初中數(shù)學(xué)的優(yōu)秀說課稿(精選5篇)
在教學(xué)工作者開展教學(xué)活動(dòng)前,可能需要進(jìn)行說課稿編寫工作,說課稿可以幫助我們提高教學(xué)效果。那么優(yōu)秀的說課稿是什么樣的呢?以下是小編收集整理的初中數(shù)學(xué)的優(yōu)秀說課稿(精選5篇),歡迎大家分享。
初中數(shù)學(xué)的優(yōu)秀說課稿1
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
(1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計(jì)算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的`“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?
解:略。
說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時(shí),下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
(3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
(4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)的優(yōu)秀說課稿2
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(六三學(xué)制)七年級(jí)下冊(cè)第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標(biāo)
1、知識(shí)目標(biāo):了解多邊形內(nèi)角和公式。
2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標(biāo):通過猜想、推理活動(dòng)感受數(shù)學(xué)活動(dòng)充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點(diǎn)
重點(diǎn):探索多邊形內(nèi)角和。
難點(diǎn):探索多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:
引導(dǎo)發(fā)現(xiàn)法、討論法
五、教具、學(xué)具
教具:多媒體課件
學(xué)具:三角板、量角器
六、教學(xué)媒體:
大屏幕、實(shí)物投影
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動(dòng)一:探究四邊形內(nèi)角和。
在獨(dú)立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個(gè)角的度數(shù),然后把四個(gè)角加起來,發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個(gè)三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個(gè)三角形內(nèi)角和相加是360。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對(duì)角線,把一個(gè)四邊形轉(zhuǎn)化成兩個(gè)三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動(dòng)二:探究五邊形、六邊形、十邊形的.內(nèi)角和。
學(xué)生先獨(dú)立思考每個(gè)問題再分組討論。
關(guān)注:
。1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
(2)學(xué)生能否采用不同的方法。
學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個(gè)三角形,3個(gè)180的和是540。
方法2:從五邊形內(nèi)部一點(diǎn)出發(fā),把五邊形分成五個(gè)三角形,然后用5個(gè)180的和減去一個(gè)周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點(diǎn)出發(fā)把五邊形分成四個(gè)三角形,然后用4個(gè)180的和減去一個(gè)平角180,結(jié)果得540。
方法4:把五邊形分成一個(gè)三角形和一個(gè)四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運(yùn)用幾何畫板演示并驗(yàn)證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
。ǘ┮晁伎,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
活動(dòng)三:探究任意多邊形的內(nèi)角和公式。
思考:
。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
。2)多邊形的邊數(shù)與內(nèi)角和的關(guān)系?
(3)從多邊形一個(gè)頂點(diǎn)引的對(duì)角線分三角形的個(gè)數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個(gè)180的和,五邊形內(nèi)角和是3個(gè)180的和,六邊形內(nèi)角和是4個(gè)180的和,十邊形內(nèi)角和是8個(gè)180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個(gè)n邊形從一個(gè)頂點(diǎn)引出的對(duì)角線分三角形的個(gè)數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
。ㄈ⿲(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)
1、口答:(1)七邊形內(nèi)角和()
。2)九邊形內(nèi)角和()
。3)十邊形內(nèi)角和()
2、搶答:(1)一個(gè)多邊形的內(nèi)角和等于1260,它是幾邊形?
。2)一個(gè)多邊形的內(nèi)角和是1440,且每個(gè)內(nèi)角都相等,則每個(gè)內(nèi)角的度數(shù)是()。
3、討論回答:一個(gè)多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個(gè)多邊形的各個(gè)內(nèi)角都相等,這個(gè)多邊形每個(gè)內(nèi)角等于多少度?
。ㄋ模└爬ù鎯(chǔ)
學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運(yùn)用轉(zhuǎn)化思想解決數(shù)學(xué)問題
3、用數(shù)形結(jié)合的思想解決問題
。ㄎ澹┳鳂I(yè):練習(xí)冊(cè)第93頁1、2、3
八、教學(xué)反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測(cè)量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗(yàn)發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué)。本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助合作為手段,以解決問題為目的,讓學(xué)生在一個(gè)比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值。
初中數(shù)學(xué)的優(yōu)秀說課稿3
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點(diǎn)所表示的數(shù).
