中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高中數(shù)學(xué)說課稿

時(shí)間:2021-07-30 11:08:23 說課稿 我要投稿

精選高中數(shù)學(xué)說課稿模板匯編9篇

  在教學(xué)工作者實(shí)際的教學(xué)活動(dòng)中,總歸要編寫說課稿,借助說課稿可以讓教學(xué)工作更科學(xué)化。那么問題來了,說課稿應(yīng)該怎么寫?以下是小編精心整理的高中數(shù)學(xué)說課稿9篇,僅供參考,希望能夠幫助到大家。

精選高中數(shù)學(xué)說課稿模板匯編9篇

高中數(shù)學(xué)說課稿 篇1

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,分兩課時(shí),這里是第一課時(shí),它是在學(xué)生已經(jīng)會(huì)求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會(huì)求可導(dǎo)函數(shù)的極值之后進(jìn)行學(xué)習(xí)的,學(xué)好這一節(jié),學(xué)生將會(huì)求更多的函數(shù)的最值,運(yùn)用本節(jié)知識(shí)可以解決科技、經(jīng)濟(jì)、社會(huì)中的一些如何使成本最低、產(chǎn)量最高、效益最大等實(shí)際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實(shí)際等重要的數(shù)學(xué)思想方法,學(xué)好本節(jié),對于進(jìn)一步完善學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生用數(shù)學(xué)的意識(shí)都具有極為重要的意義。

  2、教學(xué)重點(diǎn)

  會(huì)求閉區(qū)間上連續(xù)開區(qū)間上可導(dǎo)的函數(shù)的最值。

  3、教學(xué)難點(diǎn)

  高三年級學(xué)生雖然已經(jīng)具有一定的知識(shí)基礎(chǔ),但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會(huì)有較大的困難,所以這節(jié)課的難點(diǎn)是理解確定函數(shù)最值的方法。

  4、教學(xué)關(guān)鍵

  本節(jié)課突破難點(diǎn)的關(guān)鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點(diǎn)。

  【教學(xué)目標(biāo)】

  根據(jù)本節(jié)教材在高中數(shù)學(xué)知識(shí)體系中的地位和作用,結(jié)合學(xué)生已有的認(rèn)知水平,制定本節(jié)如下的教學(xué)目標(biāo):

  1、知識(shí)和技能目標(biāo)

  (1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進(jìn)一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

  (3)掌握用導(dǎo)數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

  2、過程和方法目標(biāo)

 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點(diǎn)處或區(qū)間端點(diǎn)處。

  (3)會(huì)求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導(dǎo)的函數(shù)的最大、最小值。

  3、情感和價(jià)值目標(biāo)

 。1)認(rèn)識(shí)事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學(xué)生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

 。3)提高學(xué)生的數(shù)學(xué)能力,培養(yǎng)學(xué)生的創(chuàng)新精神、實(shí)踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構(gòu)主義認(rèn)識(shí)論,知識(shí)是個(gè)體在與環(huán)境相互作用的過程中逐漸建構(gòu)的結(jié)果,而認(rèn)識(shí)則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學(xué)生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導(dǎo)學(xué)生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個(gè)圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進(jìn)而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學(xué)生主動(dòng)地獲得知識(shí),老師只是進(jìn)行適當(dāng)?shù)囊龑?dǎo),而不進(jìn)行全部的灌輸。為突出重點(diǎn),突破難點(diǎn),這節(jié)課主要選擇以合作探究式教學(xué)法組織教學(xué)。

  【學(xué)法指導(dǎo)】

  對于求函數(shù)的最值,高三學(xué)生已經(jīng)具備了良好的知識(shí)基礎(chǔ),剩下的問題就是有沒有一種更一般的方法,能運(yùn)用于更多更復(fù)雜函數(shù)的求最值問題?教學(xué)設(shè)計(jì)中注意激發(fā)起學(xué)生強(qiáng)烈的求知欲望,使得他們能積極主動(dòng)地觀察、分析、歸納,以形成認(rèn)識(shí),參與到課堂活動(dòng)中,充分發(fā)揮他們作為認(rèn)知主體的作用。

  【教學(xué)過程】

  本節(jié)課的教學(xué),大致按照“創(chuàng)設(shè)情境,鋪墊導(dǎo)入——合作學(xué)習(xí),探索新知——指導(dǎo)應(yīng)用,鼓勵(lì)創(chuàng)新——?dú)w納小結(jié),反饋回授”四個(gè)環(huán)節(jié)進(jìn)行組織。

高中數(shù)學(xué)說課稿 篇2

  教學(xué)目標(biāo)

  A、知識(shí)目標(biāo):

  掌握等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法;掌握公式的運(yùn)用。

  B、能力目標(biāo):

 。1)通過公式的探索、發(fā)現(xiàn),在知識(shí)發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

 。2)利用以退求進(jìn)的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實(shí)踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

 。3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。

  C、情感目標(biāo):(數(shù)學(xué)文化價(jià)值)

 。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

  (2)通過公式的運(yùn)用,樹立學(xué)生"大眾教學(xué)"的思想意識(shí)。

 。3)通過生動(dòng)具體的現(xiàn)實(shí)問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強(qiáng)學(xué)生學(xué)好數(shù)學(xué)的心理體驗(yàn),產(chǎn)生熱愛數(shù)學(xué)的情感。

  教學(xué)重點(diǎn):

  等差數(shù)列前n項(xiàng)和的公式。

  教學(xué)難點(diǎn):

  等差數(shù)列前n項(xiàng)和的公式的靈活運(yùn)用。

  教學(xué)方法

  啟發(fā)、討論、引導(dǎo)式。

  教具:

  現(xiàn)代教育多媒體技術(shù)。

  教學(xué)過程

  一、創(chuàng)設(shè)情景,導(dǎo)入新課。

  師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項(xiàng)公式及其有關(guān)性質(zhì),今天要進(jìn)一步研究等差數(shù)列的前n項(xiàng)和公式。提起數(shù)列求和,我們自然會(huì)想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時(shí),一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計(jì)算出來的呢?如果大家也懂得那樣巧妙計(jì)算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

  例1,計(jì)算:1+2+3+4+5+6+7+8+9+10。

  這道題除了累加計(jì)算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

  生1:因?yàn)?+10=2+9=3+8=4+7=5+6,所以可湊成5個(gè)11,得到55。

  生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

  上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

  10個(gè)

  所以我們得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  師:高斯神速計(jì)算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個(gè)101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個(gè)性質(zhì)呢?

