《對(duì)數(shù)函數(shù)》說課稿(精選20篇)
作為一名老師,通常需要用到說課稿來輔助教學(xué),是說課取得成功的前提。如何把說課稿做到重點(diǎn)突出呢?下面是小編整理的《對(duì)數(shù)函數(shù)》說課稿,僅供參考,希望能夠幫助到大家。
《對(duì)數(shù)函數(shù)》說課稿 1
一、說教材
1、教材的地位和作用
函數(shù)是高中數(shù)學(xué)的核心,而對(duì)數(shù)函數(shù)是高中階段所要研究的重要的基本函數(shù)之一。本節(jié)內(nèi)容是在學(xué)生已經(jīng)學(xué)過指數(shù)函數(shù)、對(duì)數(shù)及反函數(shù)的基礎(chǔ)上引入的,因此既是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)在生產(chǎn)、生活實(shí)踐中都有許多應(yīng)用。本節(jié)課的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整、系統(tǒng),為學(xué)生今后進(jìn)一步學(xué)習(xí)對(duì)數(shù)等提供了必要的基礎(chǔ)知識(shí)。
2、教學(xué)目標(biāo)的確定及依據(jù)
根據(jù)教學(xué)大綱要求,結(jié)合教材,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,我制定了如下的教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):掌握對(duì)數(shù)函數(shù)的圖像與性質(zhì);初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡單的問題。
。2)能力目標(biāo):滲透類比、數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、分析、歸納等邏輯思維能力。
。3)情感目標(biāo):構(gòu)造和諧的教學(xué)氛圍,增加互動(dòng),促進(jìn)師生情感交流,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,欣賞數(shù)學(xué)的精確和美妙之處,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
3、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
難點(diǎn):對(duì)數(shù)函數(shù)性質(zhì)中對(duì)于在《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿與《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿兩種情況函數(shù)值的不同變化。
二、說教法
學(xué)生在整個(gè)教學(xué)過程中始終是認(rèn)知的主體和發(fā)展的主體,教師作為學(xué)生學(xué)習(xí)的指導(dǎo)者,應(yīng)充分地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,有效地滲透數(shù)學(xué)思想方法。根據(jù)這樣的原則和所要完成的.教學(xué)目標(biāo),對(duì)于本節(jié)課我主要考慮了以下兩個(gè)方面:
1、教學(xué)方法:
。1)啟發(fā)引導(dǎo)學(xué)生觀察、聯(lián)想、思考、分析、歸納;
(2)采用“從特殊到一般”、“從具體到抽象”的方法;
(3)滲透數(shù)形結(jié)合、分類討論等數(shù)學(xué)思想方法。
。4)用探究性教學(xué)、提問式教學(xué)和分層教學(xué)
2、教學(xué)手段:
計(jì)算機(jī)多媒體輔助教學(xué)。
三、說學(xué)法
“授之以魚,不如授之以漁”,方法的掌握,思想的形成,才能使學(xué)生受益終身。本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
(1)探究定向性學(xué)習(xí):學(xué)生在教師建立的情境下,通過思考、分析、操作、探索,歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
。2)主動(dòng)式學(xué)習(xí):學(xué)生自己歸納得出對(duì)數(shù)函數(shù)的圖像與性質(zhì)。
四、說教程
1、溫故知新
我通過復(fù)習(xí)y=log2x和y=log0.5x的圖像,讓學(xué)生熟悉兩個(gè)具體的對(duì)數(shù)函數(shù)的圖像。
設(shè)計(jì)意圖:這與本節(jié)內(nèi)容有密切關(guān)系,有利于引出新課。為學(xué)生理解新知清除了障礙,有意識(shí)地培養(yǎng)學(xué)生分析問題的能力。
2、探求新知
研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)。關(guān)鍵是學(xué)生自主的對(duì)函數(shù)《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿和《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿的圖像分析歸納,引導(dǎo)學(xué)生填寫表格(該表格一列填有《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿在《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿及《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿兩種情況下的圖像與性質(zhì)),采用“從特殊到一般”、“從具體到抽象”的方法,歸納總結(jié)出《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿的圖像與性質(zhì)。
在學(xué)生得出對(duì)數(shù)函數(shù)的圖像和性質(zhì)后,教師再加以升華,強(qiáng)調(diào)“數(shù)形結(jié)合”記憶其性質(zhì),做到“心中有圖”。另外,對(duì)于對(duì)數(shù)函數(shù)的性質(zhì)3和性質(zhì)4在用多媒體演示時(shí),有意識(shí)地用(1)、(2)進(jìn)行分類表示,培養(yǎng)學(xué)生的分類意識(shí)。
設(shè)計(jì)意圖:教師建立了一個(gè)有助于學(xué)生進(jìn)行獨(dú)立探究的情境,學(xué)生通過觀察、聯(lián)想、思考、分析、探索,在此過程中,這充分體現(xiàn)了探究定向性學(xué)習(xí)和主動(dòng)合作式學(xué)習(xí)。
3、課堂研究,鞏固應(yīng)用
例1主要利用對(duì)數(shù)函數(shù)《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿的定義域是《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿來求解。
例2利用對(duì)數(shù)函數(shù)的單調(diào)性,比較兩個(gè)同底對(duì)數(shù)值的大小。在這個(gè)例題中,注意第三小題的點(diǎn)撥,選擇和中間量0或1比較,第四小題要分底數(shù)《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿及《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿兩種情況。
例3解對(duì)數(shù)不等式,實(shí)際是例2的一種逆向運(yùn)算,已知對(duì)數(shù)值的大小,比較真數(shù),任然要使用對(duì)數(shù)函數(shù)的單調(diào)性。
設(shè)計(jì)意圖:通過這個(gè)環(huán)節(jié)學(xué)生可以加深對(duì)本節(jié)知識(shí)的理解和運(yùn)用,在此過程中充分體現(xiàn)了數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想方法。同時(shí)為課外研究題的解決提供了必要條件,為學(xué)生今后進(jìn)一步學(xué)習(xí)對(duì)數(shù)不等式埋下伏筆。
4、鞏固練習(xí)
使學(xué)生學(xué)會(huì)知識(shí)的遷移,兩個(gè)練習(xí)緊扣本節(jié)內(nèi)容,利用課堂研究中體現(xiàn)的重要的數(shù)形結(jié)合和分類討論的數(shù)學(xué)思想方法,學(xué)生課后完全有能力解決這個(gè)問題。
5、課堂小結(jié)
引導(dǎo)學(xué)生進(jìn)行知識(shí)回顧,使學(xué)生對(duì)本節(jié)課有一個(gè)整體把握。從兩方面進(jìn)行小結(jié):
。1)掌握對(duì)數(shù)函數(shù)的圖像與性質(zhì),體會(huì)數(shù)形結(jié)合的思想方法;
。2)會(huì)利用對(duì)數(shù)函數(shù)的性質(zhì)比較兩個(gè)同底對(duì)數(shù)值的大小,初步學(xué)會(huì)對(duì)數(shù)不等式的解法,體會(huì)分類討論的思想方法。
6、作業(yè):p97習(xí)題3,4,5
選做題6題。
《對(duì)數(shù)函數(shù)》說課稿 2
一、說教材
1、地位和作用
本章學(xué)習(xí)是在學(xué)生完成函數(shù)的第一階段學(xué)習(xí)(初中)的基礎(chǔ)上,進(jìn)行第二階段的函數(shù)學(xué)習(xí)。而對(duì)數(shù)函數(shù)作為這一階段的重要的基本初等函數(shù)之一,它是在學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及對(duì)數(shù)的內(nèi)容,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用;"對(duì)數(shù)函數(shù)"這節(jié)教材,是在沒學(xué)習(xí)反函數(shù)的基礎(chǔ)上研究的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的自變量與因變量之間的關(guān)系,同時(shí)對(duì)數(shù)函數(shù)作為常用數(shù)學(xué)模型在解決社會(huì)生活中的實(shí)例有廣泛的應(yīng)用,本節(jié)課的學(xué)習(xí)為學(xué)生進(jìn)一步學(xué)習(xí)、參加生產(chǎn)和實(shí)際生活提供必要的基礎(chǔ)知識(shí)。
2、教學(xué)目標(biāo)的確定及依據(jù)
依據(jù)新課標(biāo)和學(xué)生獲得知識(shí)、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學(xué)目標(biāo):
(1)理解對(duì)數(shù)函數(shù)的概念、掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
。2)培養(yǎng)學(xué)生自主學(xué)習(xí)、綜合歸納、數(shù)形結(jié)合的能力。
(3)培養(yǎng)學(xué)生用類比方法探索研究數(shù)學(xué)問題的素養(yǎng);
。4)培養(yǎng)學(xué)生對(duì)待知識(shí)的科學(xué)態(tài)度、勇于探索和創(chuàng)新的精神。
(5)在民主、和諧的教學(xué)氣氛中,促進(jìn)師生的情感交流。
3、教學(xué)重點(diǎn)、難點(diǎn)及關(guān)鍵
重點(diǎn):對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);在教學(xué)中只有突出這個(gè)重點(diǎn),才能使教材脈絡(luò)分明,才能有利于學(xué)生聯(lián)系舊知識(shí),學(xué)習(xí)新知識(shí)。
難點(diǎn):底數(shù)a對(duì)對(duì)數(shù)函數(shù)的圖象和性質(zhì)的影響;
關(guān)鍵:對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的類比教學(xué)
由指數(shù)函數(shù)的圖象過渡到對(duì)數(shù)函數(shù)的圖象,通過類比分析達(dá)到深刻地了解對(duì)數(shù)函數(shù)的圖象及其性質(zhì)是掌握重點(diǎn)和突破難點(diǎn)的關(guān)鍵,在教學(xué)中一定要使學(xué)生的思考緊緊圍繞圖象,數(shù)形結(jié)合,加強(qiáng)直觀教學(xué),使學(xué)生能形成以圖象為根本,以性質(zhì)為主體的知識(shí)網(wǎng)絡(luò),同時(shí)在例題的講解中,重視加強(qiáng)題組的設(shè)計(jì)和變形,使教學(xué)真正體現(xiàn)出由淺入深,由易到難,由具體到抽象的特點(diǎn),從而突出重點(diǎn)、突破難點(diǎn)。
二、說教法
教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的`積極性、主動(dòng)性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:
。1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。
。2)采用"從特殊到一般"、"從具體到抽象"的方法。
(3)體現(xiàn)"對(duì)比聯(lián)系"、"數(shù)形結(jié)合"及"分類討論"的思想方法。
(4)投影儀演示法。
在整個(gè)過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點(diǎn)撥,與指數(shù)函數(shù)性質(zhì)對(duì)照,歸納、整理,只有這樣,才能喚起學(xué)生對(duì)原有知識(shí)的回憶,自覺地找到新舊知識(shí)的聯(lián)系,使新學(xué)知識(shí)更牢固,理解更深刻。
三、說學(xué)法
教給學(xué)生方法比教給學(xué)生知識(shí)更重要,本節(jié)課注重調(diào)動(dòng)學(xué)生積極思考、主動(dòng)探索,盡可能地增加學(xué)生參與教學(xué)活動(dòng)的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):
。1)對(duì)照比較學(xué)習(xí)法:學(xué)習(xí)對(duì)數(shù)函數(shù),處處與指數(shù)函數(shù)相對(duì)照。
(2)探究式學(xué)習(xí)法:學(xué)生通過分析、探索,得出對(duì)數(shù)函數(shù)的定義。
。3)自主性學(xué)習(xí)法:通過實(shí)驗(yàn)畫出函數(shù)圖象、觀察圖象自得其性質(zhì)。
。4)反饋練習(xí)法:檢驗(yàn)知識(shí)的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。
這樣可發(fā)揮學(xué)生的主觀能動(dòng)性,有利于提高學(xué)生的各種能力。
四、說教程
在認(rèn)真分析教材、教法、學(xué)法的基礎(chǔ)上,設(shè)計(jì)教學(xué)過程如下:
。ㄒ唬﹦(chuàng)設(shè)問題情景、提出問題
在某細(xì)胞分裂過程中,細(xì)胞個(gè)數(shù)y是分裂次數(shù)x的函數(shù),因此,知道x的值(輸入值是分裂次數(shù))就能求出y的值(輸出值為細(xì)胞的個(gè)數(shù)),這樣就建立了一個(gè)細(xì)胞個(gè)數(shù)和分裂次數(shù)x之間的函數(shù)關(guān)系式。
問題一:這是一個(gè)怎樣的函數(shù)模型類型呢?