(二)能力訓(xùn)練點(diǎn)
1.使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識(shí).
2.對(duì)學(xué)生滲透數(shù)形結(jié)合的思想方法.
(三)德育滲透點(diǎn)
使學(xué)生初步了解數(shù)學(xué)來源于實(shí)踐,反過來又服務(wù)于實(shí)踐的辯證唯物主義觀點(diǎn).
(四)美育滲透點(diǎn)
通過畫,給學(xué)生以圖形美的教育,同時(shí)由于數(shù)形的結(jié)合,學(xué)生會(huì)得到和諧美的享受.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法.
2.學(xué)生學(xué)法:動(dòng)手畫,動(dòng)腦概括的三要素,動(dòng)手、動(dòng)腦做練習(xí).
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):正確掌握畫法和用上的點(diǎn)表示有理數(shù).
2.難點(diǎn):有理數(shù)和上的點(diǎn)的對(duì)應(yīng)關(guān)系。
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片.
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
師生同步畫,學(xué)生概括三要素,師出示投影,生動(dòng)手動(dòng)腦練習(xí)
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,引入新課
師:大家知識(shí)溫度計(jì)的用途是什么?
生:溫度計(jì)可以測(cè)量溫度
(出示投影1)
三個(gè)溫度計(jì).其中一個(gè)溫度計(jì)的液面在0上20個(gè)刻度,一個(gè)溫度計(jì)的液面在0下5個(gè)刻度,一個(gè)溫度計(jì)的液面在0刻度.
師:三個(gè)溫度計(jì)所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計(jì)的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—(板書課題).
【教法說明】從溫度計(jì)用標(biāo)有讀數(shù)的刻度來表示溫度的高低這個(gè)事實(shí)出發(fā),引出本節(jié)課所要學(xué)的內(nèi)容—.再從溫度計(jì)這個(gè)實(shí)物形象抽象出來研究.既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生受到把實(shí)際問題抽象成數(shù)學(xué)問題的訓(xùn)練,培養(yǎng)了用數(shù)學(xué)的意識(shí).
(二)探索新知,講授新課
1.的畫法
與溫度計(jì)類似,可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點(diǎn)表示正數(shù)、負(fù)數(shù)和零,具體做法如下:
第一步:畫直線定原點(diǎn)原點(diǎn)表示0(相當(dāng)于溫度計(jì)上的0℃).
第二步:規(guī)定從原點(diǎn)向右的為正方向那么相反的方向(從原點(diǎn)向左)則為負(fù)方向.(相當(dāng)于溫度計(jì)上℃以上為正,0℃以下為負(fù)).
第三步:選擇適當(dāng)?shù)拈L(zhǎng)度為單位長(zhǎng)度(相當(dāng)于溫度計(jì)上每1℃占1小格的`長(zhǎng)度).
【教法說明】教師邊講解邊示范,學(xué)生跟著一起畫圖.培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦和實(shí)際操作能力,同時(shí),把類比作為一種重要方法貫穿于概念形成過程的始終,讓學(xué)生在認(rèn)知過程中領(lǐng)悟這種思想方法.
讓學(xué)生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點(diǎn)表示什么數(shù)?
(2)原點(diǎn)右方表示什么數(shù)?原點(diǎn)左方表示什么數(shù)?
(3)表示+2的點(diǎn)在什么位置?表示-1的點(diǎn)在什么位置?
