- 《反比例》數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
《反比例》數(shù)學(xué)教案
作為一名教學(xué)工作者,通常需要準(zhǔn)備好一份教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。教案要怎么寫呢?下面是小編為大家整理的《反比例》數(shù)學(xué)教案,歡迎閱讀與收藏。
《反比例》數(shù)學(xué)教案1
教學(xué)目標(biāo)
1.使學(xué)生理解,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行“運(yùn)用變化觀點(diǎn)”的啟蒙教育.
教學(xué)重點(diǎn)
理解正反比例的意義,掌握正反比例的變化的規(guī)律.
教學(xué)難點(diǎn)
理解正反比例的意義,掌握正反比例的變化的規(guī)律.
教學(xué)過程
一、導(dǎo)入新課
。ㄒ唬┳蛱炖蠋熧I了一些蘋果,吃了一部分,你能想到什么?
。ǘ┙處熖釂
1.你為什么馬上能想到還剩多少呢?
2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?
教師板書:兩種相關(guān)聯(lián)的量
。ㄈ┙處熣勗
在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和
數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學(xué)
(一)成正比例的量
例1.一列火車行駛的時(shí)間和所行的路程如下表:
時(shí)間(時(shí)) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | …… |
路程(千米) | 90 | 180 | 270 | 360 | 450 | 540 | 630 | 720 | …… |
1.寫出路程和時(shí)間的比并計(jì)算比值.
。1)
。2) 2表示什么?180呢?比值呢?
。3) 這個(gè)比值表示什么意義?
(4) 360比5可以嗎?為什么?
2.思考
(1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?
。2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時(shí)間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?
。5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.
3.小結(jié):有什么規(guī)律?
教師板書:商不變
(二)成反比例的量
1.華豐機(jī)械廠加工一批機(jī)器零件,每小時(shí)加工的數(shù)量和所需的加工時(shí)間如下表.
工效(個(gè)) | 10 | 20 | 30 | 40 | 50 | 60 | …… |
時(shí)間(時(shí)) | 60 | 30 | 20 | 15 | 12 | 10 | …… |
2.教師提問
。1)計(jì)算工效和時(shí)間的乘積.
。2)這一組題中涉及了幾種量?誰與誰是相關(guān)聯(lián)的量?
。3)請(qǐng)你舉例說明誰與誰是相對(duì)應(yīng)的兩個(gè)數(shù)?
。4)在這一組題中兩種相關(guān)聯(lián)的量是如何變化的?(舉例說明)
3.小結(jié):有什么規(guī)律?(板書:積不變)
(三)不成比例的量
1.出示表格
運(yùn)走的噸數(shù) | 10 | 20 | 30 | 40 |
剩下的噸數(shù) | 90 | 80 | 70 | 60 |
總噸數(shù)(和不變) | 100 | 100 | 100 | 100 |
2.教師提問
。1)總噸數(shù)是怎樣得到的?
(2)誰與誰是兩種相關(guān)聯(lián)的量?
。3)它們又是怎樣變化的?變化的規(guī)律是什么?
運(yùn)走的噸數(shù)少,剩下的噸數(shù)多;運(yùn)走的噸數(shù)多,剩下的噸數(shù)少;總和不變
(四)結(jié)合三組題觀察、討論、總結(jié)變化規(guī)律.
討論題:
1.這三組題每組題中誰與誰是兩種相關(guān)聯(lián)的量?
2.在變化過程當(dāng)中,它們的異同點(diǎn)是什么?
共同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一量也隨著變化
不同點(diǎn):第一組商不變,第二組積不變,第三組和不變.
總結(jié):
3.分別概括
4.強(qiáng)調(diào)第三組題中兩種相關(guān)聯(lián)的量叫做不成比例
5.教師提問
(1)兩種量成正比例必須具備什么條件?
。2)兩種量成反比例必須具備什么條件?
。ㄎ澹┳帜戈P(guān)系式
三、鞏固練習(xí)
判斷下面各題是否成比例?成什么比例?
1.一種圓珠筆
總價(jià)(元) | 1。2 | 2。4 | 3。6 | 4。8 | 6 | 7。2 |
支數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
單價(jià)(元) | 1 | 2 | 4 | 5 | 10 |
支數(shù) | 100 | 50 | 25 | 20 | 10 |
。1)表中有哪兩種相關(guān)聯(lián)的量?
。2)說出幾組這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比
。3)每組等式說明了什么?
。4)兩種相關(guān)的量是否成比例?成什么比例?
2.當(dāng)速度一定,時(shí)間路程成什么比例?
當(dāng)時(shí)間一定,路程和速度成什么比例?
當(dāng)路程一定,速度和時(shí)間成什么比例?
3.長方形的面一定,長和寬
4.修一條路,已修的米數(shù)和剩下的米數(shù).
四、課堂總結(jié)
今天這節(jié)課我們初步了解了正反比例的意義,并能運(yùn)用正反比例的意義判斷一些簡單的問題.通過正反比例意義的對(duì)比,使我們進(jìn)一步認(rèn)識(shí)到,要判斷兩種相關(guān)聯(lián)的量是成正比例關(guān)系還是反比例的關(guān)系,要抓住兩種相關(guān)聯(lián)的量的`變化規(guī)律,這是本質(zhì).
五、課后作業(yè)
。ㄒ唬┡袛嘞旅婷款}中的兩種量是不是成正比例,并說明理由.
1.蘋果的單價(jià)一定,購買蘋果的數(shù)量和總價(jià).
2.輪船行駛的速度一定,行駛的路程和時(shí)間.
3.每小時(shí)織布米數(shù)一定,織布總米數(shù)和時(shí)間.
4.長方形的寬一定,它的面積和長.
(二)判斷下面每題中的兩種量是不是成反比例,并說明理由.
1.煤的總量一定,每天的燒煤量和能夠燒的天數(shù).
2.種子的總量一定,每公頃的播種量和播種的公頃數(shù).
3.李叔叔從家到工廠,騎自行車的速度和所需時(shí)間.
4.華容做12道數(shù)學(xué)題,做完的題和沒有做的題.
六、板書設(shè)計(jì)
《反比例》數(shù)學(xué)教案2
1、成正比例的量
教學(xué)內(nèi)容:成正比例的量
教學(xué)目標(biāo):
1.使學(xué)生理解正比例的意義,會(huì)正確判斷成正比例的量。
2.使學(xué)生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關(guān)簡單問題。
教學(xué)重點(diǎn):正比例的意義。
教學(xué)難點(diǎn):正確判斷兩個(gè)量是否成正比例的關(guān)系。
教學(xué)過程:
一揭示課題
1.在現(xiàn)實(shí)生活中,我們常常遇到兩種相關(guān)聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?
在教師的此導(dǎo)下,學(xué)生會(huì)舉出一些簡單的例子,如:
(1)班級(jí)人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。
。2)送來的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。
。3)上學(xué)時(shí),去的速度快了,時(shí)間用少了;速度慢了,時(shí)間用多了。
。4)排隊(duì)時(shí),每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。
2.這種變化的量有什么規(guī)律?存在什么關(guān)系呢?今天,我們首先來學(xué)習(xí)成正比例的量。板書:成正比例的量
二探索新知
1.教學(xué)例1
。1)出示例題情境圖。
問:你看到了什么?
生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。
。2)出示表格。
高度/㎝24681012
體積/㎝350100150200250300
底面積/㎝2
問:你有什么發(fā)現(xiàn)?
學(xué)生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。
板書:
教師:體積與高度的比值一定。
。2)說明正比例的意義。
、僭谶@一基礎(chǔ)上,教師明確說明正比例的意義。
因?yàn)楸拥牡酌娣e一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應(yīng)增加,水的高度降低,體積也相應(yīng)減少,而且水的體積和高度的比值一定。
板書出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
、趯W(xué)生讀一讀,說一說你是怎么理解正比例關(guān)系的。
要求學(xué)生把握三個(gè)要素:
第一,兩種相關(guān)聯(lián)的量;
第二,其中一個(gè)量增加,另一個(gè)量也增加;一個(gè)量減少,另一個(gè)量也減少。
第三,兩個(gè)量的比值一定。
。3)用字母表示。
如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的比值(一定),比例關(guān)系可以用正的式子表示:
(4)想一想:
師:生活中還有哪些成正比例的量?
學(xué)生舉例說明。如:
長方形的寬一定,面積和長成正比例。
每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。
衣服的單價(jià)一不定期,購買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。
地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。
2.教學(xué)例2。
。1)出示表格(見書)
(2)依據(jù)下表中的數(shù)據(jù)描點(diǎn)。(見書)
。3)從圖中你發(fā)現(xiàn)了什么?
這些點(diǎn)都在同一條直線上。
。4)看圖回答問題。
、偃绻兴母叨仁7㎝,那么水的體積是多少?
生:175㎝3。
、隗w積是225㎝3的水,杯里水面高度是多少?
生:9㎝。
、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對(duì)應(yīng)的點(diǎn)是否在直線上?
生:水的體積是350㎝3,相對(duì)應(yīng)的點(diǎn)一定在這條直線上。
(5)你還能提出什么問題?有什么體會(huì)?
通過交流使學(xué)生了解成正比例量的圖像特往。
3.做一做。
過程要求:
。1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時(shí)間的比,說一說比值表示什么?
比值表示每小時(shí)行駛多少千米。
。2)表中的路程和時(shí)間成正比例嗎?為什么?
成正比例。理由:
、俾烦屉S著時(shí)間的變化而變化;
、跁r(shí)間增加,路程也增加,時(shí)間減少,路程也隨著減少;
③種程和時(shí)間的比值(速度)一定。
。3)在圖中描出表示路程和時(shí)間的點(diǎn),并連接起來。有什么發(fā)現(xiàn)?所描的'點(diǎn)在一條直線上。
。4)行駛120KM大約要用多少時(shí)間?
。5)你還能提出什么問題?
