高一數(shù)學(xué)教案(匯編15篇)
作為一名辛苦耕耘的教育工作者,通常需要用到教案來(lái)輔助教學(xué),編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家收集的高一數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)教案1
教學(xué)目標(biāo)
1、掌握平面向量的數(shù)量積及其幾何意義;
2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;
3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;
4、掌握向量垂直的條件、
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):平面向量的數(shù)量積定義
教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)過(guò)程
1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,
則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、
并規(guī)定0向量與任何向量的數(shù)量積為0、
×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?
2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?
(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定、
(2)兩個(gè)向量的數(shù)量積稱(chēng)為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分、符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替、
(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因?yàn)槠渲衏osq有可能為0、
高一數(shù)學(xué)教案2
一、指導(dǎo)思想:
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來(lái)公民所必要的數(shù)學(xué)素養(yǎng),以滿(mǎn)足個(gè)人發(fā)展與社會(huì)進(jìn)步的需要。具體目標(biāo)如下。
1。獲得必要的數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會(huì)其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們?cè)诤罄m(xù)學(xué)習(xí)中的作用。通過(guò)不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2。提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3。提高數(shù)學(xué)地提出、分析和解決問(wèn)題(包括簡(jiǎn)單的實(shí)際問(wèn)題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識(shí)的能力。
4。發(fā)展數(shù)學(xué)應(yīng)用意識(shí)和創(chuàng)新意識(shí),力求對(duì)現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5。提高學(xué)習(xí)數(shù)學(xué)的興趣,樹(shù)立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6。具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹(shù)立辯證唯物主義和歷史唯物主義世界觀(guān)。
二、教材特點(diǎn):
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(a版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可接受性等到,具有如下特點(diǎn):
1。親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2。問(wèn)題性:以恰時(shí)恰點(diǎn)的問(wèn)題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問(wèn)題意識(shí),孕育創(chuàng)新精神。
3。科學(xué)性與思想性:通過(guò)不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問(wèn)題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4。時(shí)代性與應(yīng)用性:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí)。
三、教法分析:
1。選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2。通過(guò)觀(guān)察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。
3。在教學(xué)中強(qiáng)調(diào)類(lèi)比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
四、學(xué)情分析:
1、基本情況:12班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
14班共人,男生人,女生人;本班相對(duì)而言,數(shù)學(xué)尖子約人,中上等生約人,中等生約人,中下生約人,后進(jìn)生約人。
2、兩個(gè)班均屬普高班,學(xué)習(xí)情況良好,但學(xué)生自覺(jué)性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺(jué)性。班級(jí)存在的最大問(wèn)題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭(zhēng)取每一堂課落實(shí)一個(gè)知識(shí)點(diǎn),掌握一個(gè)知識(shí)點(diǎn)。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話(huà)等途徑樹(shù)立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀(guān)作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀(guān)圖形,說(shuō)明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問(wèn)題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問(wèn)題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問(wèn)題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對(duì)不同的教材內(nèi)容選擇不同教法。
6、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng)。
高一數(shù)學(xué)教案3
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)—必修1》(人教A版)《1。2。1函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來(lái)刻畫(huà),是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測(cè)未來(lái)的重要工具。函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:
。ㄒ唬┏踔袕倪\(yùn)動(dòng)變化的角度來(lái)刻畫(huà)函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);
(二)高中用集合與對(duì)應(yīng)的觀(guān)點(diǎn)來(lái)刻畫(huà)函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);
。ㄈ└咧杏脤(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1、有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過(guò)程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過(guò)同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀(guān)點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀(guān),易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀(guān)點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。