  生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。

  二、教授新課(嘗試推導(dǎo))

  師:如果已知等差數(shù)列的首項(xiàng)a1,項(xiàng)數(shù)為n,第n項(xiàng)an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項(xiàng)和Sn計(jì)算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

  Sn=an+an—1+。。。。。。a2+a1

  兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n個(gè)

  =n(a1+an)

  所以Sn=(I)

  師:好!如果已知等差數(shù)列的首項(xiàng)為a1,公差為d,項(xiàng)數(shù)為n,則an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)兩個(gè)式子稱為等差數(shù)列的前n項(xiàng)和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項(xiàng)a1,下底是第n項(xiàng)an,高是項(xiàng)數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個(gè)量?(a1,d,n,an,Sn),它們由哪幾個(gè)關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個(gè)可自由變化?(三個(gè))從而了解到:只要知道其中任意三個(gè)就可以求另外兩個(gè)了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

  三、公式的應(yīng)用(通過實(shí)例演練,形成技能)。

  1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計(jì)算:

 。1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

 。3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。

  生5:直接利用等差數(shù)列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

 。2)1+3+5+。。。。。。+(2n—1)=

 。3)2+4+6+。。。。。。+2n==n(n+1)

  師:第(4)小題數(shù)列共有幾項(xiàng)?是否為等差數(shù)列?能否直接運(yùn)用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。

  生6:(4)中的數(shù)列共有2n項(xiàng),不是等差數(shù)列,但把正項(xiàng)和負(fù)項(xiàng)分開,可看成兩個(gè)等差數(shù)列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上題雖然不是等差數(shù)列,但有一個(gè)規(guī)律,兩項(xiàng)結(jié)合都為—1,故可得另一解法:

  原式=—1—1—。。。。。!1=—n

  n個(gè)

  師:很好!在解題時(shí)我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會(huì)尋找到好的方法。注意在運(yùn)用Sn公式時(shí),要看清等差數(shù)列的項(xiàng)數(shù),否則會(huì)引起錯(cuò)解。

  例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  師:通過上面例題我們掌握了等差數(shù)列前n項(xiàng)和的公式。在Sn公式有5個(gè)變量。已知三個(gè)變量,可利用構(gòu)造方程或方程組求另外兩個(gè)變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。

  師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)

 、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

 、谌舸祟}不求a1,d而只求S10時(shí),是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運(yùn)用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

  2、用整體觀點(diǎn)認(rèn)識(shí)Sn公式。

  例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)

  師:來看第(1)小題,寫出的計(jì)算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

  生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  師:對!(簡單小結(jié))這個(gè)題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個(gè)問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。

  師:由于時(shí)間關(guān)系,我們對等差數(shù)列前n項(xiàng)和公式Sn的運(yùn)用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時(shí),Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點(diǎn)如何來認(rèn)識(shí)Sn公式后,這留給同學(xué)們課外繼續(xù)思考。

  最后請大家課外思考Sn公式(1)的逆命題:

  已知數(shù)列{an}的前n項(xiàng)和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。

  四、小結(jié)與作業(yè)。

  師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。

  生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項(xiàng)和公式。

  2、用所推導(dǎo)的兩個(gè)公式解決有關(guān)例題,熟悉對Sn公式的運(yùn)用。

  生12:1、運(yùn)用Sn公式要注意此等差數(shù)列的項(xiàng)數(shù)n的值。

  2、具體用Sn公式時(shí),要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

  3、當(dāng)已知條件不足以求此項(xiàng)a1和公差d時(shí),要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

  師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時(shí)希望大家在學(xué)習(xí)中做一個(gè)有心人,去發(fā)現(xiàn)更多的性質(zhì),主動(dòng)積極地去學(xué)習(xí)。

  本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

  數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。

  作業(yè):P49:13、14、15、17

高中數(shù)學(xué)說課稿 篇3

  各位老師:

  今天我說課的題目是《條件語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  在此之前,學(xué)生已學(xué)習(xí)了算法的概念、程序框圖與算法的基本邏輯結(jié)構(gòu)、輸入語句、輸出語句和賦值語句,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。這一節(jié)課主要的內(nèi)容為條件語句表示方法、結(jié)構(gòu)以及用法。條件語句與程序圖中的條件結(jié)構(gòu)相對應(yīng),它是五種基本算法語句中的一種,。通過本節(jié)課的學(xué)習(xí),學(xué)生將更加了解算法語句,并能用更全面的眼光看待前面學(xué)過的語句,并為以后的學(xué)習(xí)作好必要的準(zhǔn)備。本節(jié)課對學(xué)生算法語言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。

  2.教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):條件語句的表示方法、結(jié)構(gòu)和用法;用條件語句表示算法。

  難點(diǎn):理解條件語句的表示方法、結(jié)構(gòu)和用法。

  二、教學(xué)目標(biāo)分析

  1.知識(shí)與技能目標(biāo):

 、耪_理解條件語句的概念,并掌握其結(jié)構(gòu)。

  ⑵會(huì)應(yīng)用條件語句編寫程序。

  2.過程與方法目標(biāo):

  ⑴通過實(shí)例,發(fā)展對解決具體問題的過程與步驟進(jìn)行分析的能力。

  ⑵通過模仿,操作、探索、經(jīng)歷設(shè)計(jì)算法、設(shè)計(jì)框圖、編寫程序以解決具體問題的過程,發(fā)展應(yīng)用算法的能力。

 、窃诮鉀Q具體問題的過程中學(xué)習(xí)條件語句,感受算法的重要意義。

  3.情感,態(tài)度和價(jià)值觀目標(biāo)

 、拍芡ㄟ^具體實(shí)例,感受和體會(huì)算法思想在解決具體問題中的意義,進(jìn)一步體會(huì)算法思想的重要性,體驗(yàn)算法的有效性,增進(jìn)對數(shù)學(xué)的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的樂趣。

  ⑵通過感受和認(rèn)識(shí)現(xiàn)代信息技術(shù)在解決數(shù)學(xué)問題中的重要作用和威力,形成自覺地將數(shù)學(xué)理論和現(xiàn)代信息技術(shù)結(jié)合的思想。

 、窃诰帉懗绦蚪鉀Q問題的過程中,逐步養(yǎng)成扎實(shí)嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:根據(jù)本節(jié)內(nèi)容邏輯性強(qiáng),學(xué)生不易理解的特點(diǎn),本節(jié)教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這種方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對實(shí)例的認(rèn)真領(lǐng)會(huì)及一定的練習(xí)才能掌握本節(jié)知識(shí)。

  2.教學(xué)手段:運(yùn)用計(jì)算機(jī)、圖形計(jì)算器輔助教學(xué)

  四、教學(xué)過程分析

  1.創(chuàng)設(shè)情境(約4分鐘)

  首先,我要求學(xué)生們編寫程序,輸入一元二次方程

  的系數(shù),輸出它的實(shí)數(shù)根。這樣可以把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),因?yàn)橐鉀Q這一問題,根據(jù)我們之前所學(xué)的三種算法語句是無法解決的,這樣就引出今天我們所要學(xué)習(xí)的內(nèi)容。

  2.探究新知(約8分鐘)

  為了引入概念,我首先給出了一個(gè)基本的應(yīng)用條件語句能夠解決的例題:

  例1 編寫一個(gè)程序,求實(shí)數(shù)x的絕對值。

  整個(gè)過程由師生共同分析完成。老師要引導(dǎo)學(xué)生分析、研究例題中的兩個(gè)程序,既要讓學(xué)生們看到已知的三種語句,更要注意到未知的語句,即條件語句?偨Y(jié)上述例題的程序可得出條件語句的兩種一般格式,接下來由師生共同對這兩種格式進(jìn)行研究.