4.課堂小結(jié)
說一說成正比例關(guān)系的量的變化特征。
三鞏固練習(xí)
完成課文練習(xí)七第1~5題。
2、成反比例的量
教學(xué)內(nèi)容:成反比例的量
教學(xué)目標(biāo):
1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。
2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)重點(diǎn):反比例的意義。
教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。
教學(xué)過程:
一導(dǎo)入新課
1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。
回答要點(diǎn):
(1)兩種相關(guān)聯(lián)的量;
。2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;
(3)兩個(gè)量的比值一定。
2.舉例說明。
如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。
理由:
。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;
(2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)
減少,大米的總質(zhì)量也相應(yīng)減少;
。3)總質(zhì)量與袋數(shù)的比值一定。
所以,大米的袋數(shù)與總質(zhì)量成正比例。
板書:
3.揭示課題。
今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?
板書課題:成反比例的量[ 內(nèi) 容 結(jié) 束 ]
《反比例》數(shù)學(xué)教案3
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1、下面兩種量是不是成正比例?為什么?
購買練習(xí)本的價(jià)錢0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。
2、成正比例的量有什么特征?
二、探究新知
1、導(dǎo)入新課:這節(jié)課我們繼續(xù)學(xué)習(xí)常見的數(shù)量關(guān)系中的另一種特征成反比例的量。
2、教學(xué)P42例3。
。1)引導(dǎo)學(xué)生觀察上表內(nèi)數(shù)據(jù),然后回答下面問題:
A、表中有哪兩種量?這兩種量相關(guān)聯(lián)嗎?為什么?
B、水的高度是否隨著底面積的變化而變化?怎樣變化的?
C、表中兩個(gè)相對(duì)應(yīng)的數(shù)的比值各是多少?一定嗎?兩個(gè)相對(duì)應(yīng)的數(shù)的積各是多少?你能從中發(fā)現(xiàn)什么規(guī)律嗎?
D、這個(gè)積表示什么?寫出表示它們之間的數(shù)量關(guān)系式
。2)從中你發(fā)現(xiàn)了什么?這與復(fù)習(xí)題相比有什么不同?
A、學(xué)生討論交流。
B、引導(dǎo)學(xué)生回答:
。3)教師引導(dǎo)學(xué)生明確:因?yàn)樗捏w積一定,所以水的高度隨著底面積的變化面變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定,我們就說高度和底面積成反比例關(guān)系,高度和底面積叫做成反比例的量。
。4)如果用字母x和y表示兩種相關(guān)的量,用k表示它們的積一定,反比例可以用一個(gè)什么樣的式子表示?板書:xy=k(一定)
三、鞏固練習(xí)
1、想一想:成反比例的量應(yīng)具備什么條件?
2、判斷下面每題中的兩個(gè)量是不是成反比例,并說明理由。
。1)路程一定,速度和時(shí)間。
。2)小明從家到學(xué)校,每分走的速度和所需時(shí)間。
。3)平行四邊形面積一定,底和高。
。4)小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價(jià)和購買的`數(shù)量。
。6)你能舉一個(gè)反比例的例子嗎?
四、全課小節(jié)
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩個(gè)量是成反比例的兩個(gè)量,也學(xué)會(huì)了怎樣判斷兩種量是不是成反比例。
五、課堂練習(xí)
P45~46練習(xí)七第6~11題。
教學(xué)目的:
1、理解反比例的意義,能根據(jù)反比例的意義,正確的判斷兩種量是否成反比例。
2、通過引導(dǎo)學(xué)生討論探究,分析合作,使學(xué)生進(jìn)一步認(rèn)識(shí)事物之間的聯(lián)系和發(fā)展變化的規(guī)律。
3、初步滲透函數(shù)思想。
教學(xué)重點(diǎn):引導(dǎo)學(xué)生總結(jié)出成反比例的量,是相關(guān)的兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)積一定,進(jìn)而抽象概括出成反比例的關(guān)系式。
教學(xué)難點(diǎn):利用反比例的意義,正確判斷兩個(gè)量是否成反比例。
《反比例》數(shù)學(xué)教案4
教學(xué)內(nèi)容:
《反比例的意義》是六年制小學(xué)數(shù)學(xué)(北師版)第十二冊(cè)第二單元中的內(nèi)容。是在學(xué)過“正比例的意義”的基礎(chǔ)上,讓學(xué)生理解反比例的意義,并會(huì)判斷兩個(gè)量是否成反比例關(guān)系,加深對(duì)比例的理解。
學(xué)生分析:
在此之前,他們學(xué)習(xí)了正比例的意義,對(duì)“相關(guān)聯(lián)的量”、“成正比例的兩個(gè)量的變化規(guī)律”、“如何判斷兩個(gè)量是否成正比例”已經(jīng)有了認(rèn)識(shí),這為學(xué)習(xí)《反比例的意義》奠定了基礎(chǔ)。
教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo):使學(xué)生認(rèn)識(shí)成反比例的量,理解反比例的意義,并學(xué)會(huì)判斷兩種相關(guān)聯(lián)的量是否成反比例。進(jìn)一步培養(yǎng)學(xué)生觀察、學(xué)析、綜合和概括等能力。初步滲透函數(shù)思想。
2、過程與方法:為學(xué)生營造一個(gè)經(jīng)歷知識(shí)產(chǎn)生過程的情境。
3、情感與態(tài)度目標(biāo):使學(xué)生在自主探索與合作交流中體驗(yàn)成功的樂趣,進(jìn)一步增強(qiáng)學(xué)好數(shù)學(xué)的信心。
教學(xué)重點(diǎn):理解反比例的意義。
教學(xué)難點(diǎn):兩種相關(guān)聯(lián)的量的變化規(guī)律。
教學(xué)準(zhǔn)備:學(xué)生準(zhǔn)備:復(fù)習(xí)正比例關(guān)系,預(yù)習(xí)本節(jié)內(nèi)容。
教師準(zhǔn)備:投影片3張,每張有例題一個(gè)。
教學(xué)過程設(shè)計(jì):
一、談話引入,激發(fā)興趣。
1、談話:通過最近一段時(shí)間的觀察,我發(fā)現(xiàn)同學(xué)們?cè)絹碓铰斆髁耍瑫?huì)學(xué)數(shù)學(xué)了,這是因?yàn)橥瑢W(xué)們掌握了一定的數(shù)學(xué)學(xué)習(xí)的基本方法。下面請(qǐng)回想一下,我們是怎樣學(xué)習(xí)成正比例的量的?這節(jié)課我們用同樣的學(xué)習(xí)方法來研究比例的另外一個(gè)規(guī)律。
2、導(dǎo)入:在實(shí)際生活中,存在著許多相關(guān)聯(lián)的量,這些相關(guān)聯(lián)的量之間有的是成正比例關(guān)系,有的成其他形式的關(guān)系,讓我們一起來探究下面的問題。
二、創(chuàng)設(shè)情景引新:
。ǔ鍪荆菏䝼(gè)小方塊)
師:同學(xué)們,這十二個(gè)小方塊有幾種排法?
。ㄉ鸷,老師板書下表的排列過程)
每行個(gè)數(shù)1234612
行數(shù)1264321
師:請(qǐng)你觀察上表中每行個(gè)數(shù)與行數(shù)成正比例關(guān)系嗎?為什么?
生:……
師:這兩種量這間有關(guān)系嗎?有什么關(guān)系?這就是我們今天要研究的內(nèi)容。
。ǔ鍪菊n題:反比例的意義)
三、合作自學(xué)探知
1、學(xué)習(xí)例4。
(1)出示例4。
師:請(qǐng)同學(xué)們?cè)谛〗M內(nèi)互相交流,并圍繞這三個(gè)問題進(jìn)行討論,再選出一位組員作代表進(jìn)行匯報(bào)。
A、表中有哪兩種量?
B、怎樣隨著每小時(shí)加工的數(shù)量變化?
c、每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?
學(xué)生討論……
生反饋:……
師:能不能舉出三個(gè)例子
生:1020=6002030=6003020=600……
師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關(guān)系式嗎?
生:……
。郯鍟鍪荆好啃r(shí)加工數(shù)加工時(shí)間=零件總數(shù)(一定)]
2、自學(xué)例5:
。1)出示例5:
師:先請(qǐng)同學(xué)們按要求在書上填空,并說說是怎樣算的?根據(jù)什么?
生:……
師:模仿例4的方法,提出三個(gè)問題自己學(xué)習(xí)例5(出示三個(gè)問題)
生:……
3、討論準(zhǔn)備題:
。1)請(qǐng)你根據(jù)例4的方法,四人小組內(nèi)說一說。
(2)請(qǐng)你舉例說明表中每行個(gè)數(shù)與行數(shù)是什么關(guān)系?為什么?
四、比較感知特征
綜合例4、例5、準(zhǔn)備題的共同點(diǎn)師:比較一下例4、例5和準(zhǔn)備題,請(qǐng)同學(xué)們?cè)谛〗M中討論一下,互相說說這三個(gè)題目有什么共同的特征?
生:……
五、引導(dǎo)概括意義
1、概括反比例意義。
學(xué)生在說相同點(diǎn)時(shí)老師邊引導(dǎo)邊說明。當(dāng)學(xué)生說出三個(gè)特征后,教師板書這三個(gè)特征。
師:請(qǐng)同學(xué)們根據(jù)我們上節(jié)課學(xué)的正比例的意義猜測(cè)一下,符合三個(gè)特征的二個(gè)量叫做成什么量?相互這間成什么關(guān)系?
生:……
師:請(qǐng)閱讀課本第十六頁,同桌互相說說怎樣的兩個(gè)量成反比例關(guān)系。
學(xué)生互相練習(xí)……
師:哪位同學(xué)來告訴大家,兩種量如果成反比例必須符合哪三個(gè)條件?
生:……
師:例4、例5和準(zhǔn)備題中的兩種量成不成反比例?為什么?
生:……(學(xué)生回答后,老師及時(shí)糾正)
師:如果用x和y表示兩種相關(guān)聯(lián)的`量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?
生:……[板書出示y=k(一定)]
2、教學(xué)例6。
。1)課件出示例6。
。▽W(xué)生讀題、思考)
師:怎樣判斷兩種量成不成反比例?
師:哪位同學(xué)說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?
生:因?yàn)槊刻觳シN的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。
六、小結(jié):這節(jié)課同學(xué)們學(xué)到了哪些知識(shí)?運(yùn)用了哪些學(xué)習(xí)方法?還有哪些不懂的問題?