2、不利條件
用集合與對(duì)應(yīng)的觀(guān)點(diǎn)來(lái)定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過(guò)豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴(lài)關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。
1、知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
、评斫夂瘮(shù)的三要素的含義及其相互關(guān)系;
、菚(huì)求簡(jiǎn)單函數(shù)的定義域和值域
2、過(guò)程與方法目標(biāo):
、磐ㄟ^(guò)豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴(lài)關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實(shí)例中,通過(guò)對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。
3、情感、態(tài)度與價(jià)值觀(guān)目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀(guān)點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1、教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來(lái)定義函數(shù),高中是用集合與對(duì)應(yīng)的語(yǔ)言來(lái)刻畫(huà)函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀(guān)點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀(guān)點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說(shuō)明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴(lài)于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過(guò)表面的語(yǔ)言描述抓住概念的精髓。
2、教學(xué)難點(diǎn):
第一:從實(shí)際問(wèn)題中提煉出抽象的概念;
第二:符號(hào)“y=f(x)”的含義的理解。
難點(diǎn)依據(jù):數(shù)學(xué)語(yǔ)言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說(shuō)明。
五、教法與學(xué)法分析
1、教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過(guò)程,從初中的函數(shù)概念自然過(guò)度到函數(shù)的近代定我。
2、學(xué)法分析
在教學(xué)過(guò)程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問(wèn)題、通過(guò)自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
高一數(shù)學(xué)教案4
教學(xué)目標(biāo)
1、使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對(duì)底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫(huà)出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識(shí)指數(shù)函數(shù)的性質(zhì)。
(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用指數(shù)函數(shù)的圖象畫(huà)出形如的圖象。
2、通過(guò)對(duì)指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀(guān)察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3、通過(guò)對(duì)指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。
教學(xué)建議
教材分析
(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見(jiàn)函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。
(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。
(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類(lèi)函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問(wèn)題,所以從指數(shù)函數(shù)的研究過(guò)程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類(lèi)函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說(shuō)法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如等都不是指數(shù)函數(shù)。
(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)指數(shù)函數(shù)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說(shuō)明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)指數(shù)函數(shù)的認(rèn)識(shí)及性質(zhì)的分類(lèi)討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來(lái)。
關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線(xiàn),要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫(huà)圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
高一數(shù)學(xué)教案5
教學(xué)目標(biāo)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
教學(xué)重難點(diǎn)
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
教學(xué)過(guò)程
一、知識(shí)歸納
1、應(yīng)用正弦余弦定理解斜三角形應(yīng)用題的一般步驟及基本思路
(1)分析,(2)建模,(3)求解,(4)檢驗(yàn);
2、實(shí)際問(wèn)題中的有關(guān)術(shù)語(yǔ)、名稱(chēng):
(1)仰角與俯角:均是指視線(xiàn)與水平線(xiàn)所成的角;
(2)方位角:是指從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的夾角;
(3)方向角:常見(jiàn)的如:正東方向、東南方向、北偏東、南偏西等;
3、用正弦余弦定理解實(shí)際問(wèn)題的常見(jiàn)題型有:
測(cè)量距離、測(cè)量高度、測(cè)量角度、計(jì)算面積、航海問(wèn)題、物理問(wèn)題等;
二、例題討論
一)利用方向角構(gòu)造三角形
四)測(cè)量角度問(wèn)題
例4、在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7海里以?xún)?nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55海里處有一個(gè)雷達(dá)觀(guān)測(cè)站A.某時(shí)刻測(cè)得一艘勻速直線(xiàn)行駛的船只位于點(diǎn)A北偏東。
高一數(shù)學(xué)教案6
教學(xué)目標(biāo):
1、理解對(duì)數(shù)的概念,能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化;
2、滲透應(yīng)用意識(shí),培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。
教學(xué)重點(diǎn):
對(duì)數(shù)的概念
教學(xué)過(guò)程:
一、問(wèn)題情境:
1、(1)莊子:一尺之棰,日取其半,萬(wàn)世不竭、①取5次,還有多長(zhǎng)?②取多少次,還有0、125尺?
(2)假設(shè)20xx年我國(guó)國(guó)民生產(chǎn)總值為a億元,如果每年平均增長(zhǎng)8%,那么經(jīng)過(guò)多少年國(guó)民生產(chǎn)總值是20xx年的2倍?
抽象出:1、=?,=0、125x=?2、=2x=?
2、問(wèn)題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來(lái)嗎?