  3.知識(shí)應(yīng)用(約15分鐘)

  此環(huán)節(jié)有兩個(gè)例題

  例2 編寫程序,寫出輸入兩個(gè)數(shù)a和b,將較大的數(shù)打印出來

  例3 編寫程序,使任意輸入的3個(gè)整數(shù)按從大到小的順序輸出.

  先把解決問題的思路用程序框圖表示出來,然后再根據(jù)程序框圖給出的算法步驟,逐步把算法用對應(yīng)的程序語句表達(dá)出來。(程序框圖先由學(xué)生討論,再統(tǒng)一,然后利用圖形計(jì)算器演示,學(xué)生會(huì)驚喜的發(fā)現(xiàn):自己也是個(gè)編程高手了!這樣可以激發(fā)學(xué)生們的學(xué)習(xí)興趣)

  4.練習(xí)鞏固(約4分鐘)

  課本第30頁第3題

  練習(xí)可鞏固學(xué)生對知識(shí)的理解,也可在練習(xí)中發(fā)現(xiàn)問題,使問題得到及時(shí)的解決。

  5.課堂小結(jié)(約5分鐘)

  條件語句的步驟、結(jié)構(gòu)及功能.

  知識(shí)性內(nèi)容的小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì);數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用

  6.布置作業(yè)

  課本練習(xí)第3、4題

  [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

  7.板書設(shè)計(jì)

  1.2.2條件語句

  1、條件語句的一般格式

 。1)IF-THEN-ELSE語句

  格式: 框圖:

  (2)IF-THEN語句

  格式: 框圖:

  2、小結(jié)

 。1)

  (2)

  (3)

  2、例1 引例

  例2 例4

  例3

  

高中數(shù)學(xué)說課稿 篇4

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》§2.1.3函數(shù)簡單性質(zhì)的第一課時(shí),該課時(shí)主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個(gè)性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會(huì)函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運(yùn)用單調(diào)性知識(shí)解決一些簡單的實(shí)際問題.通過上述活動(dòng),加深對函數(shù)本質(zhì)的認(rèn)識(shí).函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個(gè)高中數(shù)學(xué)中起著承上啟下作用的核心知識(shí)之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.

  3、教學(xué)目標(biāo)

  (1)知識(shí)與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

 。2)過程與方法:從實(shí)際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.

 。3)情感態(tài)度價(jià)值觀:讓學(xué)生體驗(yàn)數(shù)學(xué)的科學(xué)功能、符號(hào)功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的`數(shù)學(xué)思維品質(zhì).

  4、重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)(1)函數(shù)單調(diào)性的概念;

 。2)運(yùn)用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.

  教學(xué)難點(diǎn)(1)函數(shù)單調(diào)性的知識(shí)形成;

 。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主體參與的積極性.

  2、在運(yùn)用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個(gè)完成對各個(gè)難點(diǎn)的突破,以獲得各類問題的解決.

  3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá).

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的一個(gè)飛躍.

  三、 教學(xué)過程

教學(xué)


環(huán)節(jié)


教 學(xué) 過 程


設(shè) 計(jì) 意 圖


問題


情境


(播放中央電視臺(tái)天氣預(yù)報(bào)的音樂)


滿足在定義域上的單調(diào)性的討論.


2、重視學(xué)生發(fā)現(xiàn)的過程.如:充分暴露學(xué)生將函數(shù)圖象(形)的特征轉(zhuǎn)化為函數(shù)值(數(shù))的特征的思維過程;充分暴露在正、反兩個(gè)方面探討活動(dòng)中,學(xué)生認(rèn)知結(jié)構(gòu)升華、發(fā)現(xiàn)的過程.


3、重視學(xué)生的動(dòng)手實(shí)踐過程.通過對定義的解讀、鞏固,讓學(xué)生動(dòng)手去實(shí)踐運(yùn)用定義.


4、重視課堂問題的設(shè)計(jì).通過對問題的設(shè)計(jì),引導(dǎo)學(xué)生解決問題.



高中數(shù)學(xué)說課稿 篇5

  各位評委老師,大家好!

  我是本科數(shù)學(xué)**號(hào)選手,今天我要進(jìn)行說課的課題是高中數(shù)學(xué)必修一第一章第三節(jié)第一課時(shí)《函數(shù)單調(diào)性與最大(。┲怠罚ǹ梢栽谶@時(shí)候板書課題,以緩解緊張)。我將從教材分析;教學(xué)目標(biāo)分析;教法、學(xué)法;教學(xué)過程;教學(xué)評價(jià)五個(gè)方面來陳述我對本節(jié)課的設(shè)計(jì)方案。懇請?jiān)谧膶<以u委批評指正。

  一、教材分析

  1、 教材的地位和作用

 。1)本節(jié)課主要對函數(shù)單調(diào)性的學(xué)習(xí);

 。2)它是在學(xué)習(xí)函數(shù)概念的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,同時(shí)又為基本初等函數(shù)的學(xué)習(xí)奠定了基礎(chǔ),所以他在教材中起著承前啟后的重要作用;(可以看看這一課題的前后章節(jié)來寫)

 。3)它是歷年高考的熱點(diǎn)、難點(diǎn)問題

  (根據(jù)具體的課題改變就行了,如果不是熱點(diǎn)難點(diǎn)問題就刪掉)

  2、 教材重、難點(diǎn)

  重點(diǎn):函數(shù)單調(diào)性的定義

  難點(diǎn):函數(shù)單調(diào)性的證明

  重難點(diǎn)突破:在學(xué)生已有知識(shí)的基礎(chǔ)上,通過認(rèn)真觀察思考,并通過小組合作探究的辦法來實(shí)現(xiàn)重難點(diǎn)突破。(這個(gè)必須要有)

  3.學(xué)情分析

  高一學(xué)生正處于以感性思維為主的年齡階段,而且思維逐步地從感性思維過渡到理性思維,并由此向邏輯思維發(fā)展,但學(xué)生思維不成熟、不嚴(yán)密、意志力薄弱,故而整個(gè)教學(xué)環(huán)節(jié)總是創(chuàng)設(shè)恰當(dāng)?shù)膯栴}情境,引導(dǎo)學(xué)生積極思考,培養(yǎng)他們的邏輯思維能力。從學(xué)生的認(rèn)知結(jié)構(gòu)來看,他們只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大函數(shù)值增大”等變化趨勢,所以在教學(xué)中要充分利用好函數(shù)圖象的直觀性,發(fā)揮好多媒體教學(xué)的優(yōu)勢;由于學(xué)生在概念的掌握上缺少系統(tǒng)性、嚴(yán)謹(jǐn)性,在教學(xué)中注意加強(qiáng).