(4)原點(diǎn)向右0.5個(gè)單位長(zhǎng)度的A點(diǎn)表示什么數(shù)?原點(diǎn)向左個(gè)單位長(zhǎng)度的B點(diǎn)表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學(xué)生活動(dòng):同學(xué)們思考,并要求同桌相互敘述,互相糾正補(bǔ)充,語句通順后舉手回答.大家思考準(zhǔn)備更正或補(bǔ)充。
初中數(shù)學(xué)的優(yōu)秀說課稿4
一、教學(xué)目標(biāo)
1.使學(xué)生初步掌握一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟;并會(huì)列出一元一次方程解簡(jiǎn)單的應(yīng)用題;
2.培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決問題的能力;
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣。
二、教學(xué)重點(diǎn)和難點(diǎn)
一元一次方程解簡(jiǎn)單的應(yīng)用題的方法和步驟。
三、課堂教學(xué)過程設(shè)計(jì)
(一)從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
在小學(xué)算術(shù)中,我們學(xué)習(xí)了用算術(shù)方法解決實(shí)際問題的有關(guān)知識(shí),那么,一個(gè)實(shí)際問題能否應(yīng)用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應(yīng)用題與用算術(shù)方法解應(yīng)用題相比較,它有什么優(yōu)越性呢?
為了回答上述這幾個(gè)問題,我們來看下面這個(gè)例題。
例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)。
。ㄊ紫,用算術(shù)方法解,由學(xué)生回答,教師板書)
解法1:(4+2)÷(3-1)=3。
答:某數(shù)為3。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)
解法2:設(shè)某數(shù)為x,則有3x-2=x+4。
解之,得x=3。
答:某數(shù)為3。
縱觀例1的這兩種解法,很明顯,算術(shù)方法不易思考,而應(yīng)用設(shè)未知數(shù),列出方程并通過解方程求得應(yīng)用題的解的方法,有一種化難為易之感,這就是我們學(xué)習(xí)運(yùn)用一元一次方程解應(yīng)用題的目的之一。
我們知道方程是一個(gè)含有未知數(shù)的等式,而等式表示了一個(gè)相等關(guān)系。因此對(duì)于任何一個(gè)應(yīng)用題中提供的`條件,應(yīng)首先從中找出一個(gè)相等關(guān)系,然后再將這個(gè)相等關(guān)系表示成方程。
本節(jié)課,我們就通過實(shí)例來說明怎樣尋找一個(gè)相等的關(guān)系和把這個(gè)相等關(guān)系轉(zhuǎn)化為方程的方法和步驟。
。ǘ⿴熒餐治、研究一元一次方程解簡(jiǎn)單應(yīng)用題的方法和步驟
例2 某面粉倉庫存放的面粉運(yùn)出15%后,還剩余42500千克,這個(gè)倉庫原來有多少面粉?
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原來重量-運(yùn)出重量=剩余重量)
3.若設(shè)原來面粉有x千克,則運(yùn)出面粉可表示為多少千克?利用上述相等關(guān)系,如何布列方程?
上述分析過程可列表如下:
解:設(shè)原來有x千克面粉,那么運(yùn)出了15%x千克,由題意,得
x-15%x=42 500,
所以x=50 000。
答:原來有50 000千克面粉。
此時(shí),讓學(xué)生討論:本題的相等關(guān)系除了上述表達(dá)形式以外,是否還有其他表達(dá)形式?若有,是什么?
。ㄟ有,原來重量=運(yùn)出重量+剩余重量;原來重量-剩余重量=運(yùn)出重量)
教師應(yīng)指出:
。1)這兩種相等關(guān)系的表達(dá)形式與“原來重量-運(yùn)出重量=剩余重量”,雖形式上不同,但實(shí)質(zhì)是一樣的,可以任意選擇其中的一個(gè)相等關(guān)系來列方程;
。2)例2的解方程過程較為簡(jiǎn)捷,同學(xué)應(yīng)注意模仿。
依據(jù)例2的分析與解答過程,首先請(qǐng)同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的情況,教師總結(jié)如下:
(1)仔細(xì)審題,透徹理解題意。即弄清已知量、未知量及其相互關(guān)系,并用字母(如x)表示題中的一個(gè)合理未知數(shù);
。2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系。(這是關(guān)鍵一步);
。3)根據(jù)相等關(guān)系,正確列出方程.即所列的方程應(yīng)滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應(yīng)充分利用,不能漏也不能將一個(gè)條件重復(fù)利用等;
(4)求出所列方程的解;
。5)檢驗(yàn)后明確地、完整地寫出答案.這里要求的檢驗(yàn)應(yīng)是,檢驗(yàn)所求出的解既能使方程成立,又能使應(yīng)用題有意義。
例3 (投影)初一2班第一小組同學(xué)去蘋果園參加勞動(dòng),休息時(shí)工人師傅摘蘋果分給同學(xué),若每人3個(gè)還剩余9個(gè);若每人5個(gè)還有一個(gè)人分4個(gè),試問第一小組有多少學(xué)生,共摘了多少個(gè)蘋果?