[案例分析]:
通過聯(lián)系生活實(shí)際,學(xué)習(xí)成反比例的量,體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系。不對(duì)研究的過程做詳細(xì)的引導(dǎo)和說明,只提供研究的素材和數(shù)據(jù),出示關(guān)鍵性的結(jié)論,充分發(fā)揮學(xué)生的主動(dòng)性,以體現(xiàn)自主探究、合作交流的學(xué)習(xí)過程,獲得學(xué)習(xí)成功的體驗(yàn)。通過引導(dǎo)學(xué)生觀察、分析、比較、歸納,形成良好的思維習(xí)慣和思維品質(zhì)。同時(shí)加深學(xué)生對(duì)數(shù)量關(guān)系的認(rèn)識(shí),滲透函數(shù)思想,為中學(xué)的數(shù)學(xué)學(xué)習(xí)做好知識(shí)準(zhǔn)備。學(xué)習(xí)方式的轉(zhuǎn)變是新課改的顯著特征,就是把學(xué)習(xí)過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認(rèn)識(shí)活動(dòng)凸顯出來。在設(shè)計(jì)《反比例的意義》時(shí),根據(jù)學(xué)生的知識(shí)水平,對(duì)教學(xué)內(nèi)容進(jìn)行處理,克服教材的局限性,最大限度地拓寬探究學(xué)習(xí)的空間,提供自主學(xué)習(xí)的機(jī)會(huì)。
《反比例》數(shù)學(xué)教案5
一、背景分析
1.對(duì)教材的分析
本節(jié)課講述內(nèi)容為北師大版教材九年級(jí)下冊(cè)第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。
本節(jié)課前一課時(shí)是在具體情境中領(lǐng)會(huì)反比例函數(shù)的意義和概念。函數(shù)的性質(zhì)蘊(yùn)涵于概念之中,對(duì)反比例函數(shù)性質(zhì)的探索是對(duì)其內(nèi)在規(guī)定性的的認(rèn)識(shí),也是對(duì)函數(shù)的概念的深化。同時(shí),本節(jié)課也是下一節(jié)課《反比例函數(shù)的應(yīng)用》的基礎(chǔ),有了本節(jié)課的知識(shí)儲(chǔ)備,便于學(xué)生利用函數(shù)的觀點(diǎn)來處理問題和解釋問題。
傳統(tǒng)教材在內(nèi)容和編寫意圖的比較:傳統(tǒng)教材里反比例函數(shù)的內(nèi)容僅有一節(jié),新教材里反比例函數(shù)的內(nèi)容增加至一章。本節(jié)課中的作函數(shù)圖象的要求在新舊教材中并不一樣,舊教材對(duì)畫圖只是一帶而過,而新教材中讓學(xué)生反復(fù)作反比例函數(shù)的圖象,為下一步性質(zhì)的探索打下良好的基礎(chǔ)。因?yàn)樵趯W(xué)生進(jìn)行函數(shù)的列表、描點(diǎn)作圖是活動(dòng)中,就已經(jīng)開始了對(duì)反比例函數(shù)性質(zhì)的探索,而且通過對(duì)函數(shù)的三種表示方式的整和,逐步形成對(duì)函數(shù)概念的整體性認(rèn)識(shí)。在舊教材中對(duì)反比例函數(shù)性質(zhì)只是簡單觀察以后,由老師講解得到,但是在新教材中注重從操作、觀察、概括和交流這些數(shù)學(xué)活動(dòng)中得到性質(zhì)結(jié)論,從而逐步提高從函數(shù)圖象中獲取信息的能力。這也充分體現(xiàn)了重視獲取知識(shí)過程體驗(yàn)的新課標(biāo)的精神。
。1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;體會(huì)函數(shù)三種方式的相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整和;逐步提高從函數(shù)圖象中獲取知識(shí)的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
。2)重點(diǎn):會(huì)作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。
2、對(duì)學(xué)情的分析
九年級(jí)學(xué)生在前面學(xué)習(xí)了一次函數(shù)之后,對(duì)函數(shù)有了一定的認(rèn)識(shí),雖然他們?cè)谛W(xué)已經(jīng)接觸了反比例,但都處于淺顯的、膚淺的知識(shí)表面,這對(duì)于他們理解反比例函數(shù)的圖象與性質(zhì)沒有多大的幫助,但由于本節(jié)課采用z+z智能教育平臺(tái)進(jìn)行教學(xué),比較形象,便于學(xué)生接受。
二、教學(xué)過程
一、憶一憶
師:同學(xué)們還記得我們?cè)趯W(xué)習(xí)一次函數(shù)時(shí),是怎么作出一次函數(shù)圖象的嗎?一次函數(shù)的圖象是什么圖形?
生:作一次函數(shù)的圖象要采用以下幾個(gè)步驟:
(1)列表
。2)描點(diǎn)
。3)連線。
生乙:一次函數(shù)的圖象是一條直線。
師:大家說的很好,看來大家對(duì)過去的知識(shí)掌握的很牢固,那么同學(xué)們想一下,y=4/x是什么函數(shù)?
生:反比例函數(shù)。
師:你們能作出它的圖象嗎?
生:可以。
點(diǎn)評(píng):復(fù)習(xí)舊知識(shí),讓學(xué)生感受到新舊知識(shí)的聯(lián)系,并為后面的作反比例函數(shù)的圖象做好準(zhǔn)備。
二、作圖象,試比較
師:請(qǐng)?zhí)顚戨娔X上的表格,并開始在坐標(biāo)紙上描點(diǎn),連線。
師:再按照上述方法作y=-4/x的圖象。
。▽W(xué)生動(dòng)手操作)
師:下面大家分小組討論:對(duì)照你們所作出的兩個(gè)函數(shù)圖象,找出它們的相同點(diǎn)與不同點(diǎn)。
。▽W(xué)生討論交流,教師參與)
師:討論結(jié)束,下面哪個(gè)小組的同學(xué)說說你們的看法?
生1:它們的圖象都是由兩支曲線組成的。
生2:y=4/x的圖象的兩條曲線分布在一、三象限內(nèi),而y=-4/x的圖象的兩支曲線分布在二、四象限內(nèi)。
點(diǎn)評(píng):這里讓學(xué)生自己上臺(tái)操作,既培養(yǎng)了學(xué)生的動(dòng)手能力,又可以激發(fā)學(xué)生學(xué)好數(shù)學(xué)的興趣。
三、細(xì)觀察,找規(guī)律
師:大家都說得很好,下面我們一起觀察反比例函數(shù)y=k/x的圖象,當(dāng)k的發(fā)值生變化時(shí),函數(shù)的圖象發(fā)生了怎樣的變化,并分小組討論有什么規(guī)律。
(展示圖象,讓學(xué)生觀察y=k/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)的圖象變化之間的關(guān)系,并與同學(xué)們充分討論)
師:請(qǐng)同學(xué)們談一談剛才討論的結(jié)果。
生:我發(fā)現(xiàn)函數(shù)圖象的變化與k的值有關(guān):當(dāng)k>0時(shí),在每一象限內(nèi),y隨x的增大而減小,當(dāng)k<0時(shí),在每一象限內(nèi),y隨x的增大而增大。
師:看來大家都經(jīng)過了認(rèn)真的思考和討論,對(duì)規(guī)律總結(jié)的也比較完整,下面我們一起把剛才兩個(gè)環(huán)節(jié)的知識(shí)點(diǎn)一起總結(jié)一下。
。1)反比例函數(shù)y=k/x的`圖象是由兩支曲線所組成的。
。2)當(dāng)k>0時(shí),兩支曲線分別在一、三象限;當(dāng)k<0時(shí),兩支曲線分別在二、四象限。
。3)當(dāng)k>0時(shí),在每一象限內(nèi),y隨x的增大而減小,當(dāng)k<0時(shí),在每一象限內(nèi),y隨x的增大而增大。
師:如果我們將反比例函數(shù)的圖象繞原點(diǎn)旋轉(zhuǎn)180后,你會(huì)發(fā)現(xiàn)什么現(xiàn)象?這說明了什么問題?
(由學(xué)生在電腦上進(jìn)行操作)
生:我發(fā)現(xiàn)旋轉(zhuǎn)后的圖象與原圖象完全重合了,這說明反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形。
師:大家做得很好。那么,如果我們?cè)趫D象上任取a、b兩點(diǎn),經(jīng)過這兩點(diǎn)分別作軸、軸的垂線,與坐標(biāo)軸圍成的矩形面積分別為s1、s2,觀察兩個(gè)矩形面積的變化情況,并找出其中的變化規(guī)律。
題目:
。1)拖動(dòng)k,使k變化,觀察k不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
。2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。
生:我們發(fā)現(xiàn),在同一個(gè)反比例函數(shù)中,不管k值怎么變化,矩形的面積始終不變。
師:大家的觀察很仔細(xì),總結(jié)得也很正確。
點(diǎn)評(píng):在這個(gè)環(huán)節(jié)中,既讓學(xué)生動(dòng)手操作,又讓他們分組交流,這樣既培養(yǎng)了他們的動(dòng)手能力,又增強(qiáng)了他們的團(tuán)結(jié)合作的意識(shí)。結(jié)論主要有學(xué)生來發(fā)現(xiàn),體現(xiàn)了新課程理論的精神。
四、用規(guī)律,練一練
1、課本137頁隨堂練習(xí)1
生:第一幅圖是y=-2/x的圖象,因?yàn)樵谶@里的k<0,雙曲線應(yīng)在第二、四象限。
2、下列函數(shù)中,其圖象唯一、三象限的有哪幾個(gè)?在其圖象所在象限內(nèi),的值隨的增大而增大的有哪幾個(gè)?
。1)y=1/(2x)
。2)y=0.3/x
。3)y=10/x
。4)y=-7/(100x)
生:其中(1)(2)(3)的圖象在一、三象限;(4)的圖象在每一象限內(nèi),y隨x的增大而增大。
五、想一想,談收獲
師:通過今天的學(xué)習(xí),你有什么收獲?