設(shè)計(jì)意圖:復(fù)習(xí)指數(shù)函數(shù)
問題二:現(xiàn)在我們來研究相反的問題,如果知道了細(xì)胞個(gè)數(shù)y,如何求分裂的次數(shù)x呢?這將會(huì)是我們研究的哪類問題?
設(shè)計(jì)意圖:為了引出對(duì)數(shù)函數(shù)
問題三:在關(guān)系式每輸入一個(gè)細(xì)胞的個(gè)數(shù)y的值,是否一定都能得到唯一一個(gè)分裂次數(shù)x的值呢?
設(shè)計(jì)意圖:一是為了更好地理解函數(shù),同時(shí)也是為了讓學(xué)生更好地理解對(duì)數(shù)函數(shù)的概念。
。ǘ┮饬x建構(gòu):
1、對(duì)數(shù)函數(shù)的概念:
同樣,在前面提到的放射性物質(zhì),經(jīng)過的時(shí)間x年與物質(zhì)剩余量y的關(guān)系式為,我們也可以把它改為對(duì)數(shù)式,,其中x年也可以看作物質(zhì)剩余量y的函數(shù),()可見這樣的問題在現(xiàn)實(shí)生活中還是不少的。
設(shè)計(jì)意圖:前面的問題情景的底數(shù)為2,而這個(gè)問題情景的底數(shù)為0、84,我認(rèn)為這個(gè)情景并不是多余的,其實(shí)它暗示了對(duì)數(shù)函數(shù)的底數(shù)與指數(shù)函數(shù)的底數(shù)一樣有兩類。
但在習(xí)慣上,我們用x表示自變量,用y表示函數(shù)值
問題一:你能把以上兩個(gè)函數(shù)表示出來嗎?
問題二:你能得到此類函數(shù)的一般式嗎?(在此體現(xiàn)了由特殊到一般的數(shù)學(xué)思想)
問題三:在中,a有什么限制條件嗎?請(qǐng)結(jié)合指數(shù)式給以解釋。
問題四:你能根據(jù)指數(shù)函數(shù)的定義給出對(duì)數(shù)函數(shù)的定義嗎?
問題五:與中的x,y的相同之處是什么?不同之處是什么?
問題六:與中的x,y的相同之處是什么?不同之處是什么?
設(shè)計(jì)意圖:前四個(gè)問題是為了引導(dǎo)出對(duì)數(shù)函數(shù)的概念,然而,光有前四個(gè)問題還是不夠的,學(xué)生最容易忽略的或最不理解的是函數(shù)的定義域,所以設(shè)計(jì)這兩個(gè)問題是為了讓學(xué)生更好地理解對(duì)數(shù)函數(shù)的定義域
2、對(duì)數(shù)函數(shù)的圖象與性質(zhì)
問題:有了研究指數(shù)函數(shù)的經(jīng)歷,你覺得下面該學(xué)習(xí)什么內(nèi)容了?
(提示學(xué)生進(jìn)行類比學(xué)習(xí))
合作探究1;借助于計(jì)算器在同一直角坐標(biāo)系中畫出下列兩組函數(shù)的圖象,并觀察各組函數(shù)的圖象,探求他們之間的關(guān)系。
合作探究2:當(dāng)函數(shù)與的圖象之間有什么關(guān)系?(在這兒體現(xiàn)"從特殊到一般"、"從具體到抽象"的方法)
合作探究3:分析你所畫的兩組函數(shù)的圖象,對(duì)照指數(shù)函數(shù)的性質(zhì),總結(jié)歸納對(duì)數(shù)函數(shù)的性質(zhì)。
。▽W(xué)生討論并交流各自的發(fā)現(xiàn)成果,教師結(jié)合學(xué)生的交流,適時(shí)歸納總結(jié),并板書對(duì)數(shù)函數(shù)的性質(zhì))
問題1:對(duì)數(shù)函數(shù)()是否具有奇偶性,為什么?
問題2:對(duì)數(shù)函數(shù)(),當(dāng)時(shí),x取何值,y0,x取何值,y,當(dāng)呢?
問題3:對(duì)數(shù)式的值的符號(hào)與a,b的取值之間有何關(guān)系?請(qǐng)用一句簡潔的話語敘述。
知識(shí)拓展:函數(shù)稱為的反函數(shù),反之,函數(shù)也稱為的反函數(shù)。一般地,如果函數(shù)存在反函數(shù),那么它的反函數(shù)記作為
(三)課堂小結(jié)
由學(xué)生小結(jié)(對(duì)數(shù)函數(shù)的概念,對(duì)數(shù)函數(shù)的圖象和性質(zhì),利用對(duì)數(shù)函數(shù)的性質(zhì)比較大小的一般方法和步驟,求定義域應(yīng)從幾方面考慮等)
《對(duì)數(shù)函數(shù)》說課稿 3
一、教學(xué)背景
1、教材分析
《對(duì)數(shù)函數(shù)及其性質(zhì)》是人教版普通高中課程數(shù)學(xué)必修1第二章第二節(jié)第二部分內(nèi)容,對(duì)數(shù)函數(shù)是一類特殊的函數(shù),在實(shí)際生產(chǎn)過程中運(yùn)用很廣泛。同時(shí),通過對(duì)對(duì)數(shù)函數(shù)及其圖象和性質(zhì)的研究,既可以從具體的感性認(rèn)識(shí)上來對(duì)函數(shù)的圖象和性質(zhì)更好的理解,也可為以后研究冪函數(shù)、三角函數(shù)等其它函數(shù)的圖象和性質(zhì)起示范和鋪墊作用。
2、學(xué)情分析
剛?cè)敫咭坏膶W(xué)生,仍保留著初中生許多學(xué)習(xí)特點(diǎn),能力發(fā)展正處于形象思維向抽象思維轉(zhuǎn)折階段,但更注重形象思維。由于函數(shù)概念十分抽象,對(duì)數(shù)函數(shù)又以對(duì)數(shù)運(yùn)算為基礎(chǔ),同時(shí),初中函數(shù)教學(xué)要求降低,導(dǎo)致初中生運(yùn)算能力有所下降,這雙重問題增加了對(duì)數(shù)函數(shù)教學(xué)的難度。但在此之前,學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)及其性質(zhì),學(xué)生已經(jīng)初步對(duì)新函數(shù)的研究方法有所了解,為本節(jié)的學(xué)習(xí)奠定了基礎(chǔ)。
基于以上分析,我制定如下教學(xué)目標(biāo)及重、難點(diǎn):
3、教學(xué)目標(biāo)
知識(shí)與技能:
初步掌握對(duì)數(shù)函數(shù)的概念、圖象及性質(zhì),并應(yīng)用性質(zhì)解決簡單數(shù)學(xué)問題。
過程與方法:
經(jīng)歷對(duì)數(shù)函數(shù)性質(zhì)的探索過程,體會(huì)函數(shù)思想、分類討論思想和轉(zhuǎn)化思想在解決具體問題中的應(yīng)用。
情感態(tài)度與價(jià)值觀:
培養(yǎng)勇于探索的精神,培養(yǎng)學(xué)生的'成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的興趣。
4、教學(xué)重、難點(diǎn)
重點(diǎn):理解對(duì)數(shù)函數(shù)的概念,掌握對(duì)數(shù)函數(shù)的圖象及性質(zhì)。
難點(diǎn):由圖象探究函數(shù)性質(zhì),應(yīng)用性質(zhì)解決具體問題。
二、教學(xué)方法及手段
1、教法
根據(jù)建構(gòu)主義的學(xué)習(xí)理論和新課程標(biāo)準(zhǔn)理念,本節(jié)課以自主探究法和講解法為主,以練習(xí)法為輔,引導(dǎo)學(xué)生自己觀察、歸納、分析,培養(yǎng)學(xué)生采用自主探究的方法進(jìn)行學(xué)習(xí),使學(xué)生體會(huì)學(xué)習(xí)的樂趣。
2、學(xué)法
(1)類比學(xué)習(xí):通過指數(shù)函數(shù)類比學(xué)習(xí)對(duì)數(shù)函數(shù)。
(2)小組合作學(xué)習(xí):將學(xué)生分成7個(gè)小組,通過小組內(nèi)討論交流,歸納得出對(duì)數(shù)函數(shù)的圖象和性質(zhì)。
3、教學(xué)手段
采用多媒體輔助教學(xué)。
三、教學(xué)教程
1、情境引入
通過銀行的復(fù)利計(jì)算問題,逐步引出對(duì)數(shù)函數(shù)。
設(shè)計(jì)意圖:情景來源于生活,通過生活中的實(shí)例來反應(yīng)對(duì)數(shù)函數(shù)的重要性,目的在于激發(fā)學(xué)生學(xué)習(xí)的興趣,讓每一個(gè)學(xué)生都主動(dòng)融入到學(xué)習(xí)中。
2、新知探索
通過上述模型,讓學(xué)生給對(duì)數(shù)函數(shù)下定義。
學(xué)生用描點(diǎn)法畫和的圖象,教師再借助于計(jì)算機(jī)再畫幾個(gè)對(duì)數(shù)函數(shù)的圖象,讓學(xué)生觀察并總結(jié)出一般情況。
以“你們能根據(jù)圖象歸納出對(duì)數(shù)函數(shù)的性質(zhì)嗎?”設(shè)問,引導(dǎo)學(xué)生能過圖象的特征得出對(duì)應(yīng)的性質(zhì)。
例比較下列各組數(shù)中兩個(gè)值的大小:
(1)log23.4和log28.5;
(2)log0.33.4和log0.38.5;
(3)loga3.4和loga8.5(a>0,且a≠1);
(4)log23.4和log3.42;
(5)log3.42和log0.38.5。
3、鞏固練習(xí)
(1)比較大。
lg6________lg8;ln1.3________
(2)比較正數(shù)m,n的大小:
若,則m_____n;若,則m_____n.
4、總結(jié)提煉
(1)自主探究新知識(shí)的方法;
(2)本節(jié)課應(yīng)用了哪些數(shù)學(xué)思想。
5、布置作業(yè)
(1)閱讀教材P70~P72,梳理對(duì)數(shù)函數(shù)的概念、圖象、性質(zhì)等知識(shí)點(diǎn);
(2)教材P74—7、8
四、板書設(shè)計(jì)
2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)
一、概念例題
二、圖象
三、性質(zhì)
四、教學(xué)反思
《對(duì)數(shù)函數(shù)》說課稿 4
尊敬的各位考官:
大家好,我是今天的X號(hào)考生,今天我說課的題目是《對(duì)數(shù)函數(shù)及其性質(zhì)》。
新課標(biāo)指出:高中教育屬于基礎(chǔ)教育,具有基礎(chǔ)性,且具有多樣性與選擇性,使不同的學(xué)生在數(shù)學(xué)上得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。
一、說教材
首先,我來談?wù)勎覍?duì)教材的理解。
對(duì)數(shù)函數(shù)的概念及性質(zhì)是人教A版必修1第二章的內(nèi)容,本節(jié)課著重講授對(duì)數(shù)函數(shù)的概念、對(duì)數(shù)函數(shù)的圖象及性質(zhì)。前面學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,也對(duì)指數(shù)函數(shù)的概念、圖象和性質(zhì)進(jìn)行了探究。之前的學(xué)習(xí),為本節(jié)課的知識(shí)以及經(jīng)驗(yàn)都起到了鋪墊作用。從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),引導(dǎo)學(xué)生發(fā)現(xiàn)問題、解決問題,為進(jìn)一步綜合運(yùn)用初等函數(shù)解決生產(chǎn)生活中以及科研中的問題起到了重要的怍用。
二、說學(xué)情
合理把握學(xué)情是上好一堂課的.基礎(chǔ),下面我來談?wù)剬W(xué)生的實(shí)際情況。
高中的學(xué)生掌握了一定的基礎(chǔ)知識(shí)以及解決問題的經(jīng)驗(yàn),分析問題、解決問題以及動(dòng)手能力較好;诖耍竟(jié)課注重引導(dǎo)學(xué)生動(dòng)腦思考,更富有啟發(fā)性。引導(dǎo)學(xué)生思考、總結(jié),充分參與教學(xué)過程,進(jìn)一步發(fā)展學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。
三、說教學(xué)目標(biāo)
根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):
。ㄒ唬┲R(shí)與技能
掌握對(duì)數(shù)函數(shù)的概念,會(huì)畫對(duì)數(shù)函數(shù)的圖象,根據(jù)對(duì)數(shù)函數(shù)的圖象理解對(duì)數(shù)函數(shù)的性質(zhì)。
(二)過程與方法
通過對(duì)數(shù)函數(shù)性質(zhì)的探究過程,體會(huì)從特殊到一般的方法以及數(shù)形結(jié)合的數(shù)學(xué)思想方法。
(三)情感態(tài)度價(jià)值觀
通過本節(jié)的學(xué)習(xí),體驗(yàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性,養(yǎng)成細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)思考的良好思維習(xí)慣。
四、說教學(xué)重難點(diǎn)
我認(rèn)為一節(jié)好的數(shù)學(xué)課,從教學(xué)內(nèi)容上說一定要突出重點(diǎn)、突破難點(diǎn)。而教學(xué)重點(diǎn)的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是:對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì)。教學(xué)難點(diǎn)是:通過對(duì)數(shù)函數(shù)的圖象歸納對(duì)數(shù)函數(shù)的性質(zhì)。
五、說教法和學(xué)法
現(xiàn)代教學(xué)理論認(rèn)為,教學(xué)過程中,以學(xué)生為主體,教師為主導(dǎo),教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,教學(xué)的一切活動(dòng)必須以強(qiáng)調(diào)學(xué)生的主動(dòng)性、積極性為出發(fā)點(diǎn)。結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我將采用講授法、練習(xí)法、小組討論法等教學(xué)方法。
六、說教學(xué)過程
在這節(jié)課的教學(xué)過程中,我注重突出重點(diǎn),條理清晰,緊湊合理。各項(xiàng)活動(dòng)的安排也注重互動(dòng)、交流,最大限度的調(diào)動(dòng)學(xué)生參與課堂的積極性、主動(dòng)性。
《對(duì)數(shù)函數(shù)》說課稿 5
教學(xué)目標(biāo):
1.進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見問題.
