(nèi)容較難,是下一節(jié)等差數(shù)列前n項(xiàng)和的鋪墊。此節(jié)課學(xué)習(xí)通過(guò)聯(lián)系實(shí)際,把數(shù)學(xué)融入到生活中,從生活中探究學(xué)習(xí)數(shù)學(xué)。并提出問(wèn)題,分析問(wèn)題。把主動(dòng)權(quán)交給學(xué)生,由她先獨(dú)立思考總結(jié),再由我給她正確講解總結(jié),然后再讓她做相應(yīng)練習(xí)題,課后再認(rèn)真總結(jié)。這樣可以加強(qiáng)她學(xué)習(xí)的主動(dòng)性,更有利于她對(duì)知識(shí)的消化,吸收。這種方法同時(shí)可以培養(yǎng)學(xué)生的思維能力,讓她從自主學(xué)習(xí)中探索適合自己的學(xué)習(xí)方法,培養(yǎng)她獨(dú)立思考的能力。讓她更深刻的了解知識(shí)內(nèi)涵,鞏固所學(xué)。使她能靈活運(yùn)用所學(xué)。

  高中數(shù)學(xué)說(shuō)課稿 16

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無(wú)數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡(jiǎn)馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會(huì)利用圓錐曲線定義來(lái)熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級(jí)的學(xué)生參與課堂教學(xué)活動(dòng)的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語(yǔ)言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識(shí)較為抽象,如果離開(kāi)感性認(rèn)識(shí),容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動(dòng)畫(huà),引導(dǎo)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、解決問(wèn)題,主動(dòng)參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標(biāo)

  1.深刻理解并熟練掌握?qǐng)A錐曲線的定義,能靈活應(yīng)用定義解決問(wèn)題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識(shí)求解圓錐曲線的方程。

  2.通過(guò)對(duì)練習(xí),強(qiáng)化對(duì)圓錐曲線定義的理解,提高分析、解決問(wèn)題的能力;通過(guò)對(duì)問(wèn)題的不斷引申,精心設(shè)問(wèn),引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對(duì)圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過(guò)程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開(kāi)門(mén)見(jiàn)山,提出問(wèn)題

  一上課,我就直截了當(dāng)?shù)亟o出——

  例題1:(1) 已知A(-2,0), B(2,0)動(dòng)點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

  (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過(guò)一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對(duì)圓錐曲線的定義已有了一定的認(rèn)識(shí),他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問(wèn)題。

  為了加深學(xué)生對(duì)圓錐曲線定義理解,我以圓錐曲線的定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對(duì)于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說(shuō)出:若想答案是其他選項(xiàng)的`話,條件要怎么改?這對(duì)于已學(xué)完圓錐曲線這部分知識(shí)的學(xué)生來(lái)說(shuō),并不是什么難事。但問(wèn)題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來(lái)解決問(wèn)題,那么我就可以循著他的思路,先對(duì)原等式做變形:(x1)2(y2)25這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5入手,考慮通過(guò)適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對(duì)學(xué)生們的解答做出判斷后,我將把問(wèn)題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長(zhǎng)為 ,焦距為 。以深化對(duì)概念的理解。

  (二)理解定義、解決問(wèn)題

  例2 (1)已知?jiǎng)訄AA過(guò)定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  【設(shè)計(jì)意圖】

  運(yùn)用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問(wèn)題化歸為幾何中求最大(小)值的模式,是解析幾何問(wèn)題中的一種常見(jiàn)題型,也是學(xué)生們比較容易混淆的一類問(wèn)題。例2的設(shè)置就是為了方便學(xué)生的辨析。

  【學(xué)情預(yù)設(shè)】

  根據(jù)以往的經(jīng)驗(yàn),多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實(shí)上,解決本題的關(guān)鍵在于能準(zhǔn)確寫(xiě)出點(diǎn)A的軌跡,有了練習(xí)題1的鋪墊,這個(gè)問(wèn)題對(duì)學(xué)生們來(lái)講就顯得頗為簡(jiǎn)單,因此面對(duì)例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對(duì)于例2(2)這樣相對(duì)比較陌生的問(wèn)題,學(xué)生就無(wú)從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來(lái),這樣就容易和第二定義聯(lián)系起來(lái),從而找到解決本題的突破口。

  (三)自主探究、深化認(rèn)識(shí)

  如果時(shí)間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗(yàn)的機(jī)會(huì)——

  練習(xí):設(shè)點(diǎn)Q是圓C:(x1)2225|AB|的最小值。 3y225上動(dòng)點(diǎn),點(diǎn)A(1,0)是圓內(nèi)一點(diǎn),AQ的垂直平分線與CQ交于點(diǎn)M,求點(diǎn)M的軌跡方程。

  引申:若將點(diǎn)A移到圓C外,點(diǎn)M的軌跡會(huì)是什么?