  二、教學(xué)目標(biāo)

  知識(shí)目標(biāo):

 。1)函數(shù)單調(diào)性的定義

  (2)函數(shù)單調(diào)性的證明

  能力目標(biāo):

  培養(yǎng)學(xué)生全面分析、抽象和概括的能力,以及了解由簡單到復(fù)雜,由特殊到一般的化歸思想

  情感目標(biāo):

  培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)

  (這樣的教學(xué)目標(biāo)設(shè)計(jì)更注重教學(xué)過程和情感體驗(yàn),立足教學(xué)目標(biāo)多元化)

  三、教法學(xué)法分析

  1、教法分析

  “教必有法而教無定法”,只有方法得當(dāng)才會(huì)有效。新課程標(biāo)準(zhǔn)之處教師是教學(xué)的組織者、引導(dǎo)者、合作者,在教學(xué)過程要充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性。本著這一原則,在教學(xué)過程中我主要采用以下教學(xué)方法:開放式探究法、啟發(fā)式引導(dǎo)法、小組合作討論法、反饋式評價(jià)法

  2、學(xué)法分析

  “授人以魚,不如授人以漁”,最有價(jià)值的知識(shí)是關(guān)于方法的只是。學(xué)生作為教學(xué)活動(dòng)的主題,在學(xué)習(xí)過程中的參與狀態(tài)和參與度是影響教學(xué)效果最重要的因素。在學(xué)法選擇上,我主要采用:自主探究法、觀察發(fā)現(xiàn)法、合作交流法、歸納總結(jié)法。

 。ㄇ叭糠钟脮r(shí)控制在三分鐘以內(nèi),可適當(dāng)刪減)

  四、教學(xué)過程

  1、以舊引新,導(dǎo)入新知

  通過課前小研究讓學(xué)生自行繪制出一次函數(shù)f(x)=x和二次函數(shù)f(x)=x^2的圖像,并觀察函數(shù)圖象的特點(diǎn),總結(jié)歸納。通過課上小組討論歸納,引導(dǎo)學(xué)生發(fā)現(xiàn),教師總結(jié):一次函數(shù)f(x)=x的圖像在定義域是直線上升的,而二次函數(shù)f(x)=x^2的圖像是一個(gè)曲線,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(適當(dāng)添加手勢,這樣看起來更自然)

  2、創(chuàng)設(shè)問題,探索新知

  緊接著提出問題,你能用二次函數(shù)f(x)=x^2表達(dá)式來描述函數(shù)在(-∞,0)的圖像?教師總結(jié),并板書,揭示函數(shù)單調(diào)性的定義,并注意強(qiáng)調(diào)可以利用作差法來判斷這個(gè)函數(shù)的單調(diào)性。

  讓學(xué)生模仿剛才的表述法來描述二次函數(shù)f(x)=x^2在(0,+∞)的圖像,并找個(gè)別同學(xué)起來作答,規(guī)范學(xué)生的數(shù)學(xué)用語。

  讓學(xué)生自主學(xué)習(xí)函數(shù)單調(diào)區(qū)間的定義,為接下來例題學(xué)習(xí)打好基礎(chǔ)。

  3、 例題講解,學(xué)以致用

  例1主要是對函數(shù)單調(diào)區(qū)間的鞏固運(yùn)用,通過觀察函數(shù)定義在(—5,5)的圖像來找出函數(shù)的單調(diào)區(qū)間。這一例題主要以學(xué)生個(gè)別回答為主,學(xué)生回答之后通過互評來糾正答案,檢查學(xué)生對函數(shù)單調(diào)區(qū)間的掌握。強(qiáng)調(diào)單調(diào)區(qū)間一般寫成半開半閉的形式

  例題講解之后可讓學(xué)生自行完成課后練習(xí)4,以學(xué)生集體回答的方式檢驗(yàn)學(xué)生的學(xué)習(xí)效果。

  例2是將函數(shù)單調(diào)性運(yùn)用到其他領(lǐng)域,通過函數(shù)單調(diào)性來證明物理學(xué)的波意爾定理。這是歷年高考的熱點(diǎn)跟難點(diǎn)問題,這一例題要采用教師板演的方式,來對例題進(jìn)行證明,以規(guī)范總結(jié)證明步驟。一設(shè)二差三化簡四比較,注意要把f(x1)-f(x2)化簡成和差積商的形式,再比較與0的大小。

  學(xué)生在熟悉證明步驟之后,做課后練習(xí)3,并以小組為單位找部分同學(xué)上臺(tái)板演,其他同學(xué)在下面自行完成,并通過自評、互評檢查證明步驟。

  4、歸納小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了函數(shù)單調(diào)性的定義及證明過程,并在教學(xué)過程中注重培養(yǎng)學(xué)生勇于探索的精神和善于合作的意識(shí)。

  5、作業(yè)布置

  為了讓學(xué)生學(xué)習(xí)不同的數(shù)學(xué),我將采用分層布置作業(yè)的方式:一組 習(xí)題1.3A組1、2、3 ,二組 習(xí)題1.3A組2、3、B組1、2

  6、板書設(shè)計(jì)

  我力求簡潔明了地概括本節(jié)課的學(xué)習(xí)要點(diǎn),讓學(xué)生一目了然。

 。ㄟ@部分最重要用時(shí)六到七分鐘,其中定義講解跟例題講解一定要說明學(xué)生的活動(dòng))

  五、教學(xué)評價(jià)

  本節(jié)課是在學(xué)生已有知識(shí)的基礎(chǔ)上學(xué)習(xí)的,在教學(xué)過程中通過自主探究、合作交流,充分調(diào)動(dòng)學(xué)生的積極性跟主動(dòng)性,及時(shí)吸收反饋信息,并通過學(xué)生的自評、互評,讓內(nèi)部動(dòng)機(jī)和外界刺激協(xié)調(diào)作用,促進(jìn)其數(shù)學(xué)素養(yǎng)不斷提高。

高中數(shù)學(xué)說課稿 篇6

  各位領(lǐng)導(dǎo)、專家、同仁:您們好!