2.培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸.
教學(xué)過程:
一、問題情境
1.復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì).
2.回答下列問題.
(1)函數(shù)y=log2x的.值域是;
(2)函數(shù)y=log2x(x≥1)的值域是;
(3)函數(shù)y=log2x(0
3.情境問題.
函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?
二、學(xué)生活動(dòng)
探究完成情境問題.
三、數(shù)學(xué)運(yùn)用
例1求函數(shù)y=log2(x2+2x+2)的定義域和值域.
練習(xí):
(1)已知函數(shù)y=log2x的值域是[-2,3],則x的范圍是________________.
(2)函數(shù),x(0,8]的值域是.
(3)函數(shù)y=log(x2-6x+17)的值域.
(4)函數(shù)的值域是_______________.
例2判斷下列函數(shù)的奇偶性:
(1)f(x)=lg(2)f(x)=ln(-x)
例3已知loga0.75>1,試求實(shí)數(shù)a取值范圍.
例4已知函數(shù)y=loga(1-ax)(a>0,a≠1).
(1)求函數(shù)的定義域與值域;
(2)求函數(shù)的單調(diào)區(qū)間.
練習(xí):
1.下列函數(shù)(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域?yàn)镽的有(請(qǐng)寫出所有正確結(jié)論的序號(hào)).
2.函數(shù)y=lg(-1)的圖象關(guān)于對(duì)稱.
3.已知函數(shù)(a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m=.
4.求函數(shù),其中x[,9]的值域.
四、要點(diǎn)歸納與方法小結(jié)
(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;
(2)換元法;
(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合).
五、作業(yè)
課本P70~71-4,5,10,11.
《對(duì)數(shù)函數(shù)》說課稿 6
教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):1.對(duì)數(shù)函數(shù)的概念;2.對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:1.理解對(duì)數(shù)函數(shù)的概念;2.掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標(biāo):1.用聯(lián)系的觀點(diǎn)分析問題;2.認(rèn)識(shí)事物之間的互相轉(zhuǎn)化.
教學(xué)重點(diǎn):
對(duì)數(shù)函數(shù)的圖象和性質(zhì)
教學(xué)難點(diǎn):
對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系
教學(xué)方法:
聯(lián)想、類比、發(fā)現(xiàn)、探索
教學(xué)輔助:
多媒體
教學(xué)過程:
一、引入對(duì)數(shù)函數(shù)的概念
由學(xué)生的預(yù)習(xí),可以直接回答“對(duì)數(shù)函數(shù)的概念”
由指數(shù)、對(duì)數(shù)的定義及指數(shù)函數(shù)的概念,我們進(jìn)行類比,可否猜想有:
問題:1.指數(shù)函數(shù)是否存在反函數(shù)?
2.求指數(shù)函數(shù)的反函數(shù).
3.結(jié)論
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).
二、講授新課
1.對(duì)數(shù)函數(shù)的定義:
定義域:(0,+∞);值域:(-∞,+∞)
2.對(duì)數(shù)函數(shù)的圖象和性質(zhì):
因?yàn)閷?duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對(duì)稱.
因此,我們只要畫出和圖象關(guān)于直線對(duì)稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
還可以畫出與圖象關(guān)于直線對(duì)稱的曲線得到的圖象.
請(qǐng)同學(xué)們作出與的.草圖,并觀察它們具有一些什么特征?
對(duì)數(shù)函數(shù)的圖象與性質(zhì):
。1)定義域:
。2)值域:
。3)過定點(diǎn),即當(dāng)時(shí),
(4)上的增函數(shù)
。4)上的減函數(shù)
3.練習(xí):
(1)比較下列各組數(shù)中兩個(gè)值的大。
(2)解關(guān)于x的不等式:
思考:(1)比較大。
(2)解關(guān)于x的不等式:
三、小結(jié)
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對(duì)數(shù)函數(shù).并且研究了對(duì)數(shù)函數(shù)的圖象和性質(zhì).
四、課后作業(yè)
課本P85,習(xí)題2.8,1、3
《對(duì)數(shù)函數(shù)》說課稿 7
一、內(nèi)容與解析
(一)內(nèi)容:對(duì)數(shù)函數(shù)的概念與圖象
(二)解析:本節(jié)課要學(xué)的內(nèi)容是什么是對(duì)數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象形狀及畫法,其核心是對(duì)數(shù)函數(shù)的圖象畫法,理解它關(guān)鍵就是要理解掌握對(duì)數(shù)函數(shù)的圖象特點(diǎn).學(xué)生已經(jīng)掌握了指數(shù)函數(shù)的圖象畫法及特點(diǎn),函數(shù)圖象的一般畫法,本節(jié)課的內(nèi)容就是在此基礎(chǔ)上的發(fā)展.由于它是研究對(duì)數(shù)函數(shù)性質(zhì)的依據(jù),是本學(xué)科的核心內(nèi)容.教學(xué)的重點(diǎn)是對(duì)數(shù)函數(shù)的圖象特點(diǎn)與畫法,解決重點(diǎn)的關(guān)鍵是利用函數(shù)圖象的一般畫法畫出具體對(duì)數(shù)函數(shù)的圖象,從而歸納出對(duì)數(shù)函數(shù)的圖象特點(diǎn),再根據(jù)圖象特點(diǎn)確定對(duì)數(shù)函數(shù)的一般畫法。
二、教學(xué)目標(biāo)及解析
(一)教學(xué)目標(biāo):
1,理解對(duì)數(shù)函數(shù)的概念;掌握對(duì)數(shù)函數(shù)的圖象的特點(diǎn)及畫法。
2,通過具體實(shí)例,直觀感受對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系;通過具體的函數(shù)圖象的畫法逐步認(rèn)識(shí)對(duì)數(shù)函數(shù)的特征;
3,培養(yǎng)學(xué)生運(yùn)用類比方法探索研究數(shù)學(xué)問題的素養(yǎng),提高學(xué)生分析問題、解決問題的能力。
(二)解析:
1,理解對(duì)數(shù)函數(shù)的概念是來源于實(shí)踐的,能從函數(shù)概念的角度闡述其意義;掌握對(duì)數(shù)函數(shù)的圖象和性質(zhì),做到能畫草圖,能分析圖象,能從圖象觀察得出對(duì)數(shù)函數(shù)的單調(diào)性、值域、定點(diǎn)等;了解同底指數(shù)函數(shù)和對(duì)數(shù)函數(shù)互為反函數(shù),能說出它們的圖象之間的關(guān)系,知道它們的定義域和值域之間的關(guān)系,了解反函數(shù)帶有逆運(yùn)算的意味;
2,通過具體的實(shí)例,歸納得出一般的函數(shù)圖象特征,并能夠通過圖象特征得到相應(yīng)的函數(shù)特征,培養(yǎng)學(xué)生的作圖、識(shí)圖的能力和歸納總結(jié)能力;
3,類比指數(shù)函數(shù)的圖象和性質(zhì)的研究方法,來研究對(duì)數(shù)函數(shù),讓學(xué)生認(rèn)識(shí)到研究問題的方法上的一般性;同時(shí),讓學(xué)生認(rèn)識(shí)到類比這一數(shù)學(xué)思想,即對(duì)相似的問題可以借鑒之前問題的研究方法來研究,有助于提高學(xué)生分析問題、解決問題的能力。
三、問題診斷分析
本節(jié)課容易出現(xiàn)的問題是:對(duì)數(shù)函數(shù)的圖象特點(diǎn)的探究容易出現(xiàn)圖象不對(duì)、歸納不全、有所偏差等情形。出現(xiàn)這一問題的原因是:學(xué)生作圖能力、識(shí)圖能力、歸納能力不強(qiáng)。要解決這一問題,教師要通過讓學(xué)生類比指數(shù)函數(shù)圖象和性質(zhì)的探究,時(shí)時(shí)回過頭看看之前是怎么做的,考慮了哪些問題,得到了哪些結(jié)論,讓學(xué)生類比自主探究,必要時(shí)給予適當(dāng)引導(dǎo),讓學(xué)生自主的得出結(jié)論,對(duì)于出錯(cuò)的地方要讓學(xué)生討論,教師做出適當(dāng)?shù)脑u(píng)價(jià)并最終給出結(jié)論。
四、教學(xué)支持條件分析
在本節(jié)課xx的教學(xué)中,準(zhǔn)備使用xx,因?yàn)槭褂脁x,有利于xx.
五、教學(xué)過程
問題1.前面我們已經(jīng)掌握了指數(shù)函數(shù)的概念、圖象與性質(zhì),知道了指數(shù)函數(shù)是基本初等函數(shù)之一,F(xiàn)在學(xué)習(xí)的對(duì)數(shù),也可以構(gòu)成一種函數(shù),我們稱之為對(duì)數(shù)函數(shù),那么什么樣的函數(shù)稱為對(duì)數(shù)函數(shù)呢?
[設(shè)計(jì)意圖]新課標(biāo)強(qiáng)調(diào)考慮到多數(shù)高中生的認(rèn)知特點(diǎn),為了有助于他們對(duì)函數(shù)概念本質(zhì)的理解,不妨從學(xué)生自己的生活經(jīng)歷和實(shí)際問題入手。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個(gè)材料引出對(duì)數(shù)函數(shù)的概念,讓學(xué)生熟悉它的知識(shí)背景,初步感受對(duì)數(shù)函數(shù)是刻畫現(xiàn)實(shí)世界的又一重要數(shù)學(xué)模型。這樣處理,對(duì)數(shù)函數(shù)顯得不抽象,學(xué)生容易接受,降低了新課教學(xué)的.起點(diǎn)。
小問題串:
1.2.2.1的例6,考古學(xué)家是如何估算出土文物或古遺址的年代的?這種對(duì)應(yīng)關(guān)系是否形成函數(shù)關(guān)系?
2.某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),如果要求這種細(xì)胞經(jīng)過多少次分裂,大約可以得到細(xì)胞1萬個(gè),10萬個(gè)。怎么求?相應(yīng)的對(duì)應(yīng)關(guān)系是否也形成函數(shù)關(guān)系?
3.由上述兩個(gè)實(shí)例,請(qǐng)你類比指數(shù)函數(shù)的概念歸納對(duì)數(shù)函數(shù)的概念
觀察這些函數(shù)的特征:含有對(duì)數(shù)符號(hào),底數(shù)是常數(shù),真數(shù)是變量,從而得出對(duì)數(shù)函數(shù)的定義:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+).
注意:
。1)對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。
(2)對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制。
4.根據(jù)對(duì)數(shù)函數(shù)定義填空;
例1(1)函數(shù)y=logax2的定義域是xx(其中a1)。
(2)函數(shù)y=loga(4-x)的定義域是xx(其中a1)。
說明:本例主要考察對(duì)數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對(duì)概念的理解,所以把教材中的解答題改為填空題,節(jié)省時(shí)間,點(diǎn)到為止,以避免挖深、拓展、引入復(fù)合函數(shù)的概念。
問題2.對(duì)數(shù)函數(shù)的圖象是什么樣?有什么特點(diǎn)呢?