二、學(xué)生活動(dòng):
1、討論問(wèn)題,探究求法、
2、概括內(nèi)容,總結(jié)對(duì)數(shù)概念、
3、研究指數(shù)與對(duì)數(shù)的關(guān)系、
三、建構(gòu)數(shù)學(xué):
1)引導(dǎo)學(xué)生自己總結(jié)并給出對(duì)數(shù)的概念、
2)介紹對(duì)數(shù)的表示方法,底數(shù)、真數(shù)的含義、
3)指數(shù)式與對(duì)數(shù)式的關(guān)系、
4)常用對(duì)數(shù)與自然對(duì)數(shù)、
探究:
、咆(fù)數(shù)與零沒(méi)有對(duì)數(shù)、
⑵,、
、菍(duì)數(shù)恒等式(教材P58練習(xí)6)
①;②、
、葍煞N對(duì)數(shù):
①常用對(duì)數(shù):;
、谧匀粚(duì)數(shù):、
。5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、
四、數(shù)學(xué)運(yùn)用:
1、例題:
例1、(教材P57例1)將下列指數(shù)式改寫(xiě)成對(duì)數(shù)式:
。1)=16;(2)=;(3)=20;(4)=0、45、
例2、(教材P57例2)將下列對(duì)數(shù)式改寫(xiě)成指數(shù)式:
(1);(2)3=—2;(3);(4)(補(bǔ)充)ln10=2、303
例3、(教材P57例3)求下列各式的值:
⑴;⑵;⑶(補(bǔ)充)、
2、練習(xí):
P58(練習(xí))1,2,3,4,5、
五、回顧小結(jié):
本節(jié)課學(xué)習(xí)了以下內(nèi)容:
⑴對(duì)數(shù)的定義;
⑵指數(shù)式與對(duì)數(shù)式互換;
⑶求對(duì)數(shù)式的值(利用計(jì)算器求對(duì)數(shù)值)、
六、課外作業(yè):P63習(xí)題1,2,3,4、
高一數(shù)學(xué)教案7
一、教學(xué)目標(biāo)
1.知識(shí)與技能:掌握畫(huà)三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過(guò)程與方法:通過(guò)學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀(guān):提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):
畫(huà)出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):
觀(guān)察、動(dòng)手實(shí)踐、討論、類(lèi)比。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,揭開(kāi)課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說(shuō)明從不同的角度看同一物體視覺(jué)的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀(guān)看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線(xiàn)照射下形成的投影。
正投影:在平行投影中,投影線(xiàn)正對(duì)著投影面。
2、三視圖:
正視圖:光線(xiàn)從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線(xiàn)從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線(xiàn)從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱(chēng)為幾何體的三視圖。
三視圖的畫(huà)法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫(huà)長(zhǎng)方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀(guān)察到有幾何體的正投影圖,它們都是平面圖形。
長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
4、畫(huà)圓柱、圓錐的三視圖:
5、探究:畫(huà)出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
高一數(shù)學(xué)教案8
一、教材
《直線(xiàn)與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線(xiàn)和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線(xiàn)的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀(guān)點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類(lèi)討論、類(lèi)比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。
二、學(xué)情
學(xué)生初中已經(jīng)接觸過(guò)直線(xiàn)與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線(xiàn)的方程、圓的方程以及點(diǎn)到直線(xiàn)的距離公式;掌握利用方程組的方法來(lái)求直線(xiàn)的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。
三、教學(xué)目標(biāo)
(一)知識(shí)與技能目標(biāo)
能夠準(zhǔn)確用圖形表示出直線(xiàn)與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線(xiàn)的距離的方法簡(jiǎn)單判斷出直線(xiàn)與圓的關(guān)系。
(二)過(guò)程與方法目標(biāo)
經(jīng)歷操作、觀(guān)察、探索、總結(jié)直線(xiàn)與圓的位置關(guān)系的判斷方法,從而鍛煉觀(guān)察、比較、概括的邏輯思維能力。
(三)情感態(tài)度價(jià)值觀(guān)目標(biāo)
激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。
四、教學(xué)重難點(diǎn)
(一)重點(diǎn)
用解析法研究直線(xiàn)與圓的位置關(guān)系。
(二)難點(diǎn)
體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。
五、教學(xué)方法
根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀(guān)、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀(guān),為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。
六、教學(xué)過(guò)程
(一)導(dǎo)入新課
教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?
教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線(xiàn)與圓的位置關(guān)系,將所想到的航行路線(xiàn)轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。
設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。
(二)新課教學(xué)——探究新知
教師提問(wèn)如何判斷直線(xiàn)與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。
判斷方法:
(1)定義法:看直線(xiàn)與圓公共點(diǎn)個(gè)數(shù)
即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。
(2)比較法:圓心到直線(xiàn)的距離d與圓的半徑r做比較,
(三)合作探究——深化新知
教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀(guān)察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線(xiàn)與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。
已知直線(xiàn)3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?
讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。
當(dāng)已知了直線(xiàn)與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線(xiàn)的距離d,他的本質(zhì)是點(diǎn)到直線(xiàn)的距離,便可以直接利用點(diǎn)到直線(xiàn)的距離公式求d。類(lèi)比前面所學(xué)利用直線(xiàn)方程求兩直線(xiàn)交點(diǎn)的方法,聯(lián)立直線(xiàn)與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線(xiàn)與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。
(四)歸納總結(jié)——鞏固新知
為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:
可由方程組的解的不同情況來(lái)判斷:
當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相交;
當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相切;
當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線(xiàn)l與圓C相離。
活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線(xiàn)與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。
(五)小結(jié)作業(yè)
在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:
(1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
(2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?
設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。
作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類(lèi)問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。
七、板書(shū)設(shè)計(jì)
我的板書(shū)本著簡(jiǎn)介、直觀(guān)、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。
高一數(shù)學(xué)教案9
一、教材
首先談?wù)勎覍?duì)教材的理解,《兩條直線(xiàn)平行與垂直的判定》是人教A版高中數(shù)學(xué)必修2第三章3.1.2的內(nèi)容,本節(jié)課的內(nèi)容是兩條直線(xiàn)平行與垂直的判定的推導(dǎo)及其應(yīng)用,學(xué)生對(duì)于直線(xiàn)平行和垂直的概念已經(jīng)十分熟悉,并且在上節(jié)課學(xué)習(xí)了直線(xiàn)的傾斜角與斜率,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ)。
二、學(xué)情
教材是我們教學(xué)的工具,是載體。但我們的教學(xué)是要面向?qū)W生的,高中學(xué)生本身身心已經(jīng)趨于成熟,管理與教學(xué)難度較大,那么為了能夠成為一個(gè)合格的高中教師,深入了解所面對(duì)的學(xué)生可以說(shuō)是必修課。本階段的學(xué)生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢(shì),讓學(xué)生獨(dú)立思考探索。
三、教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
(一)知識(shí)與技能
掌握兩條直線(xiàn)平行與垂直的判定,能夠根據(jù)其判定兩條直線(xiàn)的位置關(guān)系。
(二)過(guò)程與方法
在經(jīng)歷兩條直線(xiàn)平行與垂直的判定過(guò)程中,提升邏輯推理能力。
(三)情感態(tài)度價(jià)值觀(guān)
在猜想論證的過(guò)程中,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
四、教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說(shuō)一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:兩條直線(xiàn)平行與垂直的判定。本節(jié)課的教學(xué)難點(diǎn)是:兩條直線(xiàn)平行與垂直的'判定的推導(dǎo)。
五、教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過(guò)程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動(dòng)都必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法、小組合作等教學(xué)方法。
六、教學(xué)過(guò)程
下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過(guò)程的設(shè)計(jì)。
(一)新課導(dǎo)入
首先是導(dǎo)入環(huán)節(jié),那么我采用復(fù)習(xí)導(dǎo)入,回顧上節(jié)課所學(xué)的直線(xiàn)的傾斜角與斜率并順勢(shì)提問(wèn):能否通過(guò)直線(xiàn)的斜率,來(lái)判斷兩條直線(xiàn)的位置關(guān)系呢?
利用上節(jié)課所學(xué)的知識(shí)進(jìn)行導(dǎo)入,很好的克服學(xué)生的畏難情緒。
(二)新知探索
接下來(lái)是教學(xué)中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。
高一數(shù)學(xué)教案10
一、教學(xué)目標(biāo)
1、知識(shí)與技能
。1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀(guān)感知。
。2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
(3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類(lèi)。
2、過(guò)程與方法
(1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識(shí)。
3、情感態(tài)度與價(jià)值觀(guān)
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)鰪?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀(guān)察、思考、交流、討論、概括。
。2)實(shí)物模型、投影儀 四、教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀(guān)察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類(lèi)嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知
1、引導(dǎo)學(xué)生觀(guān)察物體、思考、交流、討論,對(duì)物體進(jìn)行分類(lèi),分辯棱柱、圓柱、棱錐。
2、觀(guān)察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?
3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。
(1)有兩個(gè)面互相平行;
。2)其余各面都是平行四邊形;
。3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類(lèi)?
請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
6、以類(lèi)似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類(lèi)以及表示。
7、讓學(xué)生觀(guān)察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8、引導(dǎo)學(xué)生以類(lèi)似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱(chēng)為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱(chēng)為臺(tái)體,圓錐與棱錐統(tǒng)稱(chēng)為錐體。
10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、課本P8,習(xí)題1.1 A組第1題。
4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?
