中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高中數(shù)學(xué)說課稿

時(shí)間:2021-07-21 17:42:37 說課稿 我要投稿

關(guān)于高中數(shù)學(xué)說課稿模板匯編八篇

  作為一名專為他人授業(yè)解惑的人民教師,時(shí)常需要編寫說課稿,是說課取得成功的前提。我們應(yīng)該怎么寫說課稿呢?以下是小編幫大家整理的高中數(shù)學(xué)說課稿8篇,希望能夠幫助到大家。

關(guān)于高中數(shù)學(xué)說課稿模板匯編八篇

高中數(shù)學(xué)說課稿 篇1

  本節(jié)課講述的是人教版高一數(shù)學(xué)(上)3.2等差數(shù)列(第一課時(shí))的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對“數(shù)學(xué)建!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實(shí)際問題是本節(jié)課的另一個(gè)難點(diǎn)。

  二、學(xué)情教法分析:

  對于三中的高一學(xué)生,知識經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合

  這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實(shí)踐活動,以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開_________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

  通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

  2.小明目前會100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3. 小芳只會5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過練習(xí)2和3引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,

  這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

  ②公差d一定是由后項(xiàng)減前項(xiàng)所得;

  ③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9 ,8,7,6,5,4,??;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74??;√ d=0.01

  3. 0,0,0,0,0,0,??.; √ d=0

  4. 1,2,3,2,3,4,??;×

  5. 1,0,1,0,1,??×

  其中第一個(gè)數(shù)列公差<0,>0,第三個(gè)數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,由學(xué)生研究分組討論a4的通項(xiàng)公式。通過總結(jié)a4的通項(xiàng)公式由學(xué)生猜想a40的通項(xiàng)公式,進(jìn)而歸納an的通項(xiàng)公式。整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ??

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項(xiàng)公式:

  an=a1+(n-1)d

  此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ??

  an – an-1=d

  將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d

 。1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。

  對照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過該知識點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求

  接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用

  同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項(xiàng)公式含義的理解以及對通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。通過例1和例2向?qū)W生表明:要用運(yùn)動變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另

  一部分量。

  例1 (1)求等差數(shù)列8,5,2,?的第20項(xiàng);第30項(xiàng);第40項(xiàng)

  (2)-401是不是等差數(shù)列-5,-9,-13,?的項(xiàng)?如果是,是第幾項(xiàng)?

  在第一問中我添加了計(jì)算第30項(xiàng)和第40項(xiàng)以加強(qiáng)鞏固等差數(shù)列通項(xiàng)公式;第二問實(shí)際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項(xiàng)公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項(xiàng)a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項(xiàng)公式的鞏固

  例3 是一個(gè)實(shí)際建模問題

  建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項(xiàng)數(shù)學(xué)生認(rèn)為是16項(xiàng),應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實(shí)際樓梯圖以化解難點(diǎn))。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建!钡臄(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時(shí)間內(nèi)完成)。目的:使學(xué)生熟悉通項(xiàng)公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計(jì)算中間各級的寬度。

  目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時(shí)強(qiáng)化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)

  2.等差數(shù)列的通項(xiàng)公式 an= a1+(n-1) d會知三求一

  3.用“數(shù)學(xué)建模”思想方法解決實(shí)際問題

  (六)布置作業(yè)

  必做題:課本P114 習(xí)題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項(xiàng)a1=-24,從第10項(xiàng)開始為正數(shù),求公差d的取值范圍。

  (目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計(jì)

  在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。

高中數(shù)學(xué)說課稿 篇2

  一.說教材

  1.1 教材結(jié)構(gòu)與內(nèi)容簡析

  本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊)》5.6函數(shù)圖象的定位作圖法的第一課時(shí),主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。

  函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對應(yīng)思想、換元方法等。

  1.2 教學(xué)目標(biāo)

  1.2.1知識目標(biāo)

 、拧⒔o定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號的關(guān)系。

 、、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。

 、、初步學(xué)會應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。

  1.2.2能力目標(biāo)

 、、在數(shù)學(xué)實(shí)驗(yàn)平臺上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。

 、、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會數(shù)學(xué)

  地解決問題。

 、、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。

  1.2.3情感目標(biāo)