[設(shè)計(jì)意圖]舊教材是通過對(duì)稱變換直接從指數(shù)函數(shù)的圖象得到對(duì)數(shù)函數(shù)圖象,這樣處理學(xué)生雖然會(huì)接受了這個(gè)事實(shí),但對(duì)圖象的感覺是膚淺的;這樣處理也存在著函數(shù)教學(xué)忽視圖象、性質(zhì)的認(rèn)知過程而注重應(yīng)用的功利思想。因此,本節(jié)課的設(shè)計(jì)注重引導(dǎo)學(xué)生用特殊到一般的方法探究對(duì)數(shù)函數(shù)圖象的形成過程,加深感性認(rèn)識(shí)。同時(shí),幫助學(xué)生確定探究問題、探究方向和探究步驟,確保探究的有效性。這個(gè)環(huán)節(jié),還要借助計(jì)算機(jī)輔助教學(xué)作用,增強(qiáng)學(xué)生的直觀感受。
小問題串:
(1)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象。
(2)用描點(diǎn)法在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象。
(3)觀察對(duì)數(shù)函數(shù)、與、的圖象特征,看看它們有那些異同點(diǎn)。
(4)利用計(jì)算器或計(jì)算機(jī),選取底數(shù),且的若干個(gè)不同的值,在同一平面直角坐標(biāo)系中作出相應(yīng)對(duì)數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?
(5)歸納出能體現(xiàn)對(duì)數(shù)函數(shù)的代表性圖象,并說明以后如何畫對(duì)數(shù)函數(shù)的簡圖。
例題
1.課本P75A組第10題
2.求函數(shù)的定義域,并畫出函數(shù)的圖象。
六、目標(biāo)檢測(cè)
求下列函數(shù)的定義域
《對(duì)數(shù)函數(shù)》說課稿 8
教學(xué)目標(biāo)
1.在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對(duì)數(shù)函數(shù)的概念,能正確描繪對(duì)數(shù)函數(shù)的圖像,掌握對(duì)數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2.通過對(duì)數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.
3.通過對(duì)數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握?qǐng)D像和性質(zhì).
難點(diǎn)是由對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對(duì)數(shù)函數(shù)的`圖像和性質(zhì).
教學(xué)方法
啟發(fā)研討式
教學(xué)用具
投影儀
教學(xué)過程
一.引入新課
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).
提問:什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
由學(xué)生說出是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過程:
由得.又的值域?yàn)椋?/p>
所求反函數(shù)為.
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).
二.對(duì)數(shù)函數(shù)的圖像與性質(zhì)(板書)
1.作圖方法
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按和分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況和,并分別以和為例畫圖.
具體操作時(shí),要求學(xué)生做到:
(1)指數(shù)函數(shù)和的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).
(2)畫出直線.
(3)的圖像在翻折時(shí)先將特殊點(diǎn)對(duì)稱點(diǎn)找到,變化趨勢(shì)由靠近軸對(duì)稱為逐漸靠近軸,而的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在左側(cè)的先翻,然后再翻在右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出和的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
2.草圖.
教師畫完圖后再利用投影儀將和的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)
3.性質(zhì)
(1)定義域:
(2)值域:
由以上兩條可說明圖像位于軸的右側(cè).
(3)截距:令得,即在軸上的截距為1,與軸無交點(diǎn)即以軸為漸近線.
(4)奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于軸對(duì)稱.
(5)單調(diào)性:與有關(guān).當(dāng)時(shí),在上是增函數(shù).即圖像是上升的
當(dāng)時(shí),在上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng)時(shí),有;當(dāng)時(shí),有.
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對(duì)圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
三.鞏固練習(xí)
練習(xí):若,求的取值范圍.
四.小結(jié)
五.作業(yè)略
《對(duì)數(shù)函數(shù)》說課稿 9
課題:指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)及其應(yīng)用
課型:綜合課
教學(xué)目標(biāo):在復(fù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性之后,通過圖像對(duì)比使學(xué)生較快的學(xué)會(huì)不求值比較指數(shù)函數(shù)與對(duì)數(shù)函數(shù)值的大小及提高對(duì)復(fù)合型函數(shù)的定義域與值域的解題技巧。
重點(diǎn):指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的特性。
難點(diǎn):指導(dǎo)學(xué)生如何根據(jù)上述特性解決復(fù)合型函數(shù)的`定義域與值域的問題。
教學(xué)方法:多媒體授課。
學(xué)法指導(dǎo):借助列表與圖像法。
教具:多媒體教學(xué)設(shè)備。
教學(xué)過程:
一、復(fù)習(xí)提問。通過找學(xué)生分別敘述指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的公式及特性,加深學(xué)生的記憶。
二、展示指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的一覽表。并和學(xué)生們共同復(fù)習(xí)這些性質(zhì)。
指數(shù)函數(shù)與對(duì)數(shù)函數(shù)關(guān)系一覽表
函數(shù)
性質(zhì)
指數(shù)函數(shù)
y=ax(a>0且a≠1)
對(duì)數(shù)函數(shù)
y=logax(a>0且a≠1)
定義域
實(shí)數(shù)集R
正實(shí)數(shù)集(0,﹢∞)
值域
正實(shí)數(shù)集(0,﹢∞)
實(shí)數(shù)集R
共同的點(diǎn)
(0,1)
。1,0)
單調(diào)性
a>1增函數(shù)
a>1增函數(shù)
0<a<1減函數(shù)
0<a<1減函數(shù)
函數(shù)特性
a>1
當(dāng)x>0,y>1
當(dāng)x>1,y>0
當(dāng)x<0,0<y<1
當(dāng)0<x<1,y<0
0<a<1
當(dāng)x>0,0<y<1
當(dāng)x>1,y<0
當(dāng)x<0,y>1
當(dāng)0<x<1,y>0
反函數(shù)
y=logax(a>0且a≠1)
y=ax(a>0且a≠1)
圖像
Y
y=(1/2)xy=2x
(0,1)
X
Y
y=log2x
(1,0)
X
y=log1/2x
三、同一坐標(biāo)系中將指數(shù)函數(shù)與對(duì)數(shù)函數(shù)進(jìn)行合成,觀察其特點(diǎn),并得出y=log2x與y=2x、y=log1/2x與y=(1/2)x的圖像關(guān)于直線y=x對(duì)稱,互為反函數(shù)關(guān)系。所以y=logax與y=ax互為反函數(shù)關(guān)系,且y=logax的定義域與y=ax的值域相同,y=logax的值域與y=ax的定義域相同。
Y
y=(1/2)xy=2xy=x
。0,1)y=log2x
。1,0)X
y=log1/2x
注意:不能由圖像得到y(tǒng)=2x與y=(1/2)x為偶函數(shù)關(guān)系。因?yàn)榕己瘮?shù)是指同一個(gè)函數(shù)的圖像關(guān)于Y軸對(duì)稱。此圖雖有y=2x與y=(1/2)x圖像對(duì)稱,但它們是2個(gè)不同的函數(shù)。
四、利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)性質(zhì)去解決含有指數(shù)與對(duì)數(shù)的復(fù)合型函數(shù)的定義域、值域問題及比較函數(shù)的大小值。
五、例題
例⒈比較(Л)(-0.1)與(Л)(-0.5)的大小。
解:∵y=ax中,a=Л>1
∴此函數(shù)為增函數(shù)
又∵﹣0.1>﹣0.5
∴(Л)(-0.1)>(Л)(-0.5)
例⒉比較log67與log76的大小。
解:∵log67>log66=1
log76<log77=1
∴l(xiāng)og67>log76
注意:當(dāng)2個(gè)對(duì)數(shù)值不能直接進(jìn)行比較時(shí),可在這2個(gè)對(duì)數(shù)中間插入一個(gè)已知數(shù),間接比較這2個(gè)數(shù)的大小。
例⒊求y=3√4-x2的定義域和值域。
解:∵√4-x2有意義,須使4-x2≥0
即x2≤4,|x|≤2
∴-2≤x≤2,即定義域?yàn)閇-2,2]
又∵0≤x2≤4,∴0≤4-x2≤4
∴0≤√4-x2≤2,且y=3x是增函數(shù)
∴30≤y≤32,即值域?yàn)閇1,9]
例⒋求函數(shù)y=√log0.25(log0.25x)的定義域。
解:要函數(shù)有意義,須使log0.25(log0.25x)≥0
又∵0<0.25<1,∴y=log0.25x是減函數(shù)
∴0<log0.25x≤1
∴l(xiāng)og0.251<log0.25x≤log0.250.25
∴0.25≤x<1,即定義域?yàn)閇0.25,1)
六、課堂練習(xí)
求下列函數(shù)的定義域
1.y=8[1/(2x-1)]
2.y=loga(1-x)2(a>0,且a≠1)
七、評(píng)講練習(xí)
八、布置作業(yè)
第113頁,第10、11題。并預(yù)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)
在物理、社會(huì)科學(xué)中的實(shí)際應(yīng)用。
《對(duì)數(shù)函數(shù)》說課稿 10
學(xué)習(xí)目標(biāo)
1.通過具體實(shí)例,直觀了解對(duì)數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對(duì)數(shù)函數(shù)的概念,體會(huì)對(duì)數(shù)函數(shù)是一類重要的函數(shù)模型;
2.能借助計(jì)算器或計(jì)算機(jī)畫出具體對(duì)數(shù)函數(shù)的圖象,探索并了解對(duì)數(shù)函數(shù)的單調(diào)性與特殊點(diǎn);
3.通過比較、對(duì)照的方法,引導(dǎo)學(xué)生結(jié)合圖象類比指數(shù)函數(shù),探索研究對(duì)數(shù)函數(shù)的性質(zhì),培養(yǎng)數(shù)形結(jié)合的思想方法,學(xué)會(huì)研究函數(shù)性質(zhì)的方法.
舊知提示
復(fù)習(xí):若,則,其中稱為,其范圍為,稱為.
合作探究(預(yù)習(xí)教材P70-P72,找出疑惑之處)
探究1:元旦晚會(huì)前,同學(xué)們剪彩帶備用,F(xiàn)有一根彩帶,將其對(duì)折后,沿折痕剪開,可將所得的兩段放在一起,對(duì)折再剪段。設(shè)所得的彩帶的根數(shù)為,剪的次數(shù)為,試用表示.
新知:對(duì)數(shù)函數(shù)的概念
試一試:以下函數(shù)是對(duì)數(shù)函數(shù)的是()
A.B.C.D.E.
反思:對(duì)數(shù)函數(shù)定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別,如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù);對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制,且.
探究2:你能類比前面討論指數(shù)函數(shù)性質(zhì)的思路,提出研究對(duì)數(shù)函數(shù)性質(zhì)的內(nèi)容和方法嗎?
研究方法:畫出函數(shù)圖象,結(jié)合圖象研究函數(shù)性質(zhì).
研究內(nèi)容:定義域、值域、特殊點(diǎn)、單調(diào)性、最大(小)值、奇偶性.
作圖:在同一坐標(biāo)系中畫出下列對(duì)數(shù)函數(shù)的圖象.
新知:對(duì)數(shù)函數(shù)的圖象和性質(zhì):
象
定義域
值域
過定點(diǎn)
單調(diào)性
思考:當(dāng)時(shí),時(shí),;時(shí),;
當(dāng)時(shí),時(shí),;時(shí),.
典型例題
例1求下列函數(shù)的定義域:(1);(2).
例2比較大。
(1);(2);(3);(4)與.
課堂小結(jié)
1.對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);
2.求定義域;
3.利用單調(diào)性比大小.
知識(shí)拓展
對(duì)數(shù)函數(shù)凹凸性:函數(shù),是任意兩個(gè)正實(shí)數(shù).
當(dāng)時(shí),;當(dāng)時(shí),.
學(xué)習(xí)評(píng)價(jià)
1.函數(shù)的定義域?yàn)?)
A.B.C.D.
2.函數(shù)的定義域?yàn)?)
A.B.C.D.
3.函數(shù)的定義域是.
4.比較大小:
(1)log67log76;(2);(3).
課后作業(yè)
1.不等式的解集是().
A.B.C.D.
2.若,則()
A.B.C.D.
3.當(dāng)a1時(shí),在同一坐標(biāo)系中,函數(shù)與的圖象是().
4.已知函數(shù)的定義域?yàn),函?shù)的定義域?yàn),則有()
A.B.C.D.