生甲:我今天知道了怎樣畫反比例函數(shù)的圖象。
生乙:我今天知道了反比例函數(shù)的圖象是由兩支曲線所組成的。
生丙:我還懂得了:當(dāng)k>0時(shí),圖象分布在一、三象限,在每一個(gè)象限內(nèi),y隨x的增大而減。划(dāng)k<0時(shí),圖象分布在二、四象限,在每一個(gè)象限內(nèi),y隨x的增大而增大
生。何疫能用反比例函數(shù)的相關(guān)性質(zhì)解題。
師:看來大家今天學(xué)到了不少知識(shí),只要大家能保持這種對(duì)數(shù)學(xué)的熱情和勇于挑戰(zhàn)的精神,在數(shù)學(xué)上一定會(huì)有所收獲的。
總評(píng):本節(jié)課很好的反映了新課程的一些理念,首先,就是將數(shù)學(xué)教學(xué)與多媒體教學(xué)進(jìn)行了很好的整合,尤其是采用了z+z智能教育平臺(tái)進(jìn)行教學(xué),在本節(jié)課從進(jìn)入課堂到結(jié)束,始終有多媒體教學(xué)的參與,如在講解反比例函數(shù)的性質(zhì)時(shí)運(yùn)用多媒體展示可以給學(xué)生以直觀的感受,并給學(xué)生留下深刻的印象,教師也能熟練地操作電腦,可以看出教師扎實(shí)的基本功。其次,在本節(jié)課的教學(xué)中,教師將學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生,課堂始終在學(xué)生自主探索、合作交流的氣氛中進(jìn)行,如在得出反比例函數(shù)的性質(zhì)時(shí),就在小組內(nèi)進(jìn)行了廣泛交流,由學(xué)生自己去探索,去發(fā)現(xiàn)新知識(shí),這樣可以激發(fā)學(xué)生求知的欲望,達(dá)到事半功倍的目的。同時(shí)教師也主動(dòng)的參與進(jìn)去,把自己也當(dāng)成了教室里的一員,真正體現(xiàn)了新課程的理念。
教學(xué)反思:
本節(jié)課由于在課前進(jìn)行了大量的準(zhǔn)備工作,包括對(duì)教材的鉆研、教學(xué)內(nèi)容的設(shè)計(jì)、多媒體課件的制作、學(xué)生學(xué)情的了解,因此在教學(xué)中比較順利,對(duì)重難點(diǎn)內(nèi)容也有效的進(jìn)行了突破,尤其是電腦的引入,極大的調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。學(xué)生由于成了課堂的主人,所以在課堂上保持了高漲的熱情,因此這堂課的效果也較好。
《反比例》數(shù)學(xué)教案6
知識(shí)技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標(biāo)
1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過程,會(huì)說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:
2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來,得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來,得到圖象的另一個(gè)分支。這兩個(gè)分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
(1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);
2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。
以上兩點(diǎn)性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實(shí)際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長,另一邊越小。
三、實(shí)踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。
解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(diǎn)(1,—2)。
。1)求這個(gè)函數(shù)的解析式,并畫出圖象;
。2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;
。2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的`對(duì)稱點(diǎn)是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,
點(diǎn)A的坐標(biāo)為。
點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;
點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
(3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時(shí),y最大值=;
當(dāng)x=—3時(shí),y最小值=。
所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。
例5一個(gè)長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數(shù)關(guān)系式;
。2)寫出自變量x的取值范圍;
。3)畫出函數(shù)的圖象。
解(1)因?yàn)?00=5xy,所以。
。2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
。1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。
五、檢測(cè)反饋
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:
。1)y和x的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),y的值;
(3)當(dāng)x取何值時(shí),?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點(diǎn)A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0
《反比例》數(shù)學(xué)教案7
教學(xué)內(nèi)容:教科書第22—24頁反比例的意義,練習(xí)六的第4—6題。
教學(xué)目的:
1.使學(xué)生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。
2.使學(xué)生進(jìn)一步認(rèn)識(shí)事物之間的相互聯(lián)系和發(fā)展變化規(guī)律。
3.初步滲透函數(shù)思想。
教具準(zhǔn)備:投影儀、投影片、小黑板。
教學(xué)過程():
一、復(fù)習(xí)
1.讓學(xué)生說說什么是成正比例的量:
2.用投影片出示下面的題:
(1)下面各題中哪兩種量成正比例?為什么?
、俟P記本單價(jià)一定,數(shù)量和總價(jià):
⑨汽車行駛速度一定.行駛的路程和時(shí)間。
②工作效率一定.’工作時(shí)間和工作總量。
、僖淮竺椎闹亓恳欢ǎ粤说暮褪O碌摹
(2)說出每小時(shí)加工零件數(shù)、加工時(shí)間和加工零件總數(shù)三者間的數(shù)量關(guān)系。在什么條件下,其中兩種量成正比例?
二、導(dǎo)入新課
教師:如果加工零件總數(shù)一定。每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么樣的變化.關(guān)系怎樣?就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
三、新課
1.教學(xué)例4。
出示例4;豐機(jī)械廠加工一批機(jī)器零件。每小時(shí)加工的數(shù)量和所需的加工時(shí)間如下表。
讓學(xué)生觀察這個(gè)表,然后每四人一組討論下面的問題:
(1)表中有哪兩種量?
(2)所需的加工時(shí)間怎樣隨著每小時(shí)加工的個(gè)數(shù)變化?
(3)每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積各是多少?
學(xué)生分組討論后集中發(fā)言。然后每個(gè)小組選代表回答上面的問題。隨著學(xué)生的回答,教師板書如下:每小時(shí)加工數(shù)加工時(shí)間
10 × 60 =600。
30 × 20 =600。
40 × 15 =600,
“這個(gè)積600。實(shí)際上是什么?”在“加工時(shí)間”后面板書:零件總數(shù)
“積一定,就說明零件總數(shù)怎樣?”在零件總數(shù)后面板書:(一定)
“每小時(shí)加工數(shù)、加工時(shí)間和零件總數(shù)這三種量有什么關(guān)系呢?”
學(xué)生回答后,教師小結(jié):通過剛才的觀察分析.我門可以看出。表中每小時(shí)加工零件數(shù)和所需的加工時(shí)間是兩種相關(guān)聯(lián)的量。所需的加工時(shí)間是隨著每小時(shí)加工數(shù)量的變化而變化的,每小時(shí)加工的數(shù)量擴(kuò)大。所需的加工時(shí)間反而縮小3每小時(shí)加工的數(shù)量縮小,所需的加工的時(shí)間反而擴(kuò)大。它們擴(kuò)大、縮小的規(guī)律是:每小時(shí)加工的零件的數(shù)量和所需的加工時(shí)間的'積都等于600,即總是一定的:我們把這種關(guān)系寫成式子就是:每小時(shí)加工數(shù)×加工的時(shí)間=零件總數(shù)(一定)。
2.教學(xué)例5。
用小黑板出示例5用600頁紙裝訂成同樣的練習(xí)本,每本的頁數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請(qǐng)你先填寫下表。
(1)理解題意,填寫裝訂本數(shù)。
“誰能說說表中第一欄數(shù)據(jù)的意思?”(用600頁紙裝訂練習(xí)本,如果每本練習(xí)本15頁,可以裝訂40本。)
“這40本是怎么計(jì)算出來的?”(用600÷15)
“如果每本練習(xí)本是20頁,你能計(jì)算出可以裝訂多少這樣的練習(xí)本嗎?如果每本是25頁呢?……請(qǐng)你把計(jì)算出來的本數(shù)填在教科書第23頁的表中。”教師把學(xué)生報(bào)出的數(shù)據(jù)填在黑板上的表中。
(2)觀察分析表中兩種量的變化規(guī)律。
讓學(xué)生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數(shù)裝訂的本數(shù))
“裝訂的本數(shù)是怎樣隨著每本的頁數(shù)變化的?”隨著學(xué)生的回答,板書如下:每本的頁數(shù) 裝訂的本數(shù)
15 40
20 30
25 24
一’然后讓學(xué)生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。
1,單價(jià)一定.?dāng)?shù)量和總價(jià)。
2,路程一定,速度和時(shí)間。。
3,正方形的邊長和它的面積。
1.時(shí)間一定,工效和工作總量。
二、導(dǎo)入新課
教師:我們?cè)谇皟晒?jié)課分別學(xué)習(xí)了成正比例的量和成反比例的量。初步學(xué)會(huì)判斷
兩種量是不是成正比例或反比例的關(guān)系,發(fā)現(xiàn)有些同學(xué)判斷時(shí)還不夠準(zhǔn)確。這節(jié)課我
們要通過比較弄清成正比例的量和成反比例的量有什么相同點(diǎn)和不同點(diǎn)。
板書課題:正比例和反比例的比較
三、新課
1.教學(xué)例7。
出示例7的兩個(gè)表:
表1 表2
讓學(xué)生觀察上面的兩個(gè)表,然后根據(jù)兩個(gè)表所提的問題,分別在教科書上填空。訂正時(shí)。指名說出自己是怎樣填的,教師板書:
在表l中: 在表2中:
相關(guān)聯(lián)的量是路程和時(shí)間. 路程隨著相關(guān)聯(lián)的量是速度 路程隨 時(shí)間變化,速度是 和時(shí)間,速度隨著時(shí)間變化
一定。因此,路程和時(shí)間 ,路程是一定的。因此,速
成正比例關(guān)系。 度和時(shí)間成反比例關(guān)系
然后提問:
(1)從表1,你怎樣發(fā)現(xiàn)速度是一定的?你根據(jù)什么判斷路程和時(shí)間成正比例/
(2)從表2,你怎樣發(fā)現(xiàn)路程是一定的?你根據(jù)什么判斷速度和時(shí)間成反比例?
教師:路程、速度和時(shí)間這三個(gè)量中每兩個(gè)量之間有什么樣的比例關(guān)系?
板書:速度×?xí)r間=路程
=速度 =速度
教師:當(dāng)速度一·定時(shí),路程和時(shí)間成什么比例關(guān)系?
教師:當(dāng)路程一定時(shí),速度和時(shí)間成什么比例關(guān)系?
教師:當(dāng)時(shí)間一定時(shí)。路程和速度成什么比例關(guān)系?