  【設(shè)計(jì)意圖】 練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺(tái),當(dāng)然,如果課堂上時(shí)間允許的話,可借助“多媒體課件”,引導(dǎo)學(xué)生對(duì)自己的結(jié)論進(jìn)行驗(yàn)證。

  【知識(shí)鏈接】

  (一)圓錐曲線的定義

  1. 圓錐曲線的第一定義

  2. 圓錐曲線的統(tǒng)一定義

  (二)圓錐曲線定義的應(yīng)用舉例

  1.雙曲線1的兩焦點(diǎn)為F1、F2,P為曲線上一點(diǎn),若P到左焦點(diǎn)F1的距離為12,求P到右準(zhǔn)線的距離。

  2.|PF1||PF2|2.P為等軸雙曲線x2y2a2上一點(diǎn), F1、F2為兩焦點(diǎn),O為雙曲線的中心,求的|PO|取值范圍。

  3.在拋物線y22px上有一點(diǎn)A(4,m),A點(diǎn)到拋物線的焦點(diǎn)F的距離為5,求拋物線的方程和點(diǎn)A的坐標(biāo)。

  4.(1)已知點(diǎn)F是橢圓1的右焦點(diǎn),M是這橢圓上的動(dòng)點(diǎn),A(2,2)是一個(gè)定點(diǎn),求|MA|+|MF|的最小值。

  x2y211(2)已知A(,3)為一定點(diǎn),F(xiàn)為雙曲線1的右焦點(diǎn),M在雙曲線右支上移動(dòng),當(dāng)|AM||MF|最小時(shí),求M點(diǎn)的坐標(biāo)。

  (3)已知點(diǎn)P(-2,3)及焦點(diǎn)為F的拋物線y,在拋物線上求一點(diǎn)M,使|PM|+|FM|最小。

  5.已知A(4,0),B(2,2)是橢圓1內(nèi)的點(diǎn),M是橢圓上的動(dòng)點(diǎn),求|MA|+|MB|的最小值與最大值。

  七、教學(xué)反思

  1.本課將借助于,將使全體學(xué)生參與活動(dòng)成為可能,使原來(lái)令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動(dòng)且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢(shì)。

  2.利用兩個(gè)例題及其引申,通過(guò)一題多變,層層深入的探索,以及對(duì)猜測(cè)結(jié)果的檢測(cè)研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會(huì)一個(gè)問(wèn)題的求解到掌握一類問(wèn)題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問(wèn)題的解法;將學(xué)生容易混淆的兩類求“最值問(wèn)題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動(dòng)量并不會(huì)小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會(huì),能夠使學(xué)生在學(xué)習(xí)新知識(shí)的同時(shí),激發(fā)起求知的欲望,在尋求解決問(wèn)題的辦法的過(guò)程中獲得自信和成功的體驗(yàn),于不知不覺(jué)中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

  高中數(shù)學(xué)說(shuō)課稿 17

  一、課題:

  人教版全日制普通高級(jí)中學(xué)教科書(shū)數(shù)學(xué)第一冊(cè)(上)《2.7對(duì)數(shù)》

  二、指導(dǎo)思想與理論依據(jù):

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實(shí)際背景和應(yīng)用價(jià)值,開(kāi)展“數(shù)學(xué)建!钡膶W(xué)習(xí)活動(dòng),把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個(gè)數(shù)學(xué)概念的引入,總有它的現(xiàn)實(shí)或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強(qiáng)調(diào)它的現(xiàn)實(shí)背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識(shí)的發(fā)展水到渠成而不是強(qiáng)加于人,從而有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)內(nèi)容的實(shí)際背景和應(yīng)用的價(jià)值。在教學(xué)設(shè)計(jì)時(shí),既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價(jià)值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,發(fā)展能力。在課程實(shí)施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會(huì)進(jìn)步、人類文化建設(shè)中的作用,同時(shí)反映社會(huì)發(fā)展對(duì)數(shù)學(xué)發(fā)展的促進(jìn)作用。