5.函數(shù)的定義域?yàn)?
6.若且,函數(shù)的圖象恒過定點(diǎn),則的坐標(biāo)是.
7.已知,則=.
8.求下列函數(shù)的定義域:
2.2.2對(duì)數(shù)函數(shù)及其性質(zhì)(2)
學(xué)習(xí)目標(biāo)
1.解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡單應(yīng)用;
2.進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì);
3.學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì)。
舊知提示
復(fù)習(xí)1:對(duì)數(shù)函數(shù)圖象和性質(zhì).
a10
圖性質(zhì)
(1)定義域:
(2)值域:
(3)過定點(diǎn):
(4)單調(diào)性:
復(fù)習(xí)2:比較兩個(gè)對(duì)數(shù)的大。(1);(2).
復(fù)習(xí)3:(1)的定義域?yàn)?
(2)的定義域?yàn)?
復(fù)習(xí)4:右圖是函數(shù),,,的圖象,則底數(shù)之間的關(guān)系為.
合作探究(預(yù)習(xí)教材P72-P73,找出疑惑之處)
探究:如何由求出x?
新知:反函數(shù)
試一試:在同一平面直角坐標(biāo)系中,畫出指數(shù)函數(shù)及其反函數(shù)圖象,發(fā)現(xiàn)什么性質(zhì)?
反思:
(1)如果在函數(shù)的圖象上,那么P0關(guān)于直線的對(duì)稱點(diǎn)在函數(shù)的圖象上嗎?為什么?
(2)由上述過程可以得到結(jié)論:互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于對(duì)稱.
典型例題
例1求下列函數(shù)的反函數(shù):
(1);(2).
提高:①設(shè)函數(shù)過定點(diǎn),則過定點(diǎn).
②函數(shù)的反函數(shù)過定點(diǎn).
、奂褐瘮(shù)的圖象過點(diǎn)(1,3)其反函數(shù)的圖象過點(diǎn)(2,0),則的表達(dá)式為.
小結(jié):求反函數(shù)的步驟(解x習(xí)慣表示定義域)
例2溶液酸堿度的測(cè)量問題:溶液酸堿度pH的.計(jì)算公式,其中表示溶液中氫離子的濃度,單位是摩爾/升.
(1)分析溶液酸堿度與溶液中氫離子濃度之間的變化關(guān)系?
(2)純凈水摩爾/升,計(jì)算其酸堿度.
例3求下列函數(shù)的值域:(1);(2).
課堂小結(jié)
、俸瘮(shù)模型應(yīng)用思想;②反函數(shù)概念.
知識(shí)拓展
函數(shù)的概念重在對(duì)于某個(gè)范圍(定義域)內(nèi)的任意一個(gè)自變量x的值,y都有唯一的值和它對(duì)應(yīng).對(duì)于一個(gè)單調(diào)函數(shù),反之對(duì)應(yīng)任意y值,x也都有惟一的值和它對(duì)應(yīng),從而單調(diào)函數(shù)才具有反函數(shù).反函數(shù)的定義域是原函數(shù)的值域,反函數(shù)的值域是原函數(shù)的定義域,即互為反函數(shù)的兩個(gè)函數(shù),定義域與值域是交叉相等.
學(xué)習(xí)評(píng)價(jià)
1.函數(shù)的反函數(shù)是().
A.B.C.D.
2.函數(shù)的反函數(shù)的單調(diào)性是().
A.在R上單調(diào)遞增B.在R上單調(diào)遞減
C.在上單調(diào)遞增D.在上單調(diào)遞減
3.函數(shù)的反函數(shù)是().
A.B.C.D.
4.函數(shù)的值域?yàn)?).
A.B.C.D.
5.指數(shù)函數(shù)的反函數(shù)的圖象過點(diǎn),則a的值為.
6.點(diǎn)在函數(shù)的反函數(shù)圖象上,則實(shí)數(shù)a的值為.
課后作業(yè)
1.函數(shù)的反函數(shù)為()
A.B.C.D.
2.設(shè),,,,則的大小關(guān)系是()
A.B.C.D.
3.的反函數(shù)為.
4.函數(shù)的值域?yàn)?
5.已知函數(shù)的反函數(shù)圖象經(jīng)過點(diǎn),則.
6.設(shè),則滿足的值為.
7.求下列函數(shù)的反函數(shù).
(1)y=;(2)y=(a1,x(3).
《對(duì)數(shù)函數(shù)》說課稿 11
一、教材分析
本節(jié)課是新課標(biāo)高中數(shù)學(xué)必修①中第三章對(duì)數(shù)函數(shù)內(nèi)容的第二課時(shí),也就是對(duì)數(shù)函數(shù)的入門。對(duì)數(shù)函數(shù)對(duì)于學(xué)生來說是一個(gè)全新的函數(shù)模型,學(xué)習(xí)起來比較困難。而對(duì)數(shù)函數(shù)又是本章的重要內(nèi)容,在高考中占有一定的分量,它是在指數(shù)函數(shù)的基礎(chǔ)上,對(duì)函數(shù)類型的拓廣,同時(shí)在解決一些日常生活問題及科研中起十分重要的作用。通過本節(jié)課的學(xué)習(xí),可以讓學(xué)生理解對(duì)數(shù)函的概念,從而進(jìn)一步深化對(duì)對(duì)數(shù)模型的認(rèn)識(shí)與理解。同時(shí),通過對(duì)數(shù)概念的學(xué)習(xí),對(duì)培養(yǎng)學(xué)生對(duì)立統(tǒng)一,相互聯(lián)系、相互轉(zhuǎn)化的思想,培養(yǎng)學(xué)生的邏輯思維能力都具有重要的意義。
二、學(xué)情分析
大部分學(xué)生學(xué)習(xí)的自主性較差,主動(dòng)性不夠,學(xué)習(xí)有依賴性,且學(xué)習(xí)的信心不足,對(duì)數(shù)學(xué)存在或多或少的恐懼感。通過對(duì)指數(shù)函與指數(shù)函數(shù)的學(xué)習(xí),學(xué)生已多次體會(huì)了對(duì)立統(tǒng)一、相互聯(lián)系、相互轉(zhuǎn)化的思想,并且探究能力、邏輯思維能力得到了一定的鍛煉。因此,學(xué)生已具備了探索發(fā)現(xiàn)研究對(duì)數(shù)函數(shù)定義的認(rèn)識(shí)基礎(chǔ),故應(yīng)通過指導(dǎo),教會(huì)學(xué)生獨(dú)立思考、大膽探索和靈活運(yùn)用類比、轉(zhuǎn)化、歸納等數(shù)學(xué)思想的`學(xué)習(xí)方法。
三、設(shè)計(jì)思路
學(xué)生是教學(xué)的主體,本節(jié)課要給學(xué)生提供各種參與機(jī)會(huì)。為了調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生化被動(dòng)為主動(dòng)。本節(jié)課我利用多媒體輔助教學(xué),教學(xué)中我引導(dǎo)學(xué)生從實(shí)例出發(fā),從中認(rèn)識(shí)對(duì)數(shù)的模型,體會(huì)引入對(duì)數(shù)的必要性。在教學(xué)重難點(diǎn)上,步步設(shè)問、啟發(fā)學(xué)生的思維,通過課堂練習(xí)、探究活動(dòng),學(xué)生討論的方式來加深理解,很好地突破難點(diǎn)和提高教學(xué)效率。讓學(xué)生在教師的引導(dǎo)下,充分地動(dòng)手、動(dòng)口、動(dòng)腦,掌握學(xué)習(xí)的主動(dòng)權(quán)。
四、教學(xué)目標(biāo)
1、理解對(duì)數(shù)函數(shù)的概念,了解對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的關(guān)系;理解對(duì)數(shù)函數(shù)的性質(zhì),掌握以上知識(shí)并形成技能。
2、通過對(duì)數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.。
3、通過學(xué)生分組探究進(jìn)行活動(dòng),掌握對(duì)數(shù)函數(shù)的重要性質(zhì)。通過做練習(xí),使學(xué)生感受到理論與實(shí)踐的統(tǒng)一。
4、培養(yǎng)學(xué)生的類比、分析、歸納能力,嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)以及在學(xué)習(xí)過程中培養(yǎng)學(xué)生探究的意識(shí)。
五、重點(diǎn)與難點(diǎn)
重點(diǎn):
。1)對(duì)數(shù)函數(shù)的概念;
。2)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)的相互轉(zhuǎn)化。
難點(diǎn):
。1)對(duì)數(shù)函數(shù)概念的理解;
。2)對(duì)數(shù)函數(shù)性質(zhì)的理解。
六、過程設(shè)計(jì)
。ㄒ唬⿵(fù)習(xí)導(dǎo)入
。1)復(fù)習(xí)提問:什么是對(duì)數(shù)函數(shù)?如何求反函數(shù)?指數(shù)函數(shù)的圖象和性質(zhì)如何?
學(xué)生回答,并用課件展示指數(shù)函數(shù)的圖象和性質(zhì)。
設(shè)計(jì)意圖:設(shè)計(jì)的提問既與本節(jié)內(nèi)容有密切關(guān)系,又有利于引入新課,為學(xué)生理解新知識(shí)清除了障礙,有意識(shí)地培養(yǎng)學(xué)生分析問題的能力。
。2)導(dǎo)言:指數(shù)函數(shù)有沒有反函數(shù)?如果有,如何求指數(shù)函數(shù)的反函數(shù)?它的反函數(shù)是什么?
設(shè)計(jì)意圖:這樣的導(dǎo)言可激發(fā)學(xué)生求知欲,使學(xué)生渴望知道問題的答案。
。ǘ┲v授新課
(1)對(duì)數(shù)函數(shù)的概念
引導(dǎo)學(xué)生從對(duì)數(shù)式與指數(shù)式的關(guān)系及反函數(shù)的概念進(jìn)行分析并推導(dǎo)出,指數(shù)函數(shù)有反函數(shù),并且y=ax(a>0且a≠1)的反函數(shù)是y=logax,見課件。把函數(shù)y=logax叫做對(duì)數(shù)函數(shù),其中a>0且a≠1。從而引出對(duì)數(shù)函數(shù)的概念,展示課件。
設(shè)計(jì)意圖:對(duì)數(shù)函數(shù)的概念比較抽象,利用已經(jīng)學(xué)過的知識(shí)逐步分析,這樣引出對(duì)數(shù)函數(shù)的概念過渡自然,學(xué)生易于接受。因?yàn)閷?duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),讓學(xué)生比較它們的定義域、值域、對(duì)應(yīng)法則及圖象的關(guān)系,培養(yǎng)學(xué)生參與意識(shí),通過比較充分體現(xiàn)指數(shù)函數(shù)及對(duì)數(shù)函數(shù)的內(nèi)在聯(lián)系。
(2)對(duì)數(shù)函數(shù)的圖象
提問:同指數(shù)函數(shù)一樣,在學(xué)習(xí)了函數(shù)的定義之后,我們要畫函數(shù)的圖象,應(yīng)如何畫對(duì)數(shù)函數(shù)的圖象呢
讓學(xué)生思考并回答,用描點(diǎn)法畫圖。教師肯定,我們每學(xué)習(xí)一種新的函數(shù)都可以根據(jù)函數(shù)的解析式,描點(diǎn)畫圖。再考慮一下,我們還可以用什么方法畫出對(duì)數(shù)函數(shù)的圖象呢?
《對(duì)數(shù)函數(shù)》說課稿 12
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識(shí)問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.
教學(xué)過程設(shè)計(jì)
一、引入新課
師:請(qǐng)同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
(用投影幻燈給出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.
師:(手執(zhí)投影棒使之沿曲線移動(dòng))對(duì).他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們?cè)趯W(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)
二、對(duì)概念的分析
(板書課題:)
師:請(qǐng)同學(xué)們打開課本第51頁,請(qǐng)××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W(xué)生朗讀.)
師:好,請(qǐng)坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請(qǐng)同學(xué)們思考一個(gè)問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個(gè)簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
。ㄍㄟ^教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請(qǐng)同學(xué)們和我一起來看剛才的兩組圖中的第一個(gè)函數(shù)y=f1(x)和y=f2(x)的圖象,體會(huì)這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識(shí)融為一體,加深對(duì)概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)……
(不把話說完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)較小的函數(shù)值的函數(shù).
。▽W(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識(shí)定義?
(學(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會(huì)遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會(huì)學(xué)生如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識(shí)問題的能力.