2.比較正比例和反比例關(guān)系。
教師:結(jié)合上面兩個(gè)例子,比較——下正比例關(guān)系和反比例關(guān)系,你能寫出它們的相同點(diǎn)和不同點(diǎn)嗎?試試看。組織討論,教師歸納并板書:
四、鞏固練習(xí)
1.做教科書第28頁“做一做”中的題目。
讓學(xué)生自己填,并說一說為什么。
2.做練習(xí)七的第1—2題。
教師巡視,個(gè)別輔導(dǎo),最后訂正。
五、小結(jié)
教師:請(qǐng)同學(xué)們說說正比例和反比例關(guān)系有什么相同點(diǎn)和不同點(diǎn)?
《反比例》數(shù)學(xué)教案8
教學(xué)內(nèi)容
反比例。(教材第47頁例2)。
教學(xué)目標(biāo)
1、使學(xué)生理解反比例的意義,能正確地判斷兩種相關(guān)聯(lián)的量是不是成反比例的量。
2、讓學(xué)生經(jīng)歷反比例意義的探究過程,體驗(yàn)觀察比較、推理、歸納的學(xué)習(xí)方法。
重點(diǎn)難點(diǎn)
引導(dǎo)學(xué)生總結(jié)出成反比例的量的特點(diǎn),進(jìn)而抽象概括出反比例的關(guān)系式。利用反比例的意義,正確判斷兩個(gè)量是否成反比例。
教學(xué)準(zhǔn)備
投影儀。
復(fù)習(xí)導(dǎo)入
1、讓學(xué)生說說什么是正比例,然后用投影出示下面的題。
下面各題中哪兩種量成正比例?為什么?
。1)每公頃產(chǎn)量一定,總產(chǎn)量和公頃數(shù)。
(2)一袋大米的重量一定,吃了的和剩下的。
。3)修房屋時(shí),粉刷的面積和所需涂料的數(shù)量。
2、說出每小時(shí)加工零件數(shù)、加工零件總數(shù)和加工時(shí)間三者之間的關(guān)系。在什么條件下,其中兩種量成正比例?
教師:如果加工零件總數(shù)一定,每小時(shí)加工數(shù)和加工時(shí)間會(huì)成什么變化?關(guān)系怎樣?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
新課講授
1、教學(xué)例2。
創(chuàng)設(shè)情境。
教師:把相同體積的水倒入底面積不同的杯子,高度會(huì)怎樣變化?
出示教材第47頁例2的情境圖和表格。
請(qǐng)學(xué)生認(rèn)真觀察表中數(shù)據(jù)的變化情況,組織學(xué)生分小組討論:
。1)水的高度和底面積變化有關(guān)系嗎?
。2)水的高度是怎樣隨著底面積變化的?
。3)水的高度和底面積的變化有什么規(guī)律?
學(xué)生不難發(fā)現(xiàn):底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。
教師板書配合說明這一規(guī)律:
30×10=20×15=15×20=……=300
教師根據(jù)學(xué)生的匯報(bào)說明:高度和底面積有這樣的變化關(guān)系,我們就說高度和底面積成反比例的關(guān)系,高度和底面積叫做成反比例的`量。
2、歸納反比例的意義。
組織學(xué)生小組內(nèi)討論:反比例的意義是什么?
學(xué)生小組內(nèi)交流,指名匯報(bào)。
教師總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
3、用字母表示。
如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),反比例關(guān)系的式子怎么表示?
學(xué)生探討后得出結(jié)果。
x×y=k(一定)
4、師:生活中還有哪些成反比例的量?
在教師的引導(dǎo)下,學(xué)生舉例說明。如:
(1)大米的質(zhì)量一定,每袋質(zhì)量和袋數(shù)成反比例。
。2)教室地板面積一定,每塊地磚的面積和塊數(shù)成反比例。
(3)長方形的面積一定,長和寬成反比例。
5、組織學(xué)生將例1與例2進(jìn)行比較,小組內(nèi)討論:
正比例與反比例的相同點(diǎn)和不同點(diǎn)有哪些?
學(xué)生交流、匯報(bào)后,引導(dǎo)學(xué)生歸納:
相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
6、你還有什么疑問
?如果學(xué)生提出表示反比例關(guān)系的圖像有什么特征,教師應(yīng)該引導(dǎo)學(xué)生觀察教材第48頁“你知道嗎?”中的圖像。
反比例關(guān)系也可以用圖像來表示,表示兩個(gè)量的點(diǎn)不在同一條直線上,點(diǎn)所連接起來的圖像是一條曲線,圖像特征不要求掌握。
課堂作業(yè)
1、教材第48頁的“做一做”。
2、教材第51頁第9、10題。
答案:1.(1)每天運(yùn)的噸數(shù)和所需的天數(shù)兩種量,它們是相關(guān)聯(lián)的量。
。2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。
。3)成反比例,因?yàn)槊刻爝\(yùn)的噸數(shù)變化,需要的天數(shù)也隨著變化,且它們的積一定。
2、第9題:成反比例,因?yàn)槊科康娜萘颗c瓶數(shù)的乘積一定。
第10題:5010012
課堂小結(jié)
說一說成反比例關(guān)系的量的變化特征。
課后作業(yè)
1、完成練習(xí)冊(cè)中本課時(shí)的練習(xí)。
2、教材51~52頁第8、14題。
答案:
2、第8題:成反比例,因?yàn)榻淌业拿娣e一定,而每塊地磚的面積與所需數(shù)量的乘積都等于教室的面積54m2。
第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時(shí)間成正比例。
。2)分析:可以通過圖像直接估計(jì),先在橫軸上找到18分的位置,然后在兩個(gè)圖像中找到相應(yīng)的點(diǎn),再分別在豎軸上找到與這個(gè)點(diǎn)對(duì)應(yīng)的數(shù)值;也可以通過計(jì)算找到。
解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
。3)斑馬跑得快。
第3課時(shí)反比例
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
用x和y表示兩種相關(guān)聯(lián)的量,x和y成反比例關(guān)系用字母表示為×y=k(一定)
正比例與反比例的相同點(diǎn)和不同點(diǎn):
相同點(diǎn):都表示兩種相關(guān)聯(lián)的量,且一種量變化,另一種量也隨著變化。
不同點(diǎn):正比例關(guān)系中比值一定,反比例關(guān)系中乘積一定。
《反比例》數(shù)學(xué)教案9
教學(xué)目標(biāo)
1、理解反比例的意義。
2、能根據(jù)反比例的意義,正確判斷兩種量是否成反比例。
3、培養(yǎng)學(xué)生的抽象概括能力和判斷推理能力。
教學(xué)重點(diǎn)
引導(dǎo)學(xué)生理解反比例的意義。
教學(xué)難點(diǎn)
利用反比例的意義,正確判斷兩種量是否成反比例。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備(演示課件:成反比例的量)
1、下表中的兩種量是不是成正比例?為什么?
購買練習(xí)的本數(shù)(本)
1
2
4
6
9
總價(jià)(元)
0.80
1.60
3.20
4.80
7.20
2、回憶:成正比例的量有什么特征?
二、新授教學(xué)
(一)引入新課
我們已經(jīng)學(xué)習(xí)了常見數(shù)量關(guān)系中成正比例關(guān)系的量的特征。這節(jié)課我們繼續(xù)研究常見的數(shù)量關(guān)系中的另外一種特征成反比例的量。
教師板書:成反比例的量
。ǘ┙虒W(xué)例4(演示課件:成反比例的量)
1、出示例4,提出觀察思考要求:
從表中你發(fā)現(xiàn)了什么?這個(gè)表同復(fù)習(xí)的表相比,有什么不同?
。1)表中的兩種量是每小時(shí)加工的數(shù)量和所需的加工時(shí)間。
教師板書:每小時(shí)加工數(shù)和加工時(shí)間
。2)每小時(shí)加工的數(shù)量擴(kuò)大,所需的加工時(shí)間反而縮小;每小時(shí)加工的數(shù)量縮小,所需的加工時(shí)間反而擴(kuò)大。
教師追問:這是兩種相關(guān)聯(lián)的量嗎?為什么?
。3)每兩個(gè)相對(duì)應(yīng)的數(shù)的乘積都是600.
2、這個(gè)600實(shí)際上就是什么?每小時(shí)加工數(shù)、加工時(shí)間和零件總數(shù),怎樣用式子表示它們之間的關(guān)系?
教師板書:零件總數(shù)
每小時(shí)加工數(shù)加工時(shí)間=零件總數(shù)
3、小結(jié)
通過剛才的研究,我們知道,每小時(shí)加工數(shù)和加工時(shí)間是兩種相關(guān)聯(lián)的量,每小時(shí)加工數(shù)變化,加工時(shí)間也隨著變化,每小時(shí)加工數(shù)乘以加工時(shí)間等于零件總數(shù),這里的零件總數(shù)是一定的。
。ㄈ┙虒W(xué)例5(演示課件:成反比例的量)
1、出示例5,根據(jù)題意,學(xué)生口述填表。
2、教師提問:
(1)表中有哪兩種量?是相關(guān)聯(lián)的量嗎?
教師板書:每本張數(shù)和裝訂本數(shù)
(2)裝訂的本數(shù)是怎樣隨著每本的張數(shù)變化的?
。3)表中的兩種量有什么變化規(guī)律?
(四)比較例4和例5,概括反比例的意義。
1、請(qǐng)你比較例4和例5,它們有什么相同點(diǎn)?
。1)都有兩種相關(guān)聯(lián)的量。
(2)都是一種量變化,另一種量也隨著變化。
。3)都是兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定。
2、教師小結(jié)
像這樣的兩種量,我們就把它們叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
3、如果用字母x和x表示兩種相關(guān)聯(lián)的量,用x表示它們的積一定,反比例關(guān)系可以用一個(gè)什么樣的式子表示?
教師板書:=(一定)
(五)教學(xué)例6(演示課件:成反比例的量)
1、出示例6,教師提問:
。1)每天播種的公頃數(shù)和要用的天數(shù)是不是相關(guān)聯(lián)的量?
(2)每天播種的公頃數(shù)和要用的天數(shù)有什么關(guān)系?它們的積是什么?這個(gè)積一定嗎?
。3)播種總公頃數(shù)一定,每天播種公頃數(shù)和要用的天數(shù)成反比例嗎?為什么?
2、思考:播種的總公頃數(shù)一定,已經(jīng)播種的公頃數(shù)和剩下的公頃數(shù)是不是成反比例?