  三、教材分析:

  本節(jié)內(nèi)容主要學(xué)習(xí)對(duì)數(shù)的概念及其對(duì)數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識(shí)。而對(duì)數(shù)的概念是對(duì)數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過(guò)對(duì)數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問(wèn)題,以及對(duì)數(shù)函數(shù)的相關(guān)問(wèn)題。

  四、學(xué)情分析:

  在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認(rèn)知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)的概念是水到渠成的事。

  五、教學(xué)目標(biāo):

  (一)教學(xué)知識(shí)點(diǎn):

  1.對(duì)數(shù)的概念。

  2.對(duì)數(shù)式與指數(shù)式的互化。

  (二)能力目標(biāo):

  1.理解對(duì)數(shù)的`概念。

  2.能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化。

  (三)德育滲透目標(biāo):

  1.認(rèn)識(shí)事物之間的相互聯(lián)系與相互轉(zhuǎn)化,

  2.用聯(lián)系的觀點(diǎn)看問(wèn)題。

  六、教學(xué)重點(diǎn)與難點(diǎn):

  重點(diǎn)是對(duì)數(shù)定義,難點(diǎn)是對(duì)數(shù)概念的理解。

  七、教學(xué)方法:

  講練結(jié)合法八、教學(xué)流程:

  問(wèn)題情景(復(fù)習(xí)引入)——實(shí)例分析、形成概念(導(dǎo)入新課)——深刻認(rèn)識(shí)概念(對(duì)數(shù)式與指數(shù)式的互化)——變式分析、深化認(rèn)識(shí)(對(duì)數(shù)的性質(zhì)、對(duì)數(shù)恒等式,介紹自然對(duì)數(shù)及常用對(duì)數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))

  八、教學(xué)反思:

  對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來(lái)設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過(guò)程更加切合《課程標(biāo)準(zhǔn)》的要求。

  對(duì)于本教學(xué)設(shè)計(jì),時(shí)間倉(cāng)促,不足之處在所難免,期待與各位同仁交流。

  高中數(shù)學(xué)說(shuō)課稿 18

  一、探究式教學(xué)模式概述

  1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來(lái)展開(kāi)學(xué)習(xí)活動(dòng),通過(guò)自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過(guò)探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神。可見(jiàn),探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過(guò)程和探究知識(shí)的過(guò)程統(tǒng)一起來(lái),充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。

  2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過(guò)類似科學(xué)家科學(xué)探究的過(guò)程來(lái)理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說(shuō),它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來(lái)展開(kāi)的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說(shuō)明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過(guò)探究自己發(fā)現(xiàn)規(guī)律。

  3、探究式教學(xué)模式的特征。

 。1)問(wèn)題性。問(wèn)題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問(wèn)題,使學(xué)生產(chǎn)生問(wèn)題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯?wèn)題會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過(guò)程和科學(xué)家的探索過(guò)程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問(wèn)題、分析問(wèn)題、解決問(wèn)題的過(guò)程。”所以培養(yǎng)學(xué)生的問(wèn)題意識(shí)是探究式教學(xué)的重要使命。

  (2)過(guò)程性。過(guò)程性是探究式教學(xué)模式的重點(diǎn)。愛(ài)因斯坦說(shuō):“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺(jué)不到思想形成的生動(dòng)過(guò)程,也就很難達(dá)到清楚、全面理解的境界!碧骄渴浇虒W(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來(lái)組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。

  (3)開(kāi)放性。開(kāi)放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長(zhǎng)處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的`學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開(kāi)放性的問(wèn)題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開(kāi)放的,這一切都為教師的教與學(xué)生的學(xué)帶來(lái)了機(jī)遇與挑戰(zhàn)。

  二、教學(xué)設(shè)計(jì)案例

  1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。

  2、教學(xué)目標(biāo)。

 。1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。

  (2)過(guò)程與方法:在探究過(guò)程中掌握分析問(wèn)題的方法和邏輯推理的方法。

 。3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過(guò)程。

  3、教學(xué)方法:談話探究法,討論探究法。

  4、教學(xué)過(guò)程。

  (1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問(wèn)題占有重要位置。我們?cè)?jīng)做過(guò)的有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?