四、鞏固深化
練習(xí):課本P7 練習(xí)1、2(1)(2) 課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)
課本P8 練習(xí)題1.1 B組第1題
課外練習(xí) 課本P8 習(xí)題1.1 B組第2題
高一數(shù)學(xué)教案11
學(xué) 習(xí) 目 標(biāo)
1明確空間直角坐標(biāo)系是如何建立;明確空間中任意一點(diǎn)如何表示;
2 能夠在空間直角坐標(biāo)系中求出點(diǎn)坐標(biāo)
教 學(xué) 過(guò) 程
一 自 主 學(xué) 習(xí)
1平面直角坐標(biāo)系建立方法,點(diǎn)坐標(biāo)確定過(guò)程、表示方法?
2一個(gè)點(diǎn)在平面怎么表示?在空間呢?
3關(guān)于一些對(duì)稱(chēng)點(diǎn)坐標(biāo)求法
關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;
關(guān)于坐標(biāo)平面 對(duì)稱(chēng)點(diǎn) ;
關(guān)于 軸對(duì)稱(chēng)點(diǎn) ;
關(guān)于 對(duì)軸稱(chēng)點(diǎn) ;
關(guān)于 軸對(duì)稱(chēng)點(diǎn) ;
二 師 生 互動(dòng)
例1在長(zhǎng)方體 中, , 寫(xiě)出 四點(diǎn)坐標(biāo)
討論:若以 點(diǎn)為原點(diǎn),以射線(xiàn) 方向分別為 軸,建立空間直角坐標(biāo)系,則各頂點(diǎn)坐標(biāo)又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標(biāo)系,并確定各頂點(diǎn)坐標(biāo)
練1 建立適當(dāng)直角坐標(biāo)系,確定棱長(zhǎng)為3正四面體各頂點(diǎn)坐標(biāo)
練2 已知 是棱長(zhǎng)為2正方體, 分別為 和 中點(diǎn),建立適當(dāng)空間直角坐標(biāo)系,試寫(xiě)出圖中各中點(diǎn)坐標(biāo)
三 鞏 固 練 習(xí)
1 關(guān)于空間直角坐標(biāo)系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標(biāo)系中點(diǎn)與一個(gè)三元有序數(shù)組是一種一一對(duì)應(yīng)關(guān)系
C空間直角坐標(biāo)系中三條坐標(biāo)軸把空間分為八個(gè)部分
D某點(diǎn)在不同空間直角坐標(biāo)系中坐標(biāo)位置可以相同
2 已知點(diǎn) ,則點(diǎn) 關(guān)于原點(diǎn)對(duì)稱(chēng)點(diǎn)坐標(biāo)為( )
A B C D
3 已知 三個(gè)頂點(diǎn)坐標(biāo)分別為 ,則 重心坐標(biāo)為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點(diǎn) 坐標(biāo)
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習(xí)
1 在空間直角坐標(biāo)系中,給定點(diǎn) ,求它分別關(guān)于坐標(biāo)平面,坐標(biāo)軸和原點(diǎn)對(duì)稱(chēng)點(diǎn)坐標(biāo)
2 設(shè)有長(zhǎng)方體 ,長(zhǎng)、寬、高分別為 是線(xiàn)段 中點(diǎn)分別以 所在直線(xiàn)為 軸, 軸, 軸,建立空間直角坐標(biāo)系
⑴求 坐標(biāo);
、魄 坐標(biāo);
高一數(shù)學(xué)教案12
教學(xué)目的:
(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;
(2)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀(guān)圖示對(duì)理解抽象概念的作用。
課型:
新授課
教學(xué)重點(diǎn):
集合的交集與并集的概念;
教學(xué)難點(diǎn):
集合的交集與并集“是什么”,“為什么”,“怎樣做”;
教學(xué)過(guò)程:
一、引入課題
我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類(lèi)比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、新課教學(xué)
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱(chēng)為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
說(shuō)明:兩個(gè)集合求并集,結(jié)果還是一個(gè)集合,是由集合A與B的所有元素組成的集合(重復(fù)元素只看成一個(gè)元素)。
例題1求集合A與B的并集
、 A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
(過(guò)度)問(wèn)題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問(wèn)號(hào)部分)還應(yīng)是我們所關(guān)心的,我們稱(chēng)其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說(shuō)明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
、 A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說(shuō)明:當(dāng)兩個(gè)集合沒(méi)有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說(shuō)兩個(gè)集合沒(méi)有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡(jiǎn)”所給集合,搞清楚各自所含元素后,再進(jìn)行運(yùn)算。
4、集合基本運(yùn)算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一數(shù)學(xué)教案13
一、教材分析
1、 教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對(duì)概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中對(duì)函數(shù)概念理解的程度會(huì)直接影響其它知識(shí)的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。