  我說課的內(nèi)容是高中數(shù)學(xué)第二冊(上冊)第七章《直線和圓的方程》中的第六節(jié)“曲線和方程”的第一課時(shí),下面我的說課將從以下幾個(gè)方面進(jìn)行闡述:

  一、教材分析

  教材的地位和作用

  “曲線和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“作形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,對全部解析幾何教學(xué)有著深遠(yuǎn)的影響。學(xué)生只有透徹理解了曲線和方程的意義,才算是尋得了解析幾何學(xué)習(xí)的入門之徑。如果以為學(xué)生不真正領(lǐng)悟曲線和方程的關(guān)系,照樣能求出方程、照樣能計(jì)算某些難題,因而可以忽視這個(gè)基本概念的教學(xué),這不能不說是一種“舍本逐題”的偏見,應(yīng)該認(rèn)識(shí)到這節(jié)“曲線和方程”的開頭課是解析幾何教學(xué)的“重頭戲”!

  根據(jù)以上分析,確立教學(xué)重點(diǎn)是:“曲線的方程”與“方程的曲線”的概念;難點(diǎn)是:怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程。

  二、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求以及本教材的地位和作用,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定教學(xué)目標(biāo)如下:

  知識(shí)目標(biāo):

  1、了解曲線上的點(diǎn)與方程的解之間的一一對應(yīng)關(guān)系;

  2、初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;

  3、學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;

  4、強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思想方法。

  能力目標(biāo):

  1、通過直線方程的引入,加強(qiáng)學(xué)生對方程的解和曲線上的點(diǎn)的一一對應(yīng)關(guān)系的認(rèn)識(shí);

  2、在形成曲線和方程的概念的教學(xué)中,學(xué)生經(jīng)歷觀察、分析、討論等數(shù)學(xué)活動(dòng)過程,探索出結(jié)論,并能有條理的闡述自己的觀點(diǎn);

  3、能用所學(xué)知識(shí)理解新的概念,并能運(yùn)用概念解決實(shí)際問題,從中體會(huì)轉(zhuǎn)化化歸的思想方法,提高思維品質(zhì),發(fā)展應(yīng)用意識(shí)。

  情感目標(biāo):

  1、通過概念的引入,讓學(xué)生感受從特殊到一般的認(rèn)知規(guī)律;

  2、通過反例辨析和問題解決,培養(yǎng)合作交流、獨(dú)立思考等良好的個(gè)性品質(zhì),以及勇于批判、敢于創(chuàng)新的科學(xué)精神。

  三、重難點(diǎn)突破

  “曲線的方程”與“方程的曲線”的概念是本節(jié)的重點(diǎn),這是由于本節(jié)課是由直觀表象上升到抽象概念的過程,學(xué)生容易對定義中為什么要規(guī)定兩個(gè)關(guān)系產(chǎn)生困惑,原因是不理解兩者缺一都將擴(kuò)大概念的外延。由于學(xué)生已經(jīng)具備了用方程表示直線、拋物線等實(shí)際模型,積累了感性認(rèn)識(shí)的基礎(chǔ),所以可用舉反例的方法來解決困惑,通過反例揭示“兩者缺一”與直覺的矛盾,從而又促使學(xué)生對概念表述的嚴(yán)密性進(jìn)行探索,自然地得出定義。為了強(qiáng)化其認(rèn)識(shí),又決定用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實(shí)例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  怎樣利用定義驗(yàn)證曲線是方程的曲線,方程是曲線的方程是本節(jié)的難點(diǎn)。因?yàn)閷W(xué)生在作業(yè)中容易犯想當(dāng)然的錯(cuò)誤,通常在由已知曲線建立方程的時(shí)候,不驗(yàn)證方程的解為坐標(biāo)的點(diǎn)在曲線上,就斷然得出所求的是曲線方程。這種現(xiàn)象在高考中也屢見不鮮。為了突破難點(diǎn),本節(jié)課設(shè)計(jì)了三種層次的問題,幻燈片9是概念的直接運(yùn)用,幻燈片10是概念的逆向運(yùn)用,幻燈片11是證明曲線的方程。通過這些例題讓學(xué)生再一次體會(huì)“二者”缺一不可。

  四、學(xué)情分析

  此前,學(xué)生已知,在建立了直角坐標(biāo)系后平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間建立了一一對應(yīng)關(guān)系,已有了用方程(有時(shí)以函數(shù)式的形式出現(xiàn))表示曲線的感性認(rèn)識(shí)(特別是二元一次方程表示直線),現(xiàn)在要進(jìn)一步研究平面內(nèi)的曲線和含有兩個(gè)變數(shù)的方程之間的關(guān)系,是由直觀表象上升到抽象概念的過程,對學(xué)生有相當(dāng)大的難度。學(xué)生在學(xué)習(xí)時(shí)容易產(chǎn)生的問題是,不理解“曲線上的點(diǎn)的坐標(biāo)都是方程的解”和“以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)”這兩句話在揭示“曲線和方程”關(guān)系時(shí)各自所起的作用。本節(jié)課的教學(xué)目標(biāo)也只能是初步領(lǐng)會(huì),要求學(xué)生能答出曲線和方程間必須滿足兩個(gè)關(guān)系時(shí)才能稱作“曲線的方程”和“方程的曲線”,兩者缺一不可,并能借助實(shí)例指出兩個(gè)關(guān)系的區(qū)別。

  五、教法分析

  新課程強(qiáng)調(diào)教師要調(diào)整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上的知識(shí)的傳授者和學(xué)生的管理者,轉(zhuǎn)變?yōu)閷W(xué)生發(fā)展的促進(jìn)者和幫助者,簡單的教書匠轉(zhuǎn)變?yōu)閷?shí)踐的研究者,或研究的實(shí)踐者,在教育方式上,也要體現(xiàn)出以人為本,以學(xué)生為中心,讓學(xué)生真正成為學(xué)習(xí)的主人而不是知識(shí)的奴隸,基于此,本節(jié)課遵循了概念學(xué)習(xí)的四個(gè)基本步驟,重點(diǎn)采用了問題探究和啟發(fā)式相結(jié)合的教學(xué)方法。

  從實(shí)例、到類比、到推廣的問題探究,它對激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)習(xí)能力都十分有利。啟發(fā)引導(dǎo)學(xué)生得出概念,深化概念,并應(yīng)用它去討論、研究和解決問題。在生生合作,師生互動(dòng)中解決問題,為提高學(xué)生分析問題、解決問題的能力打下了基礎(chǔ)。