。ǚ抡绽2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點(diǎn)撥.解答過程請(qǐng)一名學(xué)生板演,教師巡視,及時(shí)糾正學(xué)生在書寫本題時(shí)可能出現(xiàn)的各種錯(cuò)誤。并嚴(yán)格規(guī)范書寫格式。)
解:設(shè)第一小組有x個(gè)學(xué)生,依題意,得
3x+9=5x-(5-4),
解這個(gè)方程:2x=10,
所以x=5。
其蘋果數(shù)為3× 5+9=24。
答:第一小組有5名同學(xué),共摘蘋果24個(gè)。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程。
。ㄔO(shè)第一小組共摘了x個(gè)蘋果,則依題意,得)
。ㄈ┱n堂練習(xí)
1.買4本練習(xí)本與3支鉛筆一共用了1.24元,已知鉛筆每支0.12元,問練習(xí)本每本多少元?
2.我國(guó)城鄉(xiāng)居民1988年末的儲(chǔ)蓄存款達(dá)到3 802億元,比1978年末的儲(chǔ)蓄存款的18倍還多4億元。求1978年末的儲(chǔ)蓄存款。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù)。
。ㄋ模⿴熒餐〗Y(jié)
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些內(nèi)容?
2.列一元一次方程解應(yīng)用題的方法和步驟是什么?
3.在運(yùn)用上述方法和步驟時(shí)應(yīng)注意什么?
依據(jù)學(xué)生的回答情況,教師總結(jié)如下:
(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當(dāng)選擇變數(shù);找出相等關(guān)系;布列方程求解;檢驗(yàn)書寫答案.其中第三步是關(guān)鍵;
。2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶。
(五)作業(yè)
1.買3千克蘋果,付出10元,找回3角4分。問每千克蘋果多少錢?
2.用76厘米長(zhǎng)的鐵絲做一個(gè)長(zhǎng)方形的教具,要使寬是16厘米,那么長(zhǎng)是多少厘米?
3.某廠去年10月份生產(chǎn)電視機(jī)2050臺(tái),這比前年10月產(chǎn)量的2倍還多150臺(tái)。這家工廠前年10月生產(chǎn)電視機(jī)多少臺(tái)?
4.大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個(gè)同樣大小的小箱里,裝滿后還剩余2千克洗衣粉.求每個(gè)小箱子里裝有洗衣粉多少千克?
5.把1400獎(jiǎng)金分給22名得獎(jiǎng)?wù),一等?jiǎng)每人200元,二等獎(jiǎng)每人50元。求得到一等獎(jiǎng)與二等獎(jiǎng)的人數(shù)。
初中數(shù)學(xué)的優(yōu)秀說課稿5
一、教學(xué)目的:
1.理解并掌握菱形的定義及兩個(gè)判定方法;會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算;
2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.
二、重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):菱形的兩個(gè)判定方法.
2.教學(xué)難點(diǎn):判定方法的證明方法及運(yùn)用.