三、課堂小結(jié)
這節(jié)課我們學(xué)習(xí)了成反比例的量,知道了什么樣的兩種量是成反比例的量,也學(xué)會(huì)了怎樣判斷兩種量是不是成反比例。在判斷時(shí),同學(xué)們要按照反比例的意義,認(rèn)真分析,做出正確的判斷。
四、課堂練習(xí)
。ㄒ唬┡袛嘞旅婷款}中的兩個(gè)量是不是成反比例,并說明理由。
1、路程一定,速度和時(shí)間。
2、小明從家到學(xué)校,每分走的速度和所需時(shí)間。
3、平行四邊形面積一定,底和高。
4、小林做10道數(shù)學(xué)題,已做的題和沒有做的題。
5、小明拿一些錢買鉛筆,單價(jià)和購買的數(shù)量。
。ǘ┠隳芘e一個(gè)反比例的例子嗎?
五、課后作業(yè)
判斷下面每題中的兩種量是不是成反比例,并說明理由。
1、煤的總量一定,每天的燒煤量和能夠燒的'天數(shù)。
2、種子的總量一定,每公頃的播種量和播種的公頃數(shù)。
3、李叔叔從家到工廠,騎自行車的速度和所需的時(shí)間。
4、華容做12道數(shù)學(xué)題,做完的題和沒有做的題。
5、生產(chǎn)電視機(jī)的總臺(tái)數(shù)一定,每天生產(chǎn)的臺(tái)數(shù)和所用的天數(shù)。
6、長方形的面積一定,它的長和寬。
7、小林拿一些錢買練習(xí)本,單價(jià)和購買的數(shù)量。
六、板書設(shè)計(jì)
成反比例的量
例4.每小時(shí)加工數(shù)加工時(shí)間=零件總數(shù)(一定)
例5.每本頁數(shù)裝訂本數(shù)=紙的總頁數(shù)(一定)
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的積一定,這兩種量就叫做成反比例的量。它們的關(guān)系叫做反比例關(guān)系。
。剑ㄒ欢ǎ
例6.因?yàn)椋好刻觳シN的公頃數(shù)天數(shù)=播種的總公頃數(shù)(一定)
所以:每天播種的公頃數(shù)和要用的天數(shù)成反比例。
《反比例》數(shù)學(xué)教案10
三維目標(biāo)
一、知識(shí)與技能
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用物理杠桿知識(shí)、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
二、過程與方法
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
三、情感態(tài)度與價(jià)值觀
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
教學(xué)重點(diǎn)
掌握從物理問題中建構(gòu)反比例函數(shù)模型.
教學(xué)難點(diǎn)
從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識(shí)分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.
教具準(zhǔn)備
多媒體課件.
教學(xué)過程
一、創(chuàng)設(shè)問題情境,引入新課
活動(dòng)1
問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.
在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.
(1)求I與R之間的函數(shù)關(guān)系式;
(2)當(dāng)電流I=0.5時(shí),求電阻R的值.
設(shè)計(jì)意圖:
運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.
師生行為:
可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.
教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識(shí)的引導(dǎo).
師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的`一對(duì)對(duì)應(yīng)值)得到字母系數(shù)k的值.
生:(1)解:設(shè)I=kR ∵R=5,I=2,于是
2=k5 ,所以k=10,∴I=10R .
(2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).
師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?
生:這是古希臘科學(xué)家阿基米德的名言.
師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;
阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)
下面我們就來看一例子.
二、講授新課
活動(dòng)2
小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.
(1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長多少?
設(shè)計(jì)意圖:
物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.
師生行為:
先由學(xué)生根據(jù)“杠桿定律”解決上述問題.
教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.
教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;
、趯W(xué)生能否面對(duì)困難,認(rèn)真思考,尋找解題的途徑;
、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對(duì)數(shù)學(xué)和物理有著濃厚的興趣.
師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.
生:解:(1)根據(jù)“杠桿定律” 有
Fl=1200×0.5.得F =600l
當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.
因此,撬動(dòng)石頭至少需要400牛頓的力.
(2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有
Fl=600,
l=600F .
當(dāng)F=400×12 =200時(shí),
l=600200 =3.
3-1.5=1.5(米)
因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長1.5米.
生:也可用不等式來解,如下:
Fl=600,F(xiàn)=600l .
而F≤400×12 =200時(shí).
600l ≤200
l≥3.
所以l-1.5≥3-1.5=1.5.
即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長1.5米.
生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.
師:很棒!請(qǐng)同學(xué)們下去親自畫出圖象完成,現(xiàn)在請(qǐng)同學(xué)們思考下列問題:
用反比例函數(shù)的知識(shí)解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長越省力?
生:因?yàn)樽枇妥枇Ρ鄄蛔儯O(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)
根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長越省力.
師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的應(yīng)用.
活動(dòng)3
問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請(qǐng)你預(yù)算一下本年度電力部門的純收人多少?
設(shè)計(jì)意圖:
在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對(duì)于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.
師生行為:
由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.
教師應(yīng)給予“學(xué)困生”以一定的幫助.
生:解:(1)∵y與x -0.4成反比例,
∴設(shè)y=kx-0.4 (k≠0).
把x=0.65,y=0.8代入y=kx-0.4 ,得
k0.65-0.4 =0.8.
解得k=0.2,
∴y=0.2x-0.4=15x-2
∴y與x之間的函數(shù)關(guān)系為y=15x-2
(2)根據(jù)題意,本年度電力部門的純收入為
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)
答:本年度的純收人為0.6億元,
師生共析:
(1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;
(2)純收入=總收入-總成本.
三、鞏固提高
活動(dòng)4
一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請(qǐng)根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.
設(shè)計(jì)意圖:
進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.
師生行為
由學(xué)生獨(dú)立完成,教師講評(píng).
師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.
生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .
生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得
V=990ρ =9901.1 =900(m3).
所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.
四、課時(shí)小結(jié)
活動(dòng)5
你對(duì)本節(jié)內(nèi)容有哪些認(rèn)識(shí)?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.
設(shè)計(jì)意圖:
這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識(shí),調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.
師生行為:
學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.
教師組織學(xué)生小結(jié).
反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識(shí)間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.
板書設(shè)計(jì)
17.2 實(shí)際問題與反比例函數(shù)(三)
1.
2.用反比例函數(shù)的知識(shí)解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長越省力?
設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,
Fl=k 即F=kl (k>0且k為常數(shù)).
由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減小.
活動(dòng)與探究
學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.
(1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?
(2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?
x(m) 10 20 30 40
y(m)
過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.
結(jié)果:(1)綠化帶面積為10×40=400(m2)
設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,
∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.
∴函數(shù)表達(dá)式為y=400x .
(2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。
《反比例》數(shù)學(xué)教案11
教學(xué)目標(biāo)
1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點(diǎn),進(jìn)行運(yùn)用變化觀點(diǎn)的啟蒙教育.
教學(xué)重難點(diǎn)
理解正反比例的意義,掌握正反比例的`變化的規(guī)律.
教學(xué)過程
一、導(dǎo)入新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
。ǘ┙處熖釂
1.你為什么馬上能想到還剩多少呢?
2.是不是因?yàn)槌粤说暮褪O碌氖莾煞N相關(guān)聯(lián)的量?
教師板書:兩種相關(guān)聯(lián)的量
。ㄈ┙處熣勗
在實(shí)際生活中兩種相關(guān)的量是很多的,例如總價(jià)和單價(jià)是兩種相關(guān)聯(lián)的量,總價(jià)和
數(shù)量也是兩種相關(guān)聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學(xué)
。ㄒ唬┏烧壤牧
例1.一列火車行駛的時(shí)間和所行的路程如下表:
時(shí)間(時(shí)):路程(千米)
1 :90
2 :180
3 :270
4 :360
5 :450
6 :540
7 :630
8 :720
1.寫出路程和時(shí)間的比并計(jì)算比值.
(1) 2表示什么?180呢?比值呢?
。2) 這個(gè)比值表示什么意義?
(3) 360比5可以嗎?為什么?
2.思考
。1)180千米對(duì)應(yīng)的時(shí)間是多少?4小時(shí)對(duì)應(yīng)的路程又是多少?
。2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時(shí)間、路程、速度
(3)速度是怎樣得到的?
教師板書:
(4)路程比時(shí)間得到了速度,速度也就是比值,比值相當(dāng)于除法中的什么?
(5)在這組題中誰與誰是兩種相關(guān)聯(lián)的量?它們是如何相關(guān)聯(lián)的?舉例說明變化規(guī)律.
3.小結(jié):有什么規(guī)律?
《反比例》數(shù)學(xué)教案12
教學(xué)目標(biāo)
1.進(jìn)一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律.
2.使學(xué)生能正確判斷正、反比例.
教學(xué)重點(diǎn)
正、反比例的聯(lián)系和區(qū)別.
教學(xué)難點(diǎn)
能正確判斷正、反比例.
教學(xué)過程()
一、復(fù)習(xí)準(zhǔn)備
判斷下面每題中兩種量成正比例還是成反比例.
1.單價(jià)一定,數(shù)量和總價(jià).
2.路程一定,速度和時(shí)間.
3.正方形的邊長和它的面積.
4.時(shí)間一定,工效和工作總量.
二、新授教學(xué)
。ㄒ唬┏鍪菊n題
教師明確:我們已經(jīng)初步學(xué)習(xí)了判斷兩種量是不是成正比例或反比例的關(guān)系,這節(jié)課通過比較弄清它們有什么相同點(diǎn)和不同點(diǎn).
(二)教學(xué)例7(課件演示:正反比例的比較)
例7.觀察下面的兩個(gè)表,根據(jù)表分別填空.
表1
路程(千米)
5
10
25
50
100
時(shí)間(時(shí))
1
2
5
10
20
在表1中相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時(shí)間和路程成( )關(guān)系.
表2
速度(千米/時(shí))
100
50
20
10
5
時(shí)間(時(shí))
1
2
5
10
20
在表2中相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,時(shí)間和速度成( )關(guān)系.
1.分組討論、交流.
2.引導(dǎo)學(xué)生討論回答
。1)從表1中,怎樣知道速度是一定的?根據(jù)什么判斷速度和時(shí)間成正比例?