2、 教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1) 教學(xué)知識(shí)目標(biāo):了解對(duì)應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對(duì)函數(shù)抽象符號(hào)的理解。
(2) 能力訓(xùn)練目標(biāo):通過(guò)教學(xué)培養(yǎng)的抽象概括能力、邏輯思維能力。
(3) 德育滲透目標(biāo):使懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀(guān)點(diǎn)。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)好其他的內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):
教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號(hào)的理解。
教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號(hào)的理解。
重點(diǎn)難點(diǎn)確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識(shí)的能力也比較高,對(duì)于剛剛升入高中不久的來(lái)說(shuō)不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來(lái)有一種“函數(shù)熱”的趨勢(shì),所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號(hào)的理解與運(yùn)用上。
二、教材的處理:
將映射的定義及類(lèi)比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀(guān)點(diǎn)給出,這與初中教材變量值與對(duì)應(yīng)觀(guān)點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來(lái)更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情與參與意識(shí),運(yùn)用引導(dǎo)對(duì)比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使真正對(duì)函數(shù)的概念有很準(zhǔn)確的認(rèn)識(shí)。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,自主預(yù)習(xí)為輔。
依據(jù)是:因?yàn)橐孕碌挠^(guān)點(diǎn)認(rèn)識(shí)函數(shù)概念及函數(shù)符號(hào)與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過(guò)師生的共同討論來(lái)幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號(hào)的運(yùn)用在學(xué)生的思想和知識(shí)結(jié)構(gòu)中打上深刻的烙印,為能學(xué)好后面的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過(guò)舉以下一個(gè)通俗的例子引出通過(guò)某個(gè)對(duì)應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問(wèn),通過(guò)“找好朋友”這個(gè)對(duì)應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?
二. 新課講授:
(1) 接著再通過(guò)幻燈片給出六組學(xué)生熟悉的數(shù)集的對(duì)應(yīng)關(guān)系引導(dǎo)學(xué)生歸納它們的共同性質(zhì)(一對(duì)一,多對(duì)一),進(jìn)而給出映射的概念,表示符號(hào)f:a→b,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對(duì)應(yīng)法則 f。進(jìn)一步引導(dǎo)判斷一個(gè)從a到b的對(duì)應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過(guò)對(duì)應(yīng)法則f在b中是否有唯一確定的元素與之對(duì)應(yīng)。
(2)鞏固練習(xí)課本52頁(yè)第八題。
此練習(xí)能讓更深刻的認(rèn)識(shí)到映射可以“一對(duì)多,多對(duì)一”但不能是“一對(duì)多”。
例1. 給出學(xué)生初中學(xué)過(guò)的函數(shù)的傳統(tǒng)定義和幾個(gè)簡(jiǎn)單的一次、二次函數(shù),通過(guò)畫(huà)圖表示這些函數(shù)的對(duì)應(yīng)關(guān)系,引導(dǎo)發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對(duì)應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對(duì)應(yīng)則這樣的對(duì)應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對(duì)應(yīng)法則f),并說(shuō)明把函f:a→b記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{ f(x):x∈a}叫做函數(shù)的.值域。
并把函數(shù)的近代定義與映射定義比較使認(rèn)識(shí)到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):2. 函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3. f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4. f(x)是一個(gè)符號(hào),不表示f與x的乘積,而表示x經(jīng)過(guò)f作用后的結(jié)果。
5. 集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。
66. “f:a→b”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。
三.講解例題
例1.問(wèn)y=1(x∈a)是不是函數(shù)?