三、例題的意圖分析
本節(jié)課安排了兩個(gè)例題,其中例1是教材P109的例3,例2是一道補(bǔ)充的題目,這兩個(gè)題目都是菱形判定方法的直接的運(yùn)用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會(huì)用這些判定方法進(jìn)行有關(guān)的論證和計(jì)算.這些題目的推理都比較簡(jiǎn)單,學(xué)生掌握起來不會(huì)有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級(jí),可以選講例3.
四、課堂引入
1.復(fù)習(xí)
。1)菱形的定義:一組鄰邊相等的平行四邊形;
。2)菱形的'性質(zhì)1 菱形的四條邊都相等;
性質(zhì)2 菱形的對(duì)角線互相平分,并且每條對(duì)角線平分一組對(duì)角;
。3)運(yùn)用菱形的定義進(jìn)行菱形的判定,應(yīng)具備幾個(gè)條件?(判定:2個(gè)條件)
2.【問題】要判定一個(gè)四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3.【探究】(教材P109的探究)用一長(zhǎng)一短兩根木條,在它們的中點(diǎn)處固定一個(gè)小釘,做成一個(gè)可轉(zhuǎn)動(dòng)的十字,四周圍上一根橡皮筋,做成一個(gè)四邊形.轉(zhuǎn)動(dòng)木條,這個(gè)四邊形什么時(shí)候變成菱形?
通過演示,容易得到:
菱形判定方法1 對(duì)角線互相垂直的平行四邊形是菱形.
注意此方法包括兩個(gè)條件:(1)是一個(gè)平行四邊形;(2)兩條對(duì)角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2 四邊都相等的四邊形是菱形.
五、例習(xí)題分析
例1 (教材P109的例3)略
例2(補(bǔ)充)已知:如圖 ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F.
求證:四邊形AFCE是菱形.
證明:∵ 四邊形ABCD是平行四邊形,
∴ AE∥FC.
∴ ∠1=∠2.
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF.
∴ EO=FO.
∴ 四邊形AFCE是平行四邊形.
又 EF⊥AC,
∴ AFCE是菱形(對(duì)角線互相垂直的平行四邊形是菱形).
※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.
求證:四邊形CEHF為菱形.
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因?yàn)椤螩BE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.
六、隨堂練習(xí)
1.填空:
。1)對(duì)角線互相平分的四邊形是 ;
。2)對(duì)角線互相垂直平分的四邊形是________;
。3)對(duì)角線相等且互相平分的四邊形是________;
。4)兩組對(duì)邊分別平行,且對(duì)角線 的四邊形是菱形.
2.畫一個(gè)菱形,使它的兩條對(duì)角線長(zhǎng)分別為6cm、8cm.
3.如圖,O是矩形ABCD的對(duì)角線的交點(diǎn),DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習(xí)
1.下列條件中,能判定四邊形是菱形的是 ( ).
(A)兩條對(duì)角線相等 (B)兩條對(duì)角線互相垂直
。–)兩條對(duì)角線相等且互相垂直 (D)兩條對(duì)角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點(diǎn),DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.
3.做一做:
設(shè)計(jì)一個(gè)由菱形組成的花邊圖案.花邊的長(zhǎng)為15 cm,寬為4 cm,由有一條對(duì)角線在同一條直線上的四個(gè)菱形組成,前一個(gè)菱形對(duì)角線的交點(diǎn),是后一個(gè)菱形的一個(gè)頂點(diǎn).畫出花邊圖形。
【初中數(shù)學(xué)的優(yōu)秀說課稿】相關(guān)文章:
初中數(shù)學(xué)優(yōu)秀說課稿優(yōu)秀02-16
初中數(shù)學(xué)優(yōu)秀說課稿15篇02-16
(推薦)初中數(shù)學(xué)說課稿優(yōu)秀11-11
說課稿數(shù)學(xué)說課稿初中11-28
關(guān)于初中數(shù)學(xué)優(yōu)秀說課稿(精選12篇)08-01
初中數(shù)學(xué)優(yōu)秀說課稿模板(精選12篇)07-31
初中數(shù)學(xué)說課稿11-25
初中數(shù)學(xué)說課稿04-13