。2)從表2中,怎樣知道路程是一定的?根據(jù)什么判斷速度和時(shí)間成反比例?
3.引導(dǎo)學(xué)生總結(jié)路程、速度、時(shí)間三個(gè)量中每兩個(gè)量之間的關(guān)系.
速度×?xí)r間=路程
4.練習(xí):判斷下面兩個(gè)量成什么比例.
(1)當(dāng)速度一定時(shí),路程和時(shí)間.
。2)當(dāng)路程一定時(shí),速度和時(shí)間.
。3)當(dāng)時(shí)間一定時(shí),路程和速度.
(三)比較正比例和反比例的關(guān)系.(繼續(xù)演示課件:正反比例的比較)
討論填表:正、反比例異同點(diǎn)
相同點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量隨著另一種量變化.
不同點(diǎn):正比例是變化方向相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮。鄬(duì)應(yīng)的每兩個(gè)數(shù)的比值(商)是一定的.反比例是變化方向相反,一種量擴(kuò)大(縮小),另一種量反而縮小(擴(kuò)大).相對(duì)應(yīng)的每兩個(gè)數(shù)的積是一定的.
三、課堂小結(jié)
今天我們學(xué)習(xí)了哪些知識(shí)?你還有什么問題嗎?
四、鞏固練習(xí)
。ㄒ唬┡袛鄦蝺r(jià)、數(shù)量和總價(jià)中一種量一定,另外兩種量成什么比例.為什么?
1.單價(jià)一定,數(shù)量和總價(jià)成( ).
2.總價(jià)一定,單價(jià)和數(shù)量成( ).
3.?dāng)?shù)量一定,總價(jià)和單價(jià)成( ).
。ǘ⿵钠嚸看芜\(yùn)貨噸數(shù)、運(yùn)貨的次數(shù)和運(yùn)貨的總噸數(shù)這三種量中,你能找出哪幾種比例關(guān)系?
五、課后作業(yè)
一個(gè)單位食堂每天用大米的數(shù)量、用的天數(shù)和大米的總量如下表.
表1
在表1中,相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,大米的總量和用的'天數(shù)成( )關(guān)系.
表2
在表2中,相關(guān)聯(lián)的量是( )和( ),( )隨著( )變化,( )是一定的.因此,每天用的數(shù)量和用的天數(shù)成( )關(guān)系.
六、板書設(shè)計(jì)
正比例和反比例的比較
相同點(diǎn)
1.都有兩種相關(guān)聯(lián)的量.
2.一種量隨著另一種量變化.
不同點(diǎn)
1.變化方向相同,一種量擴(kuò)大或縮小,另一種量也擴(kuò)大或縮小.
2.相對(duì)應(yīng)的每兩個(gè)數(shù)的比值(商)是一定的.
1.變化方向相反,一種量擴(kuò)大(縮。,另一種量反而縮小(擴(kuò)大).
2.相對(duì)應(yīng)的每兩個(gè)數(shù)的積是一定的.
探究活動(dòng)
靈活判斷
活動(dòng)目的
1.理解正反比例的意義.
2.能根據(jù)正反比例的意義,正確判斷兩種量是否成比例,成什么比例.
活動(dòng)過程
1.教師出示思考題目:
。1)正方形的邊長和面積是否成比例?
。2)圓的面積和半徑是否成比例?
2.學(xué)生分小組討論.
3.學(xué)生分小組匯報(bào)討論結(jié)果.
4.師生共同小結(jié)并總結(jié)規(guī)律.
《反比例》數(shù)學(xué)教案13
教學(xué)設(shè)計(jì)思路
由對(duì)現(xiàn)實(shí)問題的討論抽象出反比例函數(shù)的概念,通過對(duì)問題的解決進(jìn)一步明確:1.反比例函數(shù)的意義;2.反比例函數(shù)的概念;3.反比例函數(shù)的一般形式。
教學(xué)目標(biāo)
知識(shí)與技能
1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)概念的理解。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,表述反比例函數(shù)的概念。
過程與方法
1.經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)辯證唯物主義觀點(diǎn)。
2.經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展抽象思維能力,提高數(shù)學(xué)化意識(shí)。
情感態(tài)度與價(jià)值觀
1.認(rèn)識(shí)到數(shù)學(xué)知識(shí)是有聯(lián)系的,逐步感受數(shù)學(xué)內(nèi)容的系統(tǒng)性;
2.通過分組討論,培養(yǎng)合作交流意識(shí)和探索精神。
教學(xué)重點(diǎn)和難點(diǎn)
理解和領(lǐng)會(huì)反比例函數(shù)的概念。
教學(xué)難點(diǎn)
領(lǐng)悟反比例函數(shù)的概念。
教學(xué)方法
啟發(fā)引導(dǎo)、分組討論
課時(shí)安排
1課時(shí)
教學(xué)媒體
課件
教學(xué)過程設(shè)計(jì)
復(fù)習(xí)引入
1.什么叫一次函數(shù)?一次函數(shù)的'一般形式是怎樣的?什么叫正比例函數(shù)?它與算術(shù)中的正比例有怎樣的關(guān)系?
2.在上一學(xué)段,我們研究了現(xiàn)實(shí)生活中成反比例的兩個(gè)量
《反比例》數(shù)學(xué)教案14
從容說課
我們學(xué)習(xí)知識(shí)的目的就是為了應(yīng)用,如能把書本上學(xué)到的知識(shí)運(yùn)用到實(shí)際生活中,這就說明確實(shí)把知識(shí)學(xué)好了,會(huì)用了
用函數(shù)觀點(diǎn)處理實(shí)際問題的關(guān)鍵在于分析實(shí)際情境、建立函數(shù)模型,并進(jìn)一步提出明確的數(shù)學(xué)問題,教學(xué)時(shí)應(yīng)注意分析的過程,即將實(shí)際問題置于已有知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以看成什么?讓學(xué)生逐步學(xué)會(huì)用數(shù)學(xué)的眼光考查實(shí)際問題.同時(shí),在解決問題的過程中,要充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想
此外,解決實(shí)際問題時(shí).還要引導(dǎo)學(xué)生體會(huì)知識(shí)之間的聯(lián)系以及知識(shí)的綜合運(yùn)用
教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程
2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí).提高運(yùn)用代數(shù)方法解決問題的能力
(二)能力訓(xùn)練要求
通過對(duì)反比例函數(shù)的應(yīng)用,培養(yǎng)學(xué)生解決問題的能力
(三)情感與價(jià)值觀要求
經(jīng)歷將一些實(shí)際問題抽象為數(shù)學(xué)問題的過程,初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題。理解問題,并能綜合運(yùn)用所學(xué)的知識(shí)和技能解決問題.發(fā)展應(yīng)用意識(shí),初步認(rèn)識(shí)數(shù)學(xué)與人類生活的密切聯(lián)系及對(duì)人類歷史發(fā)展的作用
教學(xué)重點(diǎn)
用反比例函數(shù)的知識(shí)解決實(shí)際問題
教學(xué)難點(diǎn)
如何從實(shí)際問題中抽象出數(shù)學(xué)問題、建立數(shù)學(xué)模型,用數(shù)學(xué)知識(shí)去解決實(shí)際問題
教學(xué)方法
教師引導(dǎo)學(xué)生探索法
教學(xué)過程
Ⅰ.創(chuàng)設(shè)問題情境,引入新課
[師]有關(guān)反比例函數(shù)的表達(dá)式,圖象的特征我們都研究過了,那么,我們學(xué)習(xí)它們的目的是什么呢?
[生]是為了應(yīng)用
[師]很好;學(xué)習(xí)的目的是為了用學(xué)到的知識(shí)解決實(shí)際問題.究竟反比例函數(shù)能解決一些什么問題呢?本節(jié)課我們就來學(xué)一學(xué)
、. 新課講解
某?萍夹〗M進(jìn)行野外考察,途中遇到片十幾米寬的爛泥濕地.為了安全、迅速通過這片濕地,他們沿著前進(jìn)路線鋪墊了若干塊木板,構(gòu)筑成一條臨時(shí)通道,從而順利完成了任務(wù);你能解釋他們這樣做的道理嗎?當(dāng)人和木板對(duì)濕地的壓力一定時(shí)隨著木板面積S(m2)的變化,人和木板對(duì)地面的壓強(qiáng)p(Pa)將如何變化?如果人和木板對(duì)濕地地面的壓力合計(jì)600 N,那么
(1)用含S的代數(shù)式表示p,p是S的反比例函數(shù)嗎?為什么?
(2)當(dāng)木板畫積為 0.2 m2時(shí).壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要多大?
(4)在直角坐標(biāo)系中,作出相應(yīng)的函數(shù)圖象
(5)清利用圖象對(duì)(2)和(3)作出直觀解釋,并與同伴進(jìn)行交流
[師]分析:首先要根據(jù)題意分析實(shí)際問題中的兩個(gè)變量,然后看這兩個(gè)變量之間存在的關(guān)系,從而去分析它們之間的關(guān)系是否為反比例函數(shù)關(guān)系,若是則可用反比例函數(shù)的有關(guān)知識(shí)去解決問題
請(qǐng)大家互相交流后回答
[生](1)由p=得p=
p是S的反比例函數(shù),因?yàn)榻o定一個(gè)S的值.對(duì)應(yīng)的就有唯一的一個(gè)p值和它對(duì)應(yīng),根據(jù)函數(shù)定義,則p是S的反比例函數(shù)
(2)當(dāng)S= 0.2 m2時(shí), p==3000(Pa)
當(dāng)木板面積為 0.2m2時(shí),壓強(qiáng)是3000Pa.
(3)當(dāng)p=6000 Pa時(shí),
S==0.1(m2)
如果要求壓強(qiáng)不超過6000 Pa,木板面積至少要 0.1 m2
(4)圖象如下:
(5)(2)是已知圖象上某點(diǎn)的橫坐標(biāo)為0.2,求該點(diǎn)的縱坐標(biāo);(3)是已知圖象上點(diǎn)的縱坐標(biāo)不大于6000,求這些點(diǎn)所處的位置及它們橫坐標(biāo)的取值范圍
[師]這位同學(xué)回答的很好,下面我要提一個(gè)問題,大家知道反比例函數(shù)的圖象是兩支雙曲線、它們要么位于第一、三象限,要么位于第二、四象限,從(1)中已知p=>0,所以圖象應(yīng)位于第一、三象限,為什么這位同學(xué)只畫出了一支曲線,是不是另一支曲線丟掉了呢?還是因?yàn)轭}中只給出了第一象限呢?