。ń處熢趯W(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時(shí),給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個(gè)詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們?cè)趯W(xué)習(xí)任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個(gè)相近的概念時(shí)還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對(duì)相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請(qǐng)大家思考一個(gè)問題,我們能否說一個(gè)函數(shù)在x=5時(shí)是遞增或遞減的?為什么?
生:不能.因?yàn)榇藭r(shí)函數(shù)值是一個(gè)數(shù).
師:對(duì).函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個(gè)字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋(gè)函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個(gè)我們學(xué)過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
。ㄔ趯W(xué)生回答問題時(shí),教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個(gè)例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個(gè)區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們?cè)谡務(wù)摵瘮?shù)的增減性時(shí)必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個(gè)區(qū)間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語.
師:你答的很對(duì).能解釋一下為什么嗎?
。▽W(xué)生不一定能答全,教師應(yīng)給予必要的.提示.)
師:“屬于”是什么意思?
生:就是說兩個(gè)自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點(diǎn)?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個(gè)反例來說明“任意”呢?
(讓學(xué)生思考片刻.)
生:可以構(gòu)造一個(gè)反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯(cuò)了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時(shí),有f(x1)>f(x2);當(dāng)x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個(gè)點(diǎn)的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個(gè)自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對(duì)定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大。匆话愠闪t特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來解釋數(shù)學(xué)知識(shí),同時(shí)用數(shù)學(xué)知識(shí)去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個(gè)單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個(gè)問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
。ㄖ赋鲇枚x證明的必要性.)
師:怎樣用定義證明呢?請(qǐng)同學(xué)們思考后在筆記本上寫出證明過程.
。ń處熝惨暎⒅付ㄒ幻械人降膶W(xué)生在黑板上板演.學(xué)生可能會(huì)對(duì)如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對(duì)于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對(duì)兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號(hào)來決定兩個(gè)數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)x1<x2時(shí),
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對(duì)式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對(duì)變形后的式子說明其符號(hào).應(yīng)寫明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號(hào)”(在黑板上板演,并注明“③→定符號(hào)”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請(qǐng)同學(xué)們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
。▽(duì)學(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢(shì).在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢(shì)對(duì)理解知識(shí)本身是有益的,同時(shí)對(duì)學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號(hào)“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬(duì)學(xué)生證明中出現(xiàn)的問題給予點(diǎn)拔.可依據(jù)學(xué)生的問題,給出下面的提示:
。1)分式問題化簡方法一般是通分.
。2)要說明三個(gè)代數(shù)式的符號(hào):k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號(hào)方向要改變.
對(duì)學(xué)生的解答進(jìn)行簡單的分析小結(jié),點(diǎn)出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請(qǐng)同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
。ㄕ(qǐng)一個(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語;在寫單調(diào)區(qū)間時(shí)不要輕易用并集的符號(hào)連接;最后在用定義證明時(shí),應(yīng)該注意證明的四個(gè)步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(x)
+b>0.由此可知(x)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計(jì)說明
是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對(duì)學(xué)生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對(duì)此有一定的感性認(rèn)識(shí),對(duì)概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺得是已經(jīng)學(xué)過的知識(shí),感覺乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對(duì)概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對(duì)概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對(duì)概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點(diǎn).因此在本教案的設(shè)計(jì)過程中突出對(duì)概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對(duì)如何學(xué)會(huì)、弄懂一個(gè)概念有初步的認(rèn)識(shí),并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對(duì)學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對(duì)今后的教學(xué)作一定的鋪墊.
《對(duì)數(shù)函數(shù)》說課稿 13
一、教學(xué)目標(biāo):
1、知識(shí)與技能
。1)理解指數(shù)函數(shù)的概念和意義;
。2)與的圖象和性質(zhì);
(3)理解和掌握指數(shù)函數(shù)的圖象和性質(zhì);
(4)指數(shù)函數(shù)底數(shù)a對(duì)圖象的影響;
(5)底數(shù)a對(duì)指數(shù)函數(shù)單調(diào)性的影響,并利用它熟練比較幾個(gè)指數(shù)冪的大小
。6)體會(huì)具體到一般數(shù)學(xué)討論方式及數(shù)形結(jié)合的思想。
2、情感、態(tài)度、價(jià)值觀
。1)讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。
。2)培養(yǎng)學(xué)生觀察問題,分析問題的能力。
二、重、難點(diǎn):
重點(diǎn):
。1)指數(shù)函數(shù)的概念和性質(zhì)及其應(yīng)用。
。2)指數(shù)函數(shù)底數(shù)a對(duì)圖象的影響。
。3)利用指數(shù)函數(shù)單調(diào)性熟練比較幾個(gè)指數(shù)冪的大小。
難點(diǎn):
。1)利用函數(shù)單調(diào)性比較指數(shù)冪的'大小。
。2)指數(shù)函數(shù)性質(zhì)的歸納,概括及其應(yīng)用。
三、教法與教具:
①學(xué)法:觀察法、講授法及討論法。
、诮叹撸憾嗝襟w。
四、教學(xué)過程:
第一課時(shí)
講授新課
指數(shù)函數(shù)的定義
一般地,函數(shù)(>0且≠1)叫做指數(shù)函數(shù),其中是自變量,函數(shù)的定義域?yàn)镽。
提問:在下列的關(guān)系式中,哪些不是指數(shù)函數(shù),為什么?
《對(duì)數(shù)函數(shù)》說課稿 14
教學(xué)目標(biāo)
1、知識(shí)與技能
了解函數(shù)的概念,弄清自變量與函數(shù)之間的關(guān)系。
2、過程與方法
經(jīng)歷探索函數(shù)概念的過程,感受函數(shù)的模型思想。
3、情感、態(tài)度與價(jià)值觀
培養(yǎng)觀察、交流、分析的思想意識(shí),體會(huì)函數(shù)的實(shí)際應(yīng)用價(jià)值。
重、難點(diǎn)與關(guān)鍵
1、重點(diǎn):認(rèn)識(shí)函數(shù)的概念。
2、難點(diǎn):對(duì)函數(shù)中自變量取值范圍的確定。
3、關(guān)鍵:從實(shí)際出發(fā),由具體到抽象,建立函數(shù)的模型。
教學(xué)方法
采用“情境──探究”的方法,讓學(xué)生從具體的情境中提升函數(shù)的思想方法。
教學(xué)過程
一、回顧交流,聚焦問題
1、變量(P94)中5個(gè)思考題。
教師提問
同學(xué)們通過學(xué)習(xí)“變量”這一節(jié)內(nèi)容,對(duì)常量和變量有了一定的認(rèn)識(shí),請(qǐng)同學(xué)們舉出一些現(xiàn)實(shí)生活中變化的實(shí)例,指出其中的'常量與變量。
學(xué)生活動(dòng)思考問題,踴躍發(fā)言。(先歸納出5個(gè)思考題的關(guān)系式,再舉例)
教師活動(dòng)激發(fā)興趣,鼓勵(lì)學(xué)生聯(lián)想,
2、在地球某地,溫度T(℃)與高度d(m)的關(guān)系可以挖地用T=10—來表示(如圖),請(qǐng)你根據(jù)這個(gè)關(guān)系式回答下列問題:
(1)指出這個(gè)關(guān)系式中的變量和常量。
。2)填寫下表。
高度d/m0,200,400,600,800,1000
溫度T/℃
。3)觀察兩個(gè)變量之間的聯(lián)系,當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就______。
3、課本P7“觀察”。
學(xué)生活動(dòng)四人小組互動(dòng)交流,踴躍發(fā)言
二、討論交流,形成概念
函數(shù)定義
一般地,在一個(gè)變化過程中,如果有兩個(gè)變量x與y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。
教師活動(dòng)歸納出函數(shù)的定義。強(qiáng)調(diào)在上述活動(dòng)中的關(guān)系式是函數(shù)關(guān)系式。提問學(xué)生,兩個(gè)變量中哪個(gè)是自變量呢?哪個(gè)是這個(gè)自變量的函數(shù)?
學(xué)生活動(dòng)辨析理解,如:T=10—這個(gè)函數(shù)關(guān)系式中,d是自變量,T是d的函數(shù)等。弄清函數(shù)定義中的問題。
三、繼續(xù)探究,感知輕重
課本P8探究題。
學(xué)生活動(dòng)使用計(jì)算器進(jìn)行探索活動(dòng),回答問題,理解函數(shù)概念。(1)y=2x+5,y是x的函數(shù);(2)y=2x+1,y是x的函數(shù)。
四、范例點(diǎn)擊,提高認(rèn)知
例1一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為/km。
。1)寫出表示y與x的函數(shù)關(guān)系的式子。
(2)指出自變量x的取值范圍。
。3)汽車行駛200km時(shí),油箱中還有多少汽油?
教師活動(dòng)講例,啟發(fā)引導(dǎo)學(xué)生共同解決上述例1。
五、隨堂練習(xí),鞏固深化
課本P99練習(xí)。
六、課堂總結(jié),發(fā)展?jié)撃?/p>
1、用數(shù)學(xué)式子表示函數(shù)的方法叫做表達(dá)式法(解析式法),它只是函數(shù)表示法的一種。
2、求函數(shù)的自變量取值范圍的方法。
。1)要使函數(shù)的表達(dá)式有意義;(2)對(duì)實(shí)際問題中的函數(shù)關(guān)系,要使實(shí)際問題有意義。
3、把所給自變量的值代入函數(shù)表達(dá)式中,就可以求出相應(yīng)的函數(shù)值。
七、布置作業(yè),專題突
課本P106習(xí)題14。1第1,2,3,4題。
《對(duì)數(shù)函數(shù)》說課稿 15
教學(xué)目標(biāo):
(1)理解兩圓相切長等有關(guān)概念,掌握兩圓外公切線長的求法;
。2)培養(yǎng)學(xué)生的歸納、總結(jié)能力;
(3)通過兩圓外公切線長的求法向?qū)W生滲透“轉(zhuǎn)化”思想。
教學(xué)重點(diǎn):
理解兩圓相切長等有關(guān)概念,兩圓外公切線的求法。
教學(xué)難點(diǎn):
兩圓外公切線和兩圓外公切線長學(xué)生理解的不透,容易混淆。
教學(xué)活動(dòng)設(shè)計(jì)
。ㄒ唬⿲(shí)際問題(引入)
很多機(jī)器上的傳動(dòng)帶與主動(dòng)輪、從動(dòng)輪之間的位置關(guān)系,給我們以一條直線和兩個(gè)同時(shí)相切的形象。(這里是一種簡單的數(shù)學(xué)建模,了解數(shù)學(xué)產(chǎn)生與實(shí)踐)
兩圓的公切線概念
1、概念:
教師引導(dǎo)學(xué)生自學(xué)。給出兩圓的外公切線、內(nèi)公切線以及公切線長的定義:
和兩圓都相切的直線,叫做兩圓的公切線。
(1)外公切線:兩個(gè)圓在公切線的同旁時(shí),這樣的公切線叫做外公切線。
(2)內(nèi)公切線:兩個(gè)圓在公切線的.兩旁時(shí),這樣的公切線叫做內(nèi)公切線。
(3)公切線的長:公切線上兩個(gè)切點(diǎn)的距離叫做公切線的長。
2、理解概念:
(1)公切線的長與切線的長有何區(qū)別與聯(lián)系?
(2)公切線的長與公切線又有何區(qū)別與聯(lián)系?