  利用多媒體輔助教學(xué),節(jié)省了時(shí)間,增大了信息量,增強(qiáng)了直觀形象性。

  六、學(xué)法分析

  基礎(chǔ)教育課程改革要求加強(qiáng)學(xué)習(xí)方式的改變,提倡學(xué)習(xí)方式的多樣化,各學(xué)科課程通過引導(dǎo)學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,合作探究,發(fā)展學(xué)生搜集處理信息的能力,獲取新知識(shí)的能力,分析和解決問題的能力,以及交流合作的能力,基于此,本節(jié)課從實(shí)例引入→類比→推廣→得概念→概念挖掘深化→具體應(yīng)用→作業(yè)中的研究性問題的思考,始終讓學(xué)生主動(dòng)參與,親身實(shí)踐,獨(dú)立思考,與合作探究相結(jié)合,在生生合作,師生互動(dòng)中,使學(xué)生真正成為知識(shí)的發(fā)現(xiàn)者和知識(shí)的研究者。

  七、教學(xué)過程分析

  1、感性認(rèn)識(shí)階段——以舊帶新、提出課題

高中數(shù)學(xué)說課稿 篇7

  一、說教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點(diǎn)的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個(gè)基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點(diǎn)的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會(huì)用集合的語言描述客觀,發(fā)展學(xué)生運(yùn)用數(shù)學(xué)語言交流的能力。

  2、 教學(xué)目標(biāo)

 。1)知識(shí)目標(biāo):a、通過實(shí)例了解集合的含義,理解集合以及有關(guān)概念;

  b、初步體會(huì)元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

 。2)能力目標(biāo):a、讓學(xué)生感知數(shù)學(xué)知識(shí)與實(shí)際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實(shí)際的能力;

  b、學(xué)會(huì)借助實(shí)例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。

 。3)情感目標(biāo):a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;

  b、通過主動(dòng)探究,合作交流,感受探索的樂趣和成功的體驗(yàn),體會(huì)數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。

  3、重點(diǎn)和難點(diǎn)

  重點(diǎn):集合的概念,元素與集合的關(guān)系。

  難點(diǎn):準(zhǔn)確理解集合的概念。

  二、學(xué)情分析(說學(xué)情)

  對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實(shí)際問題的能力,在運(yùn)算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強(qiáng),學(xué)習(xí)積極性不高,有厭學(xué)情緒。

  三、說教法

  針對學(xué)生的實(shí)際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實(shí)例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c(diǎn)撥和引導(dǎo),引導(dǎo)學(xué)生主動(dòng)思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

  四、學(xué)習(xí)指導(dǎo)(說學(xué)法)

  教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會(huì)學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點(diǎn)這節(jié)課主要是教學(xué)生動(dòng)腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動(dòng)參與的機(jī)會(huì),增強(qiáng)了參與的意識(shí),教學(xué)生獲取知識(shí)的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。

  五、教學(xué)過程

  1、引入新課:

  a、創(chuàng)設(shè)情境,揭示本課主題,同時(shí)對集合的整體性有個(gè)初步的感性認(rèn)識(shí)。

  b、介紹集合論的創(chuàng)始者康托爾

  2、究竟什么是集合?(實(shí)例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平, 以學(xué)生熟悉的事物(物體),以實(shí)際生活為背景進(jìn)行探究, 為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實(shí)例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點(diǎn)。結(jié)合探究中的實(shí)例,讓學(xué)生說出集合和元素各是什么?知識(shí)的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實(shí)際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。

  教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

  5、 集合的符號(hào)記法,為本節(jié)重點(diǎn)做好鋪墊。

  6、 從實(shí)例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號(hào)表示,在這個(gè)環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動(dòng)參與到知識(shí)逐步形成過程,便于學(xué)生理解和掌握,落實(shí)本課的重點(diǎn),學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號(hào)的含義。

  7、 思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動(dòng)時(shí)間和空間。通過自由舉例,能深化概念。同時(shí)還能提升學(xué)生的分析能力表達(dá)自己見解的能力。

  8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

  9、 學(xué)生練習(xí):通過練習(xí),識(shí)記常見數(shù)集的記法,同時(shí)進(jìn)一步鞏固元素與集合間的關(guān)系。

  10、知識(shí)的實(shí)際應(yīng)用:

  問題不難,落實(shí)課本能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。

  11、課堂小節(jié)

  以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識(shí),幫助學(xué)生認(rèn)識(shí)到要學(xué)會(huì)梳理所學(xué)內(nèi)容,要學(xué)會(huì)總結(jié)反思,使學(xué)生的認(rèn)識(shí)進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。

  六、評價(jià)

  教學(xué)評價(jià)的及時(shí)能有效調(diào)動(dòng)課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程遵重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價(jià)與多元評價(jià)將教學(xué)評價(jià)貫穿于本堂課的每個(gè)教學(xué)環(huán)節(jié)。

  七、教學(xué)反思

  1、 通過現(xiàn)實(shí)生活中的實(shí)例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。

  2、 啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。

  八、板書設(shè)計(jì)

高中數(shù)學(xué)說課稿 篇8

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。

  2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。3、講解與練習(xí):對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個(gè)法則的幾何意義及運(yùn)算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識(shí)的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié)①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個(gè)法則都可以選用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過講解例1,使學(xué)生認(rèn)識(shí)到可以通過平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對理解及運(yùn)用法則求兩向量的和很重要。

  設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認(rèn)識(shí),例1的講解使學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都可以用。

  設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個(gè)向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對學(xué)生來說是個(gè)難點(diǎn),首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號(hào)兩數(shù)相加:“異號(hào)兩數(shù)相加,用較大

  的絕對值減去較小的絕對值,符號(hào)取絕對值較大的數(shù)的符號(hào)!鳖惐犬愄(hào)兩數(shù)相加,他們會(huì)用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同號(hào)兩數(shù)相加。這說明兩個(gè)共線向量相加依然可用三角形法則 通過以上幾個(gè)環(huán)節(jié)的討論,可以作個(gè)簡單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個(gè)向量相加。

  設(shè)計(jì)意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識(shí),使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,可以化解難點(diǎn)。

 。4)向量加法的運(yùn)算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。

 、诮Y(jié)合律:結(jié)合律是通過三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

  設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

 。3)運(yùn)算律

高中數(shù)學(xué)說課稿 篇9

  一、教材分析

  (一)地位與作用

  《冪函數(shù)》選自高一數(shù)學(xué)新教材必修1第2章第3節(jié)。是基本初等函數(shù)之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。從教材的整體安排看,學(xué)習(xí)了解冪函數(shù)是為了讓學(xué)生進(jìn)一步獲得比較系統(tǒng)的函數(shù)知識(shí)和研究函數(shù)的方法,為今后學(xué)習(xí)三角函數(shù)等其他函數(shù)打下良好的基礎(chǔ).在初中曾經(jīng)研究過y=x,y=x2,y=x—1三種冪函數(shù)。這節(jié)內(nèi)容,是對初中有關(guān)內(nèi)容的進(jìn)一步的概括、歸納與發(fā)展,是與冪有關(guān)知識(shí)的高度升華.本節(jié)內(nèi)容之后, 將把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)科學(xué)的組織起來,體現(xiàn)充滿在整個(gè)數(shù)學(xué)中的組織化,系統(tǒng)化的精神。讓學(xué)生了解系統(tǒng)研究一類函數(shù)的方法.這節(jié)課要特別讓學(xué)生去體會(huì)研究的方法,以便能將該方法遷移到對其他函數(shù)的研究.