[生]第三象限的曲線不存在,因?yàn)檫@是實(shí)際問題,S不可能取負(fù)數(shù),所以第三象限的曲線不存在
[師]很好,那么在(1)中是不是應(yīng)該有條件限制呢?
[生]是,應(yīng)為p= (S>0).
做一做
1、蓄電池的電壓為定值,使用此電源時(shí),電流I(A)與電阻R(Ω)之間的函數(shù)關(guān)系如下圖;
(1)蓄電池的電壓是多少?你能寫出這一函數(shù)的表達(dá)式嗎?
(2)完成下表,并回答問題:如果以此蓄電池為電源的用電器限制電流不得超過 10A,那么用電器的可變電阻應(yīng)控制在什么范圍內(nèi)?
[師]從圖形上來看,I和R之間可能是反比例函數(shù)關(guān)系.電壓U就相當(dāng)于反比例函數(shù)中的k.要寫出函數(shù)的表達(dá)式,實(shí)際上就是確定k(U),只需要一個(gè)條件即可,而圖中已給出了一個(gè)點(diǎn)的坐標(biāo),所以這個(gè)問題就解決了,填表實(shí)際上是已知自變量求函數(shù)值.
[生]解:(1)由題意設(shè)函數(shù)表達(dá)式為I=
∵A(9,4)在圖象上,
∴U=IR=36
∴表達(dá)式為I=
蓄電池的電壓是36伏
(2)表格中從左到右依次是:12,9,7.2,6,4.5,3.6
電源不超過 10 A,即I最大為 10 A,代入關(guān)系式中得R=3.6,為最小電阻,所以用電器的可變電阻應(yīng)控制在R≥3.6這個(gè)范圍內(nèi)
2、如下圖,正比例函數(shù)y=k1x的圖象與反比例函數(shù)y=的圖象相交于A,B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(,2)
(1)分別寫出這兩個(gè)函數(shù)的`表達(dá)式:
(2)你能求出點(diǎn)B的坐標(biāo)嗎?你是怎樣求的?與同伴進(jìn)行交流
[師]要求這兩個(gè)函數(shù)的表達(dá)式,只要把A點(diǎn)的坐標(biāo)代入即可求出k1,k2,求點(diǎn)B的
坐標(biāo)即求y=k1x與y=的交點(diǎn)
[生]解:(1)∵A(,2)既在y=k1x圖象上,又在y=的圖象上
∴k1=2,2=
∴k1=2,k2=6
∴表達(dá)式分別為y=2x,y=
∴x2=3
∴x=±
當(dāng)x= ?時(shí),y= ?2
∴B(?,?2)
、.課堂練習(xí)
1.某蓄水池的排水管每時(shí)排水 8 m3,6 h可將滿池水全部排空
(1)蓄水池的容積是多少?
(2)如果增加排水管,使每時(shí)的排水量達(dá)到Q(m3),那么將滿池水排空所需的時(shí)間t(h)將如何變化?
(3)寫出t與Q之間的關(guān)系式;
(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為多少?
(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少多長時(shí)間可將滿池水全部排空?
解:(1)8×6=48(m3)
所以蓄水池的容積是 48 m3
(2)因?yàn)樵黾优潘,使每時(shí)的排水量達(dá)到Q(m3),所以將滿池水排空所需的時(shí)間t(h)將減少.
(3)t與Q之間的關(guān)系式為t=
(4)如果準(zhǔn)備在5 h內(nèi)將滿池水排空,那么每時(shí)的排水量至少為=9.6(m3)
(5)已知排水管的最大排水量為每時(shí) 12m3,那么最少要=4小時(shí)可將滿池水全部排空.
、、課時(shí)小結(jié)
節(jié)課我們學(xué)習(xí)了反比例函數(shù)的應(yīng)用.具體步驟是:認(rèn)真分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而用反比例函數(shù)的有關(guān)知識(shí)解決實(shí)際問題.
、跽n后作業(yè)
習(xí)題5.4.
板書設(shè)計(jì)
§ 5.3反比例函數(shù)的應(yīng)用
一、1.例題講解
2.做一做
二、課堂練習(xí)
三、課時(shí)小節(jié)
四、課后作業(yè)(習(xí)題5.4)
《反比例》數(shù)學(xué)教案15
教學(xué)目標(biāo):
1、理解反比例函數(shù),并能從實(shí)際問題中抽象出反比例關(guān)系的函數(shù)解析式;
2、會(huì)畫出反比例函數(shù)的圖象,并結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
3、滲透數(shù)形結(jié)合的數(shù)學(xué)思想及普遍聯(lián)系的辨證唯物主義思想;
4、體會(huì)數(shù)學(xué)從實(shí)踐中來又到實(shí)際中去的研究、應(yīng)用過程;
5、培養(yǎng)學(xué)生的觀察能力,及數(shù)學(xué)地發(fā)現(xiàn)問題,解決問題的能力.
教學(xué)重點(diǎn):
結(jié)合圖象分析總結(jié)出反比例函數(shù)的性質(zhì);
教學(xué)難點(diǎn):描點(diǎn)畫出反比例函數(shù)的圖象
教學(xué)用具:直尺
教學(xué)方法:小組合作、探究式
教學(xué)過程:
1、從實(shí)際引出反比例函數(shù)的概念
我們?cè)谛W(xué)學(xué)過反比例關(guān)系.例如:當(dāng)路程S一定時(shí),時(shí)間t與速度v成反比例
即vt=S(S是常數(shù));
當(dāng)矩形面積S一定時(shí),長a與寬b成反比例,即ab=S(S是常數(shù))
從函數(shù)的觀點(diǎn)看,在運(yùn)動(dòng)變化的過程中,有兩個(gè)變量可以分別看成自變量與函數(shù),寫成:
(S是常數(shù))
(S是常數(shù))
一般地,函數(shù) (k是常數(shù), )叫做反比例函數(shù).
如上例,當(dāng)路程S是常數(shù)時(shí),時(shí)間t就是v的反比例函數(shù).當(dāng)矩形面積S是常數(shù)時(shí),長a是寬b的反比例函數(shù).
在現(xiàn)實(shí)生活中,也有許多反比例關(guān)系的例子.可以組織學(xué)生進(jìn)行討論.下面的例子僅供
2、列表、描點(diǎn)畫出反比例函數(shù)的圖象
例1、畫出反比例函數(shù) 與 的圖象
解:列表
說明:由于學(xué)生第一次接觸反比例函數(shù),無法推測(cè)出它的大致圖象.取點(diǎn)的時(shí)候最好多取幾個(gè),正負(fù)可以對(duì)稱著取分別畫點(diǎn)描圖
一般地反比例函數(shù) (k是常數(shù), )的圖象由兩條曲線組成,叫做雙曲線.
3、觀察圖象,歸納、總結(jié)出反比例函數(shù)的性質(zhì)
前面學(xué)習(xí)了三類基本的初等函數(shù),有了一定的基礎(chǔ),這里可視學(xué)生的`程度或展開全面的討論,或在老師的引導(dǎo)下完成知識(shí)的學(xué)習(xí).
顯示這兩個(gè)函數(shù)的圖象,提出問題:你能從圖象上發(fā)現(xiàn)什么有關(guān)反比例函數(shù)的性質(zhì)呢?并能從解析式或列表中得到論證.(下列答案僅供參考)
(1) 的圖象在第一、三象限.可以擴(kuò)展到k 0時(shí)的情形,即k0時(shí),雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個(gè)結(jié)論:xy=k,即x與y同號(hào),因此,圖象在第一、三象限.
的討論與此類似.
抓住機(jī)會(huì),說明數(shù)與形的統(tǒng)一,也滲透了數(shù)形結(jié)合的數(shù)學(xué)思想方法.體現(xiàn)了由特殊到一般的研究過程.
(2)函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小;
從圖象中可以看出,當(dāng)x從左向右變化時(shí),圖象呈下坡趨勢(shì).從列表中也可以看出這樣的變化趨勢(shì).有理數(shù)除法說明了同樣的道理,被除數(shù)一定時(shí),若除數(shù)大于零,除數(shù)越大,商越小;若除數(shù)小于零,同樣是除數(shù)越大,商越小.由此可歸納出,當(dāng)k0時(shí),函數(shù) 的圖象,在每一個(gè)象限內(nèi),y隨x的增大而減小.
同樣可以推出 的圖象的性質(zhì).
(3)函數(shù) 的圖象不經(jīng)過原點(diǎn),且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來越大時(shí),y的值越來越小,趨近于零;如果x取負(fù)值且越來越小時(shí),y的值也越來越趨近于零.因此,呈現(xiàn)的是雙曲線的樣子.同理,抽象出 圖象的性質(zhì).
函數(shù) 的圖象性質(zhì)的討論與次類似.
4、小結(jié):
本節(jié)課我們學(xué)習(xí)了反比例函數(shù)的概念及其圖象的性質(zhì).大家展開了充分的討論,對(duì)函數(shù)的概念,函數(shù)的圖象的性質(zhì)有了進(jìn)一步的認(rèn)識(shí).數(shù)學(xué)學(xué)習(xí)要求我們要深刻地理解,找出事物間的普遍聯(lián)系和發(fā)展規(guī)律,能數(shù)學(xué)地發(fā)現(xiàn)問題,并能運(yùn)用已有的數(shù)學(xué)知識(shí),給以一定的解釋.即數(shù)學(xué)是世界的一個(gè)部分,同時(shí)又隱藏在世界中.
5、布置作業(yè) 習(xí)題13.8 1-4
【《反比例》數(shù)學(xué)教案】相關(guān)文章:
《反比例》數(shù)學(xué)教案(精選19篇)08-19
反比例的意義03-16
《反比例》教學(xué)反思11-27
反比例說課稿范例06-11
正反比例的說課稿06-11
反比例的教學(xué)反思06-13
小學(xué)反比例課件06-11
反比例函數(shù)的說課稿06-11