解:y=1可以化為y=0*x+1
畫(huà)圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對(duì)應(yīng)是“多對(duì)一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)從集合,映射的觀(guān)點(diǎn)認(rèn)識(shí)函數(shù)的定義。
四.課時(shí)小結(jié):
1. 映射的定義。
2. 函數(shù)的近代定義。
3. 函數(shù)的三要素及符號(hào)的正確理解和應(yīng)用。
4. 函數(shù)近代定義的五大注意點(diǎn)。
五.課后作業(yè)及板書(shū)設(shè)計(jì)
書(shū)本p51 習(xí)題2.1的1、2寫(xiě)在書(shū)上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡(jiǎn)單函數(shù)的定義域。
函數(shù)(一)
一、映射:
2.函數(shù)近代定義: 例題練習(xí)
二、函數(shù)的定義 [注]1—5
1.函數(shù)傳統(tǒng)定義
三、作業(yè):
高一數(shù)學(xué)教案14
教學(xué)目標(biāo)
。1)正確理解充分條件、必要條件和充要條件的概念;
。2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)建議
(一)教材分析
1.知識(shí)結(jié)構(gòu)
首先給出推斷符號(hào)“”,并引出的意義,在此基礎(chǔ)上講述了充要條件的初步知識(shí).
2.重點(diǎn)難點(diǎn)分析
本節(jié)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷.
。1)充分但不必要條件、必要但不充分條件、充要條件、既不充分也不必要條件是重要的數(shù)學(xué)概念,主要用來(lái)區(qū)分命題的條件和結(jié)論之間的因果關(guān)系.
。2)在判斷條件和結(jié)論之間的因果關(guān)系中應(yīng)該:
①首先分清條件是什么,結(jié)論是什么;
、谌缓髧L試用條件推結(jié)論,再?lài)L試用結(jié)論推條件.推理方法可以是直接證法、間接證法(即反證法),也可以舉反例說(shuō)明其不成立;
、圩詈笤僦赋鰲l件是結(jié)論的什么條件.
(3)在討論條件和條件的關(guān)系時(shí),要注意:
①若,但,則是的充分但不必要條件;
②若,但,則是的必要但不充分條件;
③若,且,則是的充要條件;
④若,且,則是的充要條件;
、萑簦,則是的既不充分也不必要條件.
。4)若條件以集合的形式出現(xiàn),結(jié)論以集合的形式出現(xiàn),則借助集合知識(shí),有助于充要條件的理解和判斷.
、偃簦瑒t是的充分條件;
顯然,要使元素,只需就夠了.類(lèi)似地還有:
②若,則是的必要條件;
、廴,則是的充要條件;
、苋簦,則是的既不必要也不充分條件.
(5)要證明命題的條件是充要條件,就既要證明原命題成立,又要證明它的逆命題成立.證明原命題即證明條件的充分性,證明逆命題即證明條件的必要性.由于原命題逆否命題,逆命題否命題,當(dāng)我們證明某一命題有困難時(shí),可以證明該命題的逆否命題成立,從而得出原命題成立.
。ǘ┙谭ńㄗh
1.學(xué)習(xí)充分條件、必要條件和充要條件知識(shí),要注意與前面有關(guān)邏輯初步知識(shí)內(nèi)容相聯(lián)系.充要條件中的,與四種命題中的,要求是一樣的.它們可以是簡(jiǎn)單命題,也可以是不能判斷真假的語(yǔ)句,也可以是含有邏輯聯(lián)結(jié)詞或“若則”形式的復(fù)合命題.
2.由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵.教學(xué)中始終要注意以學(xué)生為主,讓學(xué)生在自我思考、相互交流中去結(jié)概念“下定義”,去體會(huì)概念的本質(zhì)屬性.
3.由于“充要條件”與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入“充分條件”的概念,進(jìn)而引入“必要條件”的概念.
4.教材中對(duì)“充分條件”、“必要條件”的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)“充分條件”的概念,從互為逆否命題的等價(jià)性來(lái)引出“必要條件”的概念.
教學(xué)設(shè)計(jì)示例
充要條件
教學(xué)目標(biāo):
。1)正確理解充分條件、必要條件和充要條件的概念;
(2)能正確判斷是充分條件、必要條件還是充要條件;
。3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;
。4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.
教學(xué)重點(diǎn)難點(diǎn):
關(guān)于充要條件的判斷
教學(xué)用具:
幻燈機(jī)或?qū)嵨锿队皟x
教學(xué)過(guò)程設(shè)計(jì)
1.復(fù)習(xí)引入
練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):
(1)若,則;
(2)若,則;
(3)全等三角形的面積相等;
。4)對(duì)角線(xiàn)互相垂直的四邊形是菱形;
(5)若,則;
。6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.
。▽W(xué)生口答,教師板書(shū).)
。1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.
置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?
答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.
對(duì)于命題“若,則”,如果由經(jīng)過(guò)推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話(huà)說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱(chēng)條件是成立的充分條件,記作.
2.講授新課
。ò鍟(shū)充分條件的定義.)