 。ǘ⿲W(xué)情分析

  (1)學(xué)生已經(jīng)接觸的函數(shù),確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個(gè)函數(shù)的意識(shí) ,已初步形成對數(shù)學(xué)問題的合作探究能力。

 。2)雖然前面學(xué)生已經(jīng)學(xué)會(huì)用描點(diǎn)畫圖的方法來繪制指數(shù)函數(shù),對數(shù)函數(shù)圖像,但是對于冪函數(shù)的圖像畫法仍然缺乏感性認(rèn)識(shí)。

  (3)學(xué)生層次參差不齊,個(gè)體差異比較明顯。

  二、目標(biāo)分析

  新課標(biāo)指出“三維目標(biāo)”是一個(gè)密切聯(lián)系的有機(jī)整體。

  (一)教學(xué)目標(biāo)

 。1)知識(shí)與技能

 、偈箤W(xué)生理解冪函數(shù)的概念,會(huì)畫冪函數(shù)的圖象。

  ②讓學(xué)生結(jié)合這幾個(gè)冪函數(shù)的圖象,理解冪函圖象的變化情況和性質(zhì)。

 。2)過程與方法

 、僮寣W(xué)生通過觀察、總結(jié)冪函數(shù)的性質(zhì),培養(yǎng)學(xué)生概括抽象和識(shí)圖能力。

 、谑箤W(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

 。3)情感態(tài)度與價(jià)值觀

  ①通過熟悉的例子讓學(xué)生消除對冪函數(shù)的陌生感從而引出概念,引起學(xué)生注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。

 、诶枚嗝襟w,了解冪函數(shù)圖象的變化規(guī)律,使學(xué)生認(rèn)識(shí)到現(xiàn)代技術(shù)在數(shù)學(xué)認(rèn)知過程中的作用,從而激發(fā)學(xué)生的學(xué)習(xí)欲望。

  ③培養(yǎng)學(xué)生從特殊歸納出一般的意識(shí),培養(yǎng)學(xué)生利用圖像研究函數(shù)奇偶性的能力。并引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)中的對稱美,讓學(xué)生在畫圖與識(shí)圖中獲得學(xué)習(xí)的快樂。

 。ǘ┲攸c(diǎn)難點(diǎn)

  根據(jù)我對本節(jié)課的內(nèi)容的理解,我將重難點(diǎn)定為:

  重點(diǎn):從五個(gè)具體的冪函數(shù)中認(rèn)識(shí)概念和性質(zhì)

  難點(diǎn):從冪函數(shù)的圖象中概括其性質(zhì)。

  三、教法、學(xué)法分析

 。ㄒ唬┙谭

  教學(xué)過程是教師和學(xué)生共同參與的過程,教師要善于啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動(dòng)學(xué)生的積極性、主動(dòng)性,要有效地滲透數(shù)學(xué)思想方法,努力去提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法。

  1、引導(dǎo)發(fā)現(xiàn)比較法

  因?yàn)橛形鍌(gè)冪函數(shù),所以可先通過學(xué)生動(dòng)手畫出函數(shù)的圖象,觀察它們的解析式和圖象并從式的角度和形的角度發(fā)現(xiàn)異同,并進(jìn)行比較,從而更深刻地領(lǐng)會(huì)冪函數(shù)概念以及五個(gè)冪函數(shù)的圖象與性質(zhì)。

  2、借助信息技術(shù)輔助教學(xué)

  由于多媒體信息技術(shù)能具有形象生動(dòng)易吸引學(xué)生注意的特點(diǎn),故此,可用多媒體制作引入情境,將學(xué)生引到這節(jié)課的學(xué)習(xí)中來。再利用《幾何畫板》畫出五個(gè)冪函數(shù)的圖象,為學(xué)生創(chuàng)設(shè)豐富的數(shù)形結(jié)合環(huán)境,幫助學(xué)生更深刻地理解冪函數(shù)概念以及在冪函數(shù)中指數(shù)的變化對函數(shù)圖象形狀和單調(diào)性的影響,并由此歸納冪函數(shù)的性質(zhì)。

  3、練習(xí)鞏固討論學(xué)習(xí)法

  這樣更能突出重點(diǎn),解決難點(diǎn),使學(xué)生既能夠進(jìn)行深入地獨(dú)立思考又能與同學(xué)進(jìn)行廣泛的交流與合作,這樣一來學(xué)生對這五個(gè)冪函數(shù)領(lǐng)會(huì)得會(huì)更加深刻,在這個(gè)過程中學(xué)生們分析問題和解決問題的能力得到進(jìn)一步的提高,班級整體學(xué)習(xí)氛氛圍也變得更加濃厚。

 。ǘ⿲W(xué)法

  本節(jié)課主要是通過對冪函數(shù)模型的特征進(jìn)行歸納,動(dòng)手探索冪函數(shù)的圖像,觀察發(fā)現(xiàn)其有關(guān)性質(zhì),再改變觀察角度發(fā)現(xiàn)奇偶函數(shù)的特征。重在動(dòng)手操作、觀察發(fā)現(xiàn)和歸納的過程。

  由于冪函數(shù)在第一象限的特征是學(xué)生不容易發(fā)現(xiàn)的問題,因此在教學(xué)過程中引導(dǎo)學(xué)生將抽象問題具體化,借助多媒體進(jìn)行動(dòng)態(tài)演化,以形成較完整的知識(shí)結(jié)構(gòu)。

  四、教學(xué)過程分析

 。ㄒ唬┙虒W(xué)過程設(shè)計(jì)

 。1)創(chuàng)設(shè)情境,提出問題。 新課標(biāo)指出:“應(yīng)該讓學(xué)生在具體生動(dòng)的情境中學(xué)習(xí)數(shù)學(xué)”。在本節(jié)課的教學(xué)中,從我們熟悉的生活情境中提出問題,問題的設(shè)計(jì)改變了傳統(tǒng)目的明確的設(shè)計(jì)方式,給學(xué)生最大的思考空間,充分體現(xiàn)學(xué)生主體地位。

  問題1:下列問題中的函數(shù)各有什么共同特征?是否為指數(shù)函數(shù)?