(1)公切線的長與切線的長的概念有類似的地方,即都是線段的長。但公切線的長是對(duì)兩個(gè)圓來說的,且這條線段是以兩切點(diǎn)為端點(diǎn);切線長是對(duì)一個(gè)圓來說的,且這條線段的一個(gè)端點(diǎn)是切點(diǎn),另一個(gè)端點(diǎn)是圓外一點(diǎn)。
(2)公切線是直線,而公切線的長是兩切點(diǎn)問線段的長,前者不能度量,后者可以度量。
。ㄈ﹥蓤A的位置與公切線條數(shù)的關(guān)系
組織學(xué)生觀察、概念、概括,培養(yǎng)學(xué)生的學(xué)習(xí)能力。添寫教材P143練習(xí)第2題表。
。ㄋ模⿷(yīng)用、反思、總結(jié)
例1、已知:⊙O1、⊙O2的半徑分別為2cm和7cm,圓心距O1O2=13cm,AB是⊙O1、⊙O2的外公切線,切點(diǎn)分別是A、B。求:公切線的長AB。
分析:首先想到切線性質(zhì),故連結(jié)O1A、O2B,得直角梯形AO1O2B。一般要把它分解成一個(gè)直角三角形和一個(gè)矩形,再用其性質(zhì)。(組織學(xué)生分析,教師點(diǎn)撥,規(guī)范步驟)
解:連結(jié)O1A、O2B,作O1A⊥AB,O2B⊥AB。
過O1作O1C⊥O2B,垂足為C,則四邊形O1ABC為矩形,
于是有
O1C⊥CO2,O1C=AB,O1A=CB。
在Rt△O2CO1和。
O1O2=13,O2C=O2B-O1A=5
AB=O1C=(cm)。
反思:(1)“轉(zhuǎn)化”思想,構(gòu)造三角形;(2)初步掌握添加輔助線的方法。
例2x、如圖,已知⊙O1、⊙O2外切于P,直線AB為兩圓的公切線,A、B為切點(diǎn),若PA=8cm,PB=6cm,求切線AB的長。
分析:因?yàn)榫段AB是△APB的一條邊,在△APB中,已知PA和PB的長,只需先證明△PAB是直角三角形,然后再根據(jù)勾股定理,使問題得解。證△PAB是直角三角形,只需證△APB中有一個(gè)角是90°(或證得有兩角的和是90°),這就需要溝通角的關(guān)系,故過P作兩圓的公切線CD如圖,因?yàn)锳B是兩圓的公切線,所以∠CPB=∠ABP,∠CPA=∠BAP。因?yàn)椤螧AP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此題得解。
解:過點(diǎn)P作兩圓的公切線CD
∵AB是⊙O1和⊙O2的切線,A、B為切點(diǎn)
∴∠CPA=∠BAP ∠CPB=∠ABP
又∵∠BAP+∠CPA+∠CPB+∠ABP=180°
∴2∠CPA+2∠CPB=180°
∴∠CPA+∠CPB=90°即∠APB=90°
在Rt△APB中,AB2=AP2+BP2
說明:兩圓相切時(shí),常過切點(diǎn)作兩圓的公切線,溝通兩圓中的角的關(guān)系。
。ㄎ澹╈柟叹毩(xí)
1、當(dāng)兩圓外離時(shí),外公切線、圓心距、兩半徑之差一定組成( )
(A)直角三角形(B)等腰三角形(C)等邊三角形(D)以上答案都不對(duì)。
此題考察外公切線與外公切線長之間的差別,答案(D)
2、外公切線是指
(A)和兩圓都祖切的直線(B)兩切點(diǎn)間的距離
(C)兩圓在公切線兩旁時(shí)的公切線(D)兩圓在公切線同旁時(shí)的公切線
直接運(yùn)用外公切線的定義判斷。答案:(D)
3、教材P141練習(xí)(略)
(六)小結(jié)(組織學(xué)生進(jìn)行)
知識(shí):兩圓的公切線、外公切線、內(nèi)公切線及公切線的長概念;
能力:歸納、概括能力和求外公切線長的能力;
思想:“轉(zhuǎn)化”思想。
。ㄆ撸┳鳂I(yè):P151習(xí)題10,11。
《對(duì)數(shù)函數(shù)》說課稿 16
教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)回顧
1.一次函數(shù)的定義。
2.一次函數(shù)的圖象。
3.直線y=kx+b與方程的聯(lián)系。
那么一元一次不等式與一次函數(shù)是怎樣的關(guān)系呢?本節(jié)課研究一元一次不等式與一次函數(shù)的關(guān)系。
教師活動(dòng):引導(dǎo)學(xué)生回顧一次函數(shù)相關(guān)概念以及一次函數(shù)與方程的關(guān)系。
設(shè)計(jì)意圖:回顧所學(xué)知識(shí)作好新知識(shí)的銜接。
二、導(dǎo)探激勵(lì)
問題1:我們來看下面兩個(gè)問題有什么關(guān)系?
1.解不等式5x+6>3x+10.
。玻(dāng)自變量x為何值時(shí)函數(shù)y=2x—4的值大于0?
教師活動(dòng):引導(dǎo)學(xué)生分別從數(shù)和形兩個(gè)角度理解這兩個(gè)問題的關(guān)系,歸納出一般形式結(jié)論。由上面兩個(gè)問題的關(guān)系,我們能得到“解不等式ax+b>0”與“求自變量x?在什么范圍內(nèi),一次函數(shù)y=ax+b的值大于0”之間的關(guān)系,實(shí)質(zhì)上是同一個(gè)問題.
由于任何一元一次不等式都可以轉(zhuǎn)化的ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大于(或小于)0時(shí),?求自變量相應(yīng)的取值范圍.
問題2:作出函數(shù)y=2x—5的圖象,觀察圖象回答下列問題:
。1)x取何值時(shí),2x—5=0?
(2)x取哪些值時(shí),2x—5>0?
。3)x取哪些值時(shí),2x—5<0?
。4)x取哪些值時(shí),2x—5>3?
教師活動(dòng):展示問題1,適當(dāng)時(shí)間后請(qǐng)學(xué)生解答并說明理由,教師借助課件作結(jié)論性評(píng)判。
設(shè)計(jì)意圖:問題2可以直接解不等式(或方程)求解,但這里意圖是讓學(xué)生通過直接圖
象得到。引導(dǎo)學(xué)生體會(huì)既可以運(yùn)用函數(shù)圖象解不等式,也可以運(yùn)用解不等式幫助研究函數(shù)問題,二者互相滲透,互相作用。
學(xué)生可以用不同方法解答,教師意圖是盡量用圖象求解。
問題3:用畫函數(shù)圖象的方法解不等式5x+4<2x+10
設(shè)計(jì)意圖:通過這一活動(dòng)使學(xué)生熟悉一元一次不等式與一次函數(shù)值大于或小于0時(shí),?自變量取值范圍的問題間關(guān)系,并尋求出解決這一問題的具體方法,靈活運(yùn)用.教師活動(dòng):引導(dǎo)學(xué)生通過畫圖、觀察、尋求答案,并能通過兩種不同解法,得到同一答案,探索思考總結(jié)歸納出其中的共同點(diǎn).
學(xué)生活動(dòng):在教師指導(dǎo)下,順利完成作圖,觀察求出答案,并能歸納總結(jié)出其特點(diǎn).活動(dòng)過程及結(jié)論:
方法一:原不等式可以化為3x—6<0,畫出直線y=3x—6的圖象,可以看出,當(dāng)x<2時(shí)這條直線上的點(diǎn)在x軸的下方.即這時(shí)y=3x—6<0,所以不等式的解集為:x<2.方法二:將原不等式的兩邊分別看作兩個(gè)一次函數(shù),畫出直線y=5x+4與直線y=2x+10可以看出,它們交點(diǎn)的橫坐標(biāo)為2.當(dāng)x>2時(shí),對(duì)于同一個(gè)x,直線y=5x+4?上的點(diǎn)在直線y=2x+10上的相應(yīng)點(diǎn)的下方,這時(shí)5x+4<2x+10,?所以不等式的解集為:x<2.
以上兩種方法其實(shí)都是把解不等式轉(zhuǎn)化為比較直線上點(diǎn)的位置的高低.從上面兩種解法可以看出,雖然像上面那樣用一次函數(shù)圖象來解不等式未必簡單,但是從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù).一元一次不等式之間的聯(lián)系,能直觀地看出怎樣用圖形來表示不等式的解.這
種函數(shù)觀點(diǎn)認(rèn)識(shí)問題的方法,對(duì)于繼續(xù)學(xué)習(xí)數(shù)學(xué)很重要.
三、鞏固練習(xí)
。保(dāng)自變量x的取值滿足什么條件時(shí),函數(shù)y=3x+8的值滿足下列條件?①y=—7.②y<2.
。玻脠D象解出x:
6x—4<3x+2.
[解]1.(1)方法一:作直線y=3x+8的圖象.從圖象上看出:y=—7?時(shí)對(duì)應(yīng)的自變量x取值為—5,即當(dāng)x=—5時(shí),y=—7.
方法二:要使y=—7即3x+8=—7,它可變形為3x+15=0.作直線y=3x+15的圖象,?從圖上可看出它與x軸交點(diǎn)橫坐標(biāo)為—5,即x=—5時(shí),3x+15=0.所以x=—5時(shí),y=—7.
。2)方法一:畫出y=3x+8的圖象,從圖象上可以看出當(dāng)x<—2時(shí),?對(duì)應(yīng)的函數(shù)值都小于2.所以自變量x的取值范圍是x<—2.
方法二:要使y<2即3x+8<2,它可變形為3x+6<0,作出直線y=3x+6?的圖象可以看出它與x軸交點(diǎn)橫坐標(biāo)為—2,只有當(dāng)x<—2時(shí)對(duì)應(yīng)的函數(shù)值才小于0.?所以自變量x的取值范圍是x<—2.
。玻椒ㄒ唬6x—4<3x+2可變形為:3x—6<0.作出直線y=3x—6的圖象.?從圖象上可看出:當(dāng)x<2時(shí),這條直線上的點(diǎn)都在x軸下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解為x<2.
方法二:作出直線y=6x—4與直線y=3x+2,它們的交點(diǎn)橫坐標(biāo)為2,?從圖象上可以看出當(dāng)x<2時(shí),直線y=6x—4在直線y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解為x<2.
四.隨堂練習(xí)
。保螽(dāng)自變量x取值范圍為什么時(shí),函數(shù)y=2x+6的值滿足以下條件?①y=0;②y>0.
。玻脠D象解不等式5x—1>2x+5.
五.課時(shí)小結(jié)
本節(jié)我們學(xué)會(huì)了用一次函數(shù)圖象來解一元一次不等式.雖說方法未必簡單,但我們從函數(shù)的角度來重新認(rèn)識(shí)不等式,發(fā)現(xiàn)了一次函數(shù)、一元一次不等式之間的聯(lián)系,能直觀看到怎樣用圖形來表示不等式的解,對(duì)我們以后學(xué)習(xí)很重要.
六.課后作業(yè)
習(xí)題14.3─3、4、7題.
七.活動(dòng)與探究
。帷ⅲ鈨蓚(gè)商場平時(shí)以同樣價(jià)格出售相同的商品,在春節(jié)期間讓利酬賓.a商場所有商品8折出售,b商場消費(fèi)金額超過200元后,可在這家商場7折購物.?試問如何選擇商場來購物更經(jīng)濟(jì)
教學(xué)反思:
本堂課在設(shè)計(jì)上可以跳出教材,根據(jù)學(xué)生的實(shí)際情況,在問題1中可設(shè)計(jì)一
個(gè)簡單一點(diǎn)的不等式,待學(xué)生會(huì)將不等式轉(zhuǎn)化為一次函數(shù)分析并用圖像解決時(shí)在增加難度,放在問題3中一并解決,這樣學(xué)生在接受上不會(huì)太難,也不會(huì)導(dǎo)致時(shí)間分配不合理,以至設(shè)計(jì)的內(nèi)容無法完成。另外,這充分發(fā)揮學(xué)生的主體性,讓學(xué)生通過觀察及操作發(fā)現(xiàn)一次函數(shù)與一元一次不等式的關(guān)系及用一次函數(shù)解決一元一次不等式的方法。
《對(duì)數(shù)函數(shù)》說課稿 17
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):
1.使學(xué)生了解一元二次方程及整式方程的意義;
2.掌握一元二次方程的一般形式,正確識(shí)別二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).
。ǘ┠芰τ(xùn)練點(diǎn):
1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;
2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)概念理解的完整性和深刻性.
。ㄈ┑掠凉B透點(diǎn):由知識(shí)來源于實(shí)際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):一元二次方程的意義及一般形式.
2.教學(xué)難點(diǎn):正確識(shí)別一般式中的“項(xiàng)”及“系數(shù)”.
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個(gè)角上截去四個(gè)相同的小正方形,然后把四邊折起來,就成為一個(gè)無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實(shí)際操作一下剛才演示的過程.學(xué)生的實(shí)際操作,為解決下面的問題奠定基礎(chǔ),同時(shí)培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個(gè)角上截去四個(gè)相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會(huì)解,說明所學(xué)知識(shí)不夠用,需要學(xué)習(xí)新的知識(shí),學(xué)了本章的知識(shí),就可以解這個(gè)方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
。ǘ┱w感知
通過章前引例和節(jié)前引例,使學(xué)生真正認(rèn)識(shí)到知識(shí)來源于實(shí)際,并且又為實(shí)際服務(wù),學(xué)習(xí)了一元二次方程的知識(shí),可以解決許多實(shí)際問題,真正體會(huì)學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識(shí),調(diào)動(dòng)學(xué)生積極主動(dòng)參與數(shù)學(xué)活動(dòng)中.同時(shí)讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)及目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
。2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定義的.一元二次方程中的“一元”指的是“只含有一個(gè)未知數(shù)”,“二次”指的是“未知數(shù)的最高次數(shù)是2”.“元”和“次”的概念搞清楚則給定義一元三次方程等打下基礎(chǔ).一元二次方程的定義是指方程進(jìn)行合并同類項(xiàng)整理后而言的.這實(shí)際上是給出要判定方程是一元二次方程的.步驟:首先要進(jìn)行合并同類項(xiàng)整理,再按定義進(jìn)行判斷.