一般地,如果已知,那么我們就說(shuō)是成立的充分條件.
提問(wèn):請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.
(學(xué)生口答)
。1)“,”是“”成立的充分條件;
(2)“三角形全等”是“三角形面積相等”成立的充分條件;
。3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.
從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒(méi)有,也就沒(méi)有,亦即是成立的必須要有的條件,也就是必要條件.
。ò鍟(shū)必要條件的定義.)
提出問(wèn)題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.
(學(xué)生口答).
。1)因?yàn)椋允堑某浞謼l件,是的必要條件;
。2)因?yàn)椋允堑谋匾獥l件,是的充分條件;
(3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;
。4)因?yàn)椤八倪呅蔚膶?duì)角線(xiàn)互相垂直”“四邊形是菱形”,所以“四邊形的對(duì)角線(xiàn)互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線(xiàn)互相垂直”的充分條件;
。5)因?yàn),所以是的必要條件,是的充分條件;
。6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.
總結(jié):如果是的充分條件,又是的必要條件,則稱(chēng)是的充分必要條件,簡(jiǎn)稱(chēng)充要條件,記作.
(板書(shū)充要條件的定義.)
3.鞏固新課
例1(用投影儀投影.)
。▽W(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)
、僖?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;
、谝欢芡瞥,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;
、邸⑹瞧鏀(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;
④表示或,所以是成立的必要非充分條件;
、萦山患亩x可知且是成立的充要條件;
、抻芍,所以是成立的充分非必要條件;
、哂芍颍允,成立的必要非充分條件;
、嘁字笆4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;
。ㄍㄟ^(guò)對(duì)上述問(wèn)題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)
例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)
解:由已知得,
所以是的充分條件,或是的必要條件.
4.小結(jié)回授
今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問(wèn)題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).
課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)l、2;第36頁(yè)練習(xí)l、2.
。ㄍㄟ^(guò)練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)
5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.
高一數(shù)學(xué)教案15
一、教學(xué)目標(biāo)
1.知識(shí)與技能:
(1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀(guān)感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類(lèi)。
(3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
(4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類(lèi)。
2.過(guò)程與方法:
(1)讓學(xué)生通過(guò)直觀(guān)感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀(guān)察、討論、歸納、概括所學(xué)的知識(shí)。
3.情感態(tài)度與價(jià)值觀(guān):
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē),增?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀(guān)察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):
讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
(1)學(xué)法:觀(guān)察、思考、交流、討論、概括。
(2)實(shí)物模型、投影儀。
四、教學(xué)過(guò)程
(一)創(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周?chē)杏胁簧儆刑厣慕ㄖ,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體。
問(wèn)題:請(qǐng)根據(jù)某種標(biāo)準(zhǔn)對(duì)以上空間物體進(jìn)行分類(lèi)。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺(tái);
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺(tái)、球。
1、棱柱的結(jié)構(gòu)特征:
(1)觀(guān)察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
(學(xué)生討論)
(2)棱柱的主要結(jié)構(gòu)特征(棱柱的概念):
①有兩個(gè)面互相平行;
、谄溆喔髅娑际瞧叫兴倪呅;
③每相鄰兩上四邊形的公共邊互相平行。
(3)棱柱的表示法及分類(lèi):
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。
2、棱錐、棱臺(tái)的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片;
(2)以類(lèi)似的方法,根據(jù)出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類(lèi)以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺(tái):且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺(tái)、球?
(2)以類(lèi)似的方法,根據(jù)圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺(tái)體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺(tái)都是多面體,它們?cè)诮Y(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺(tái)呢?
6、簡(jiǎn)單組合體的結(jié)構(gòu)特征:
(1)簡(jiǎn)單組合體的構(gòu)成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。
(2)實(shí)物模型演示,投影圖片——說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征。
(3)列舉身邊物體,說(shuō)出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說(shuō)明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
【高一數(shù)學(xué)教案】相關(guān)文章:
高一數(shù)學(xué)教案06-20
高一數(shù)學(xué)教案07-20
高一必修四數(shù)學(xué)教案04-13
高一必修五數(shù)學(xué)教案04-10
人教版高一數(shù)學(xué)教案07-30
上海高一數(shù)學(xué)教案07-30
高一數(shù)學(xué)教案設(shè)計(jì)04-10
高一數(shù)學(xué)教案15篇07-19
最新高一數(shù)學(xué)教案09-27