  由學(xué)生討論,總結(jié),即可得出:p=w,s=a2,v=a,a=s1/2,v=t—1

  這時(shí)學(xué)生觀察可能有些困難,老師提示可以用x表示自變量,用y表示函數(shù)值,上述函數(shù)式變成:

  都是自變量的若干次冪的形式。都是形如

  的函數(shù)。

  揭示課題:今天這節(jié)課,我們就來研究:冪函數(shù)

 。ㄒ唬┱n堂主要內(nèi)容

 。1)冪函數(shù)的概念

 、賰绾瘮(shù)的定義。

  一般地,函數(shù)

  叫做冪函數(shù),其中x 是自變量,a是常數(shù)。

  ②冪函數(shù)與指數(shù)函數(shù)之間的區(qū)別。

  冪函數(shù)——底數(shù)是自變量,指數(shù)是常數(shù);

  指數(shù)函數(shù)——指數(shù)是自變量,底數(shù)是常數(shù)。

 。2)幾個(gè)常見冪函數(shù)的圖象和性質(zhì)

  由同學(xué)們畫出下列常見的冪函數(shù)的圖象,并根據(jù)圖象將發(fā)現(xiàn)的性質(zhì)填入表格

  根據(jù)上表的內(nèi)容并結(jié)合圖象,總結(jié)函數(shù)的共同性質(zhì)。讓學(xué)生交流,老師結(jié)合學(xué)生的回答組織學(xué)生總結(jié)出性質(zhì)。

  以上問題的設(shè)計(jì)意圖:數(shù)形結(jié)合是一個(gè)重要的數(shù)學(xué)思想方法,它包含以數(shù)助形,和以形助數(shù)的思想。通過問題設(shè)計(jì)讓學(xué)生著手實(shí)際,借助行的生動(dòng)來闡明冪函數(shù)的性質(zhì)。

  教師講評:冪函數(shù)的性質(zhì).

 、偎械膬绾瘮(shù)在(0,+∞)上都有定義,并且圖像都過點(diǎn)(1,1).

 、谌绻鸻>0,則冪函數(shù)的圖像通過原點(diǎn),并在區(qū)間〔0,+∞)上是增函數(shù).

 、廴绻鸻<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一象限內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖像在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞時(shí),圖像在x軸上方無限地趨近x軸.

 、墚(dāng)a為奇數(shù)時(shí),冪函數(shù)為奇函數(shù);當(dāng)a為偶數(shù)時(shí),冪函數(shù)為偶函數(shù)。

  以問題設(shè)計(jì)為主,通過問題,讓學(xué)生由已經(jīng)學(xué)過的指數(shù)函數(shù),對數(shù)函數(shù),描點(diǎn)作圖得到五個(gè)冪函數(shù)的圖像,但是我們應(yīng)該知道繪制冪函數(shù)的圖像比繪制指數(shù)函數(shù)和對數(shù)函數(shù)的圖像更為復(fù)雜,因?yàn)閮绾瘮?shù)隨著冪指數(shù)的輕微變化會(huì)出現(xiàn)較大的變化,因此,在描點(diǎn)作圖之前,應(yīng)引導(dǎo)學(xué)生對幾個(gè)特殊的冪函數(shù)的性質(zhì)先進(jìn)行初步的探究,如分析函數(shù)的定義域,奇偶性等,在根據(jù)研究結(jié)果和描點(diǎn)作圖畫出圖像,讓學(xué)生觀察所作圖像特征,并由圖象特征得到相應(yīng)的函數(shù)性質(zhì),讓學(xué)生充分體會(huì)系統(tǒng)的研究方法。同時(shí)學(xué)生對于歸納性質(zhì)這一環(huán)節(jié)相對指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì),學(xué)生會(huì)有更大的困難。因此,教學(xué)中只須對他們的圖像與基本性質(zhì)進(jìn)行認(rèn)識(shí),而不必在一般冪函數(shù)上作過多的引申和介紹。在教學(xué)中,采用從具體到一般,再從一般到具體的安排。

  通過學(xué)生的主體參與,使學(xué)生深切體會(huì)到本節(jié)課的主要內(nèi)容和思想方法,從而實(shí)現(xiàn)對知識(shí)識(shí)的再次深化。

 。3)當(dāng)堂訓(xùn)練,鞏固深化

  例題和練習(xí)題的選取應(yīng)結(jié)合學(xué)生認(rèn)知探究,鞏固本節(jié)課的重點(diǎn)知識(shí),并能用知識(shí)加以運(yùn)用。本節(jié)課選取主要選取了兩道例題。

  例1是課本上的例題:證明f(x)=x1/2在(0,+∞)上是增函數(shù)。這題先從“形”的角度判斷函數(shù)的單調(diào)區(qū)間和單調(diào)性,再用到定義從“數(shù)”的角度對函數(shù)的單調(diào)性進(jìn)行推理論證,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想和解決問題的專業(yè)素養(yǎng)。

  例2是補(bǔ)充例題,主要培養(yǎng)學(xué)生根據(jù)體例構(gòu)造出函數(shù),并利用函數(shù)的性質(zhì)來解決問題的能力,從而加深學(xué)生對冪函數(shù)及其性質(zhì)的理解。注意:由于學(xué)生對冪函數(shù)還不是很熟悉,所以在講評中要刻意體現(xiàn)出冪函數(shù)y=x1。3是增函數(shù)與y=x—5/4的圖像的畫法,即再一次讓學(xué)生體會(huì)根據(jù)解析式來畫圖像解題這一基本思路

 。4)小結(jié)歸納,回顧反思。 小結(jié)歸納不僅是對知識(shí)的簡單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。我設(shè)計(jì)了三個(gè)問題:

  (1)通過本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?

 。2)通過本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么?

  (3)通過本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 。ǘ┳鳂I(yè)設(shè)計(jì) 作業(yè)分為必做題和選做題,必做題對本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與,注重知識(shí)的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成. 我設(shè)計(jì)了以下作業(yè):

 。1)必做題

 。2)選做題

  (三)板書設(shè)計(jì)

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識(shí)結(jié)構(gòu)及其相互聯(lián)系;能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習(xí)的結(jié)果評價(jià)當(dāng)然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià)。我采用及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對冪函數(shù)是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。 以上就是我對本節(jié)課的理解和設(shè)計(jì),敬請各位專家、評委批評指正。

  謝謝!

【精選高中數(shù)學(xué)說課稿模板匯編9篇】相關(guān)文章:

高中數(shù)學(xué)說課稿(精選10篇)11-02

人教版高中數(shù)學(xué)必修一說課稿 函數(shù)的概念說課稿11-02

初中地理說課稿模板《北京》說課稿12-29

《離騷》說課稿模板12-05

蘭亭集序說課稿模板匯編九篇04-05

小學(xué)音樂說課稿模板12-27

《過秦論》優(yōu)秀說課稿模板12-28

《口語交際:勸告》優(yōu)秀說課稿模板(精選6篇)12-28

人教版高中數(shù)學(xué)A版必修二 傾斜角與斜率說課稿11-02

人教版高中數(shù)學(xué)必修2 直線的點(diǎn)斜式方程說課稿11-02