 。2)提出問(wèn)題。

  問(wèn)題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()

  A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

 。3)探究思考。

  點(diǎn)評(píng):乍一看問(wèn)題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問(wèn)題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問(wèn)題的途徑。

  教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫(xiě)出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?

  學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。

  教師:此結(jié)論的正確性如何?

  學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?

  教師:好。

  學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。

  設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)

  則n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可證定理的后半部分。

  教師:看來(lái)上述結(jié)論正確。所以得到如下定理。

  定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。

  教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問(wèn)題,請(qǐng)同學(xué)們先解答問(wèn)題1。

  學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教師:?jiǎn)l(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問(wèn)學(xué)生。

  學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數(shù)字之和都不是9的倍數(shù)。

  教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。

  學(xué)生:3+4+5+6=18是9的倍數(shù)。

  教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。

  故應(yīng)選D。

  (4)學(xué)以致用。

  問(wèn)題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒(méi)有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?

  教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問(wèn)題2有何想法?

  學(xué)生討論:

  學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。

  學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類:一類是5個(gè)數(shù)字中無(wú)0,另一類是5個(gè)數(shù)字中有0(但不含3)。

  學(xué)生3:第一類:5個(gè)數(shù)字中無(wú)0的五位偶數(shù)有。

  第二類:5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。

  學(xué)生4:由分類計(jì)數(shù)原理得:能被6整除的無(wú)重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。

  (5)概括強(qiáng)化。

  重點(diǎn):了解數(shù)字排列問(wèn)題的特點(diǎn),理解掌握數(shù)字排列中3、9問(wèn)題的規(guī)律。

  難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。

  關(guān)鍵:證明的思路以及定理的得出。

  新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問(wèn)題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。

 。6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類問(wèn)題的目的。

  總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來(lái)的,新課程改革強(qiáng)調(diào)改變課程過(guò)于注重知識(shí)的傳授和過(guò)于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂(lè)于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過(guò)程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過(guò)程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過(guò)程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。

  高中數(shù)學(xué)說(shuō)課稿 19

  教學(xué)目標(biāo)

 。1)正確理解加法原理與乘法原理的意義,分清它們的條件和結(jié)論;

 。2)能結(jié)合樹(shù)形圖來(lái)幫助理解加法原理與乘法原理;

  (3)正確區(qū)分加法原理與乘法原理,哪一個(gè)原理與分類有關(guān),哪一個(gè)原理與分步有關(guān);

  (4)能應(yīng)用加法原理與乘法原理解決一些簡(jiǎn)單的應(yīng)用問(wèn)題,提高學(xué)生理解和運(yùn)用兩個(gè)原理的能力;

 。5)通過(guò)對(duì)加法原理與乘法原理的學(xué)習(xí),培養(yǎng)學(xué)生周密思考、細(xì)心分析的良好習(xí)慣。

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本節(jié)的重點(diǎn)是加法原理與乘法原理,難點(diǎn)是準(zhǔn)確區(qū)分加法原理與乘法原理。

  加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個(gè)原理是學(xué)習(xí)排列組合內(nèi)容的基礎(chǔ),貫穿整個(gè)內(nèi)容之中,一方面它是推導(dǎo)排列數(shù)與組合數(shù)的基礎(chǔ);另一方面它的結(jié)論與其思想在方法本身又在解題時(shí)有許多直接應(yīng)用。

  兩個(gè)原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問(wèn)題,其區(qū)別在于:運(yùn)用加法原理的前提條件是,做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說(shuō),完成這件事的各種方法是相互獨(dú)立的;運(yùn)用乘法原理的前提條件是,做一件事有n個(gè)驟,只要在每個(gè)步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說(shuō),完成這件事的各個(gè)步驟是相互依存的。簡(jiǎn)單的說(shuō),如果完成一件事情的所有方法是屬于分類的問(wèn)題,每次得到的是最后結(jié)果,要用加法原理;如果完成一件事情的方法是屬于分步的.問(wèn)題,每次得到的該步結(jié)果,就要用乘法原理。

  三、教法建議

  關(guān)于兩個(gè)計(jì)數(shù)原理的教學(xué)要分三個(gè)層次:

  第一是對(duì)兩個(gè)計(jì)數(shù)原理的認(rèn)識(shí)與理解。這里要求學(xué)生理解兩個(gè)計(jì)數(shù)原理的意義,并弄清兩個(gè)計(jì)數(shù)原理的區(qū)別。知道什么情況下使用加法計(jì)數(shù)原理,什么情況下使用乘法計(jì)數(shù)原理。(建議利用一課時(shí))。

  第二是對(duì)兩個(gè)計(jì)數(shù)原理的使用。可以讓學(xué)生做一下習(xí)題(建議利用兩課時(shí)):

 、儆0,1,2,……,9可以組成多少個(gè)8位號(hào)碼;

 、谟0,1,2,……,9可以組成多少個(gè)8位整數(shù);

 、塾0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位整數(shù);

  ④用0,1,2,……,9可以組成多少個(gè)有重復(fù)數(shù)字的4位整數(shù);

  ⑤用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位奇數(shù);

  ⑥用0,1,2,……,9可以組成多少個(gè)有兩個(gè)重復(fù)數(shù)字的4位整數(shù)等等。

  第三是使學(xué)生掌握兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用,這個(gè)過(guò)程應(yīng)該貫徹整個(gè)教學(xué)中,每個(gè)排列數(shù)、組合數(shù)公式及性質(zhì)的推導(dǎo)都要用兩個(gè)計(jì)數(shù)原理,每一道排列、組合問(wèn)題都可以直接利用兩個(gè)原理求解,另外直接計(jì)算法、間接計(jì)算法都是兩個(gè)原理的一種體現(xiàn)。教師要引導(dǎo)學(xué)生認(rèn)真地分析題意,恰當(dāng)?shù)姆诸、分步,用好、用活兩個(gè)基本計(jì)數(shù)原理。

  高中數(shù)學(xué)說(shuō)課稿 20

  一、教材分析

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。所以,正弦定理和余弦定理的知識(shí)十分重要。

  根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問(wèn)題。

  能力目標(biāo):引導(dǎo)學(xué)生經(jīng)過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維本事,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的'興趣。

  教學(xué)重點(diǎn):正弦定理的資料,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)確定解的個(gè)數(shù)。

  二、教法

  根據(jù)教材的資料和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,進(jìn)取探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的本事線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過(guò)例題和練習(xí)來(lái)突破難點(diǎn)

  三、學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、團(tuán)體等多種解難釋疑的嘗試活動(dòng),將自我所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維本事,構(gòu)成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四、教學(xué)過(guò)程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實(shí)踐探究,構(gòu)成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的教師”,如果一節(jié)課有個(gè)好的開(kāi)頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不明白AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今日的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

  3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  這為下一步證明樹(shù)立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

 。ㄈ┻壿嬐评恚C明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生經(jīng)過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明

 。ㄋ模w納總結(jié),簡(jiǎn)單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

  2.正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問(wèn)題。

  3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問(wèn)題。自我參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

  (五)講解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

 。┱n堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時(shí)發(fā)現(xiàn)問(wèn)題,并解答。

 。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識(shí)

  經(jīng)過(guò)以上的研究過(guò)程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

  1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

 。◤膶(shí)際問(wèn)題出發(fā),經(jīng)過(guò)猜想、實(shí)驗(yàn)、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問(wèn)題的突出特點(diǎn)是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個(gè)探索過(guò)程我們也掌握了研究問(wèn)題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

  (八)任務(wù)后延,自主探究

  如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過(guò)渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

【高中數(shù)學(xué)說(shuō)課稿】相關(guān)文章:

高中數(shù)學(xué)橢圓說(shuō)課稿06-15

高中數(shù)學(xué)說(shuō)課稿05-03

高中數(shù)學(xué)說(shuō)課稿11-14

高中數(shù)學(xué)說(shuō)課稿08-26

高中數(shù)學(xué)向量說(shuō)課稿09-09

高中數(shù)學(xué)說(shuō)課稿06-12

高中數(shù)學(xué)說(shuō)課稿范文06-27

高中數(shù)學(xué)函數(shù)的概念說(shuō)課稿04-07

高中數(shù)學(xué)《反函數(shù)》說(shuō)課稿08-24

高中數(shù)學(xué)說(shuō)課稿范文11-02