3.練習(xí):指出下列方程,哪些是一元二次方程?
。1)x(5x-2)=x(x+1)+4x2;
。2)7x2+6=2x(3x+1);
(3)
。4)6x2=x;
。5)2x2=5y;
。6)-x2=0
4.任何一個(gè)一元二次方程都可以化為一個(gè)固定的形式,這個(gè)形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).a(chǎn)x2稱二次項(xiàng),bx稱一次項(xiàng),c稱常數(shù)項(xiàng),a稱二次項(xiàng)系數(shù),b稱一次項(xiàng)系數(shù).
一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對(duì)一元二次方程的概念的理解.
5.例1?把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項(xiàng)系數(shù),一次項(xiàng)系數(shù)及常數(shù)項(xiàng)?
教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.
6.練習(xí)1:教材P.5中1,2.要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評(píng)價(jià).題目答案不唯一,最好二次項(xiàng)系數(shù)化為正數(shù).
練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請(qǐng)分別指出其二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng).
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教師提問及恰當(dāng)?shù)囊龑?dǎo),對(duì)學(xué)生回答給出評(píng)價(jià),通過此組練習(xí),加強(qiáng)對(duì)概念的理解和深化.
(四)總結(jié)、擴(kuò)展
引導(dǎo)學(xué)生從下面三方面進(jìn)行小結(jié).從方法上學(xué)到了什么方法?從知識(shí)內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?
1.將實(shí)際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會(huì)知識(shí)來源于實(shí)際以及轉(zhuǎn)化為方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)及常數(shù)項(xiàng).歸納所學(xué)過的整式方程.
3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強(qiáng)調(diào)“a≠0”這個(gè)條件有長遠(yuǎn)的重要意義.
四、布置作業(yè)
1.教材P.6練習(xí)2.
2.思考題:
1)能不能說“關(guān)于x的整式方程中,含有x2項(xiàng)的方程叫做一元二次方程?”
2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).
五、板書設(shè)計(jì)
第十二章?一元二次方程
12.1用公式解一元二次方程
1.整式方程:
4.例1:
2.一元二次方程:
3.一元二次方程的一般形式:
5.練習(xí):
六、課后習(xí)題參考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次項(xiàng)系數(shù):ab?一次項(xiàng)系數(shù):c?常數(shù)項(xiàng):d.
。2)二次項(xiàng)系數(shù):m-n?一次項(xiàng)系數(shù):0?常數(shù)項(xiàng):m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次項(xiàng)系數(shù):m+n,一次項(xiàng)系數(shù):m-n,常數(shù)項(xiàng):p-q.
思考題
。1)不能.如x3+2x2-4x=5.
。2)一元三次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是3,這樣的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).
一元四次方程:只含有一個(gè)未知數(shù),且未知數(shù)的最高次數(shù)是4,這樣的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).
《對(duì)數(shù)函數(shù)》說課稿 18
教學(xué)目標(biāo)
1、使學(xué)生掌握的概念,圖象和性質(zhì)。
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域。
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì)。
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的'圖象。
2、通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。
3、通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題。
教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究。
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì)。難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分。
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究。
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是。
(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容。如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來。
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象。
《對(duì)數(shù)函數(shù)》說課稿 19
【教學(xué)目的】
1、知識(shí)目標(biāo):經(jīng)歷觀察、歸納、交流的過程,探索反比例函數(shù)的主要性質(zhì)及其圖像形狀。
2、能力目標(biāo):提高學(xué)生的觀察、分析能力和對(duì)圖形的感知水平。
3、情感目標(biāo):讓學(xué)生進(jìn)一步體會(huì)反比例函數(shù)刻畫現(xiàn)實(shí)生活問題的作用。
【教學(xué)重點(diǎn)】
探索反比例函數(shù)圖象的主要性質(zhì)及其圖像形狀。
【教學(xué)難點(diǎn)】
1、準(zhǔn)確畫出反比例函數(shù)的圖象。
2、準(zhǔn)確掌握并能運(yùn)用反比例函數(shù)圖象的性質(zhì)。
【教學(xué)過程】
活動(dòng)1、匯海拾貝
讓學(xué)生回憶我們所學(xué)過得一次函數(shù)y=kx+b(k≠0),說出畫函數(shù)圖像的一般步驟。(列表、描點(diǎn)、連線),對(duì)照?qǐng)D象回憶一次函數(shù)的性質(zhì)。
活動(dòng)2、學(xué)海歷練
讓學(xué)生仿照畫一次函數(shù)的方法畫反比例函數(shù)y=2/x和y=—2/x的圖像并觀察圖像的特點(diǎn)
活動(dòng)3、成果展示
將各組的成果展示在大家的面前,并糾正可能出現(xiàn)的問題。
活動(dòng)4、行家看臺(tái)
1.反比例函數(shù)的圖象是雙曲線
2.當(dāng)k>0時(shí),兩支雙曲線分別位于第一,三象限內(nèi)當(dāng)k<0時(shí),兩支雙曲線分別位于第二,四象限內(nèi)
3.雙曲線會(huì)越來越靠近坐標(biāo)軸,但不會(huì)與坐標(biāo)軸相交
活動(dòng)5、星級(jí)挑戰(zhàn)
1星:
1、反比例函數(shù)y=—5/x的圖象大致是()
2、函數(shù)y=6/x的圖像在第象限,函數(shù)y=—4/x的圖像在第象限。
2星:
1、函數(shù)y=(m—2)/x的圖像在二、四象限,則m的取值范圍是
2、函數(shù)y=(4—k)/x的圖像在一、三象限,則k的取值范圍是
3星:
1、下列反比例函數(shù)圖像的一個(gè)分支,在第三象限的是()
a、y=(3—π)/xb、y=2—1/xc、y=—3/xd、y=k/x
2、已知反比例函數(shù)y=—k/x的'圖像在第二、四象限,那么一次函數(shù)y=kx+3的圖像經(jīng)過()
a、第一、二、三象限b、第一、二、四象限
c、第一、三、四象限d、第二、三、四象限
4星:
1、在同一坐標(biāo)系中,函數(shù)y=—k/x和y=kx—k的圖像大致是
2、反比例函數(shù)y=ab/x的圖像在第一、三象限,那么一次函數(shù)y=ax+b的圖像大致是
5星:
1、反比例函數(shù)y2m
1xm28,它的圖像在一、三象限,則2、反比例函數(shù)y
活動(dòng)6、回味無窮k4k2,它的圖像在一、三象限,則k的取值范圍是x
1、反比例函數(shù)的圖象是雙曲線
2、當(dāng)k>0時(shí),兩支雙曲線分別位于第一,三象限內(nèi)當(dāng)k<0時(shí),兩支雙曲線分別位于第二,四象限內(nèi)
3、雙曲線會(huì)越來越靠近坐標(biāo)軸,但不會(huì)與坐標(biāo)軸相交活動(dòng)
7、終極挑戰(zhàn)
如圖,矩形abcd的對(duì)角線bd經(jīng)過坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)c在反比例函數(shù)y=(k2—5k—10)/x的圖像上,若點(diǎn)a的坐標(biāo)是(—2,—2)則k的值為
《對(duì)數(shù)函數(shù)》說課稿 20
一、教學(xué)目標(biāo):
知識(shí)與技能:理解指數(shù)函數(shù)的概念,能夠判斷指數(shù)函數(shù)。
過程與方法:通過觀察,分析、歸納、總結(jié)、自主建構(gòu)指數(shù)函數(shù)的概念。領(lǐng)會(huì)從特殊到一般的數(shù)學(xué)思想方法,從而培養(yǎng)學(xué)生發(fā)現(xiàn)、分析、解決問題的能力。
情感態(tài)度與價(jià)值觀:在指數(shù)函數(shù)的學(xué)習(xí)過程中,體驗(yàn)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):指數(shù)函數(shù)的概念,判斷指數(shù)函數(shù)。教學(xué)難點(diǎn):對(duì)底數(shù)的分類。
三、學(xué)情分析:
學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的知識(shí),,指數(shù)函數(shù)是函數(shù)知識(shí)中重要的一部分內(nèi)容,學(xué)生若能將其與學(xué)過的正比例函數(shù)、一次函數(shù)、二次函數(shù)進(jìn)行對(duì)比著去理解指數(shù)函數(shù)的概念、性質(zhì)、圖象,則一定能從中發(fā)現(xiàn)指數(shù)函數(shù)的本質(zhì),所以對(duì)已經(jīng)熟悉掌握函數(shù)的學(xué)生來說,學(xué)習(xí)本課并不是太難。學(xué)生通過對(duì)高中數(shù)學(xué)中函數(shù)的學(xué)習(xí),對(duì)解決一些數(shù)學(xué)問題有一定的能力。通過教師啟發(fā)式引導(dǎo),學(xué)生自主探究完成本節(jié)課的學(xué)習(xí)。高一學(xué)生的認(rèn)知水平從形象向抽象、從特殊向一般過渡,思維能力的提高是一個(gè)轉(zhuǎn)折期,但是,學(xué)生的自主意識(shí)強(qiáng),有主動(dòng)學(xué)習(xí)的愿望與能力。有好奇心、好勝心、進(jìn)取心,富有激情、思維活躍。
四、教學(xué)內(nèi)容分析
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教B版)第二章第一節(jié)第二課()《指數(shù)函數(shù)及其性質(zhì)》。根據(jù)我所任教的學(xué)生的實(shí)際情況,我將《指數(shù)函數(shù)及其性質(zhì)》劃分為三節(jié)課(探究指數(shù)函數(shù)的概念,圖象及其性質(zhì),指數(shù)函數(shù)及其性質(zhì)的應(yīng)用),這是第一節(jié)課“探究指數(shù)函數(shù)的概念”。指數(shù)函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)對(duì)數(shù)函數(shù)和冪函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究。函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個(gè)即重要又抽象的內(nèi)容,其實(shí)質(zhì)就是將抽象的符號(hào)語言與直觀的圖象語言有機(jī)的結(jié)合起來,通過具有一定思考價(jià)值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的表示法有三種:列表法、圖象法、解析法,以往的'函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實(shí)只是借助了圖象的直觀性,只是從一個(gè)角度看函數(shù),是片面的。本節(jié)課,主要是讓學(xué)生學(xué)會(huì)如何去發(fā)現(xiàn)研究心的函數(shù),為后面學(xué)習(xí)對(duì)數(shù)函數(shù)、冪函數(shù)做出鋪墊。
五、教學(xué)過程:
。ㄒ唬﹦(chuàng)設(shè)情景
問題1:某種細(xì)胞分裂時(shí),由1個(gè)分裂成2個(gè),2個(gè)分裂成4個(gè),……一個(gè)這樣的細(xì)胞分裂x次后,得到的細(xì)胞分裂的個(gè)數(shù)y與x之間,構(gòu)成一個(gè)函數(shù)關(guān)系,能寫出x與y之間的函數(shù)關(guān)系式嗎?
問題2:《莊子·天下篇》中寫道:“一尺之棰,日取其半,萬世不竭!闭(qǐng)你寫出截取x次后,木棰剩余量y關(guān)于x的函數(shù)關(guān)系式?
。ǘ⿲(dǎo)入新課
引導(dǎo)學(xué)生觀察,兩個(gè)函數(shù)中,有什么共同特征?
。ㄈ┬抡n講授指數(shù)函數(shù)的定義
(四)鞏固與練習(xí)例題:
。ㄎ澹┱n堂小結(jié)
(六)布置作業(yè)
【《對(duì)數(shù)函數(shù)》說課稿】相關(guān)文章:
對(duì)數(shù)函數(shù)及其性質(zhì)說課稿07-20
對(duì)數(shù)函數(shù)及其性質(zhì)說課稿07-20
《對(duì)數(shù)函數(shù)的圖像與性質(zhì)》說課稿11-11
對(duì)數(shù)函數(shù)說課稿12篇11-05
對(duì)數(shù)函數(shù)教學(xué)反思04-02
對(duì)數(shù)函數(shù)教學(xué)反思10-28