  培養(yǎng)學(xué)生積極參與、合作交流的主體意識,在知識的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。

  1.3 教材重點(diǎn)和難點(diǎn)處理思路

  重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用

  難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)

  教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然。”

  為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:

 、、從學(xué)生已有知識出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺,分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯誤原因,使學(xué)生認(rèn)識到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識解析式形式化的特點(diǎn)。

 、恰(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡單實(shí)驗(yàn)報(bào)告的形式,通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對平移變換規(guī)律知識的建構(gòu)。

  二.說教法

  針對職高一年級學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。

  本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會經(jīng)受足夠的親身體驗(yàn),親歷知識的自主建構(gòu)過程;使學(xué)生學(xué)會從具體情境中提取適當(dāng)?shù)母拍睿瑥挠^察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會數(shù)學(xué)地思考。

  另一方面,注重創(chuàng)設(shè)機(jī)會使學(xué)生有機(jī)會看到數(shù)學(xué)的全貌,體會數(shù)學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會如何應(yīng)用規(guī)律解決問題,體會知識的價(jià)值,增強(qiáng)求知欲。

  總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。

  三.說學(xué)法

  “學(xué)之道在于悟,教之道在于度!睂W(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動權(quán)交給學(xué)生。

  美國某大學(xué)有一句名言:“讓我聽見的,我會忘記;讓我看見的,我就領(lǐng)會了;讓我做過的,我就理解了。”通過學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。

  教師的“教”不僅要讓學(xué)生“學(xué)會知識”,更主要的是要讓學(xué)生“會學(xué)知識”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識既不是教出來的,也不是學(xué)出來的,而是研究出來的!北竟(jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時(shí)學(xué)會數(shù)學(xué)地思考。

  四.說程序

  4.1創(chuàng)設(shè)情境,引入課題

  在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”

  引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。

  從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。

  4.2數(shù)學(xué)實(shí)驗(yàn),自主探索

  這一環(huán)節(jié)主要分兩階段。

  1、嘗試初探

  引例、函數(shù) 與 圖象間的關(guān)系

  這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。

  講解時(shí),利用幾何畫板的度量功能,給出兩個(gè)對應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。

  2、實(shí)驗(yàn)發(fā)現(xiàn)

  本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報(bào)告的形式完成探索規(guī)律的任務(wù)。 實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。

  函數(shù) 解析式平移變換規(guī)律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗(yàn)結(jié)論

高中數(shù)學(xué)說課稿 篇3

  一、教材分析

  1· 教材的地位和作用

  在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識是學(xué)習(xí)函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函數(shù)的圖象和性質(zhì),加深學(xué)生對函數(shù)圖象變換的理解和認(rèn)識,加深數(shù)形結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的基礎(chǔ)。

 、步滩牡闹攸c(diǎn)和難點(diǎn)

  重點(diǎn)是對周期變換、相位變換規(guī)律的理解和應(yīng)用。

  難點(diǎn)是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。

 、辰滩膬(nèi)容的安排和處理

  函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。

  二、目的分析

 、敝R目標(biāo)

  掌握相位變換、周期變換的變換規(guī)律。

  ⒉能力目標(biāo)

  培養(yǎng)學(xué)生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。

 、车掠繕(biāo)

  在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。

 、辞楦心繕(biāo)

  通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對數(shù)學(xué)的興趣。

  三、教具使用

 、俦菊n安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺計(jì)算機(jī),所有的計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝通。

 、谡n前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學(xué)生電腦。

  四、教法、學(xué)法分析

  本節(jié)課以“探究——?dú)w納——應(yīng)用”為主線,通過設(shè)置問題情境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問題。

  以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動權(quán)交給學(xué)生,讓學(xué)生主動去學(xué)習(xí)新知、探究未知,在活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能數(shù)學(xué)地提出問題、解決問題。

  五、教學(xué)過程

  教學(xué)過程設(shè)計(jì):

  預(yù)備知識

  一、問題探究

 、艓熒献魈骄恐芷谧儞Q

  ⑵學(xué)生自主探究相位變換

  二、歸納概括

  三、實(shí)踐應(yīng)用

  教學(xué)程序

  設(shè)計(jì)說明

  〖預(yù)備知識

  1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?

  2這些變換的規(guī)律是什么?

  幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識,為后面的學(xué)習(xí)作鋪墊。促使學(xué)生學(xué)會對知識的歸納梳理。

  〖問題探究

 。ㄒ唬⿴熒献魈骄恐芷谧儞Q

  (1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生了什么變化。

  (2) 在上述變換過程中,橫坐標(biāo)的伸長和縮短與ω之間存在怎樣的關(guān)系?

  (二)學(xué)生自主探究相位變換

  (1)我們初中學(xué)過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗(yàn)證。

  設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了解周期變換的基本規(guī)律。

  設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。

  師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。

  〖?xì)w納概括

  通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?

  設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。

  〖實(shí)踐應(yīng)用

  (一)應(yīng)用舉例

  (1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。

  (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

  (3)請動手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。

  (4)歸納總結(jié)

  從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應(yīng)該是_____.

 。ǘ┓謱佑(xùn)練

  a組題(基礎(chǔ)題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

  ①如何完成下列圖象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個(gè)單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實(shí)例加以驗(yàn)證。

  讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。

  給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問題。

  這個(gè)步驟主要目的是培養(yǎng)學(xué)生的探究能力和動手能力。

  這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的變化量。

  a組題重在基礎(chǔ)知識的掌握,

  由基礎(chǔ)較薄弱的同學(xué)完成。

  b組比a組增加了第③小題,

  重在對兩種變換的綜合應(yīng)用。

  c組除了考查知識的綜合應(yīng)用,

  還要求學(xué)生對新問題進(jìn)行探究,

  有較大難度,適合基礎(chǔ)較好的

  同學(xué)完成。

  作業(yè):

 。1)必做題

  (2)選做題

  作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

  六、評價(jià)分析

  在本節(jié)的教與學(xué)活動中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。

  調(diào)節(jié)與反饋:

 、膨(yàn)證兩種變換的綜合時(shí),可能會出現(xiàn)有些學(xué)生無法觀察到兩種變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演示和詳細(xì)講解加以解決。

 、平虒W(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識。

  附:板書設(shè)計(jì)

高中數(shù)學(xué)說課稿 篇4

  尊敬的各位專家、評委:

  大家好!

  我是盧龍縣木井中學(xué)數(shù)學(xué)教師xx,我今天說課的題目是:人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書 數(shù)學(xué)必修5第一章第一節(jié)的第一課時(shí)《正弦定理》,依據(jù)新課程標(biāo)準(zhǔn)對教材的要求,結(jié)合我對教材的理解,我將從以下幾個(gè)方面說明我的設(shè)計(jì)和構(gòu)思。

  一、教材分析

  “解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性,在這次課程改革中,被保留下來,并獨(dú)立成為一章。這部分內(nèi)容從知識體系上看,應(yīng)屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應(yīng)用的一方面。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。而本課“正弦定理”,作為單元的起始課,是在學(xué)生已有的三角函數(shù)及向量知識的基礎(chǔ)上,通過對三角形邊角關(guān)系作量化探究,發(fā)現(xiàn)并掌握正弦定理(重要的解三角形工具),通過這一部分內(nèi)容的學(xué)習(xí),讓學(xué)生從“實(shí)際問題”抽象成“數(shù)學(xué)問題”的建模過程中,體驗(yàn) “觀察——猜想——證明——應(yīng)用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質(zhì)和勇于求真的精神。同時(shí)在解決問題的過程中,感受數(shù)學(xué)的力量,進(jìn)一步培養(yǎng)學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣和“用數(shù)學(xué)”的意識。

  二、學(xué)情分析

  我所任教的學(xué)校是我縣一所農(nóng)村普通中學(xué),大多數(shù)學(xué)生基礎(chǔ)薄弱,對“一些重要的數(shù)學(xué)思想和數(shù)學(xué)方法”的應(yīng)用意識和技能還不高。但是,大多數(shù)學(xué)生對數(shù)學(xué)的興趣較高,比較喜歡數(shù)學(xué),尤其是象本節(jié)課這樣與實(shí)際生活聯(lián)系比較緊密的內(nèi)容,相信學(xué)生能夠積極配合,有比較不錯的表現(xiàn)。

  三、教學(xué)目標(biāo)

  1、知識和技能:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理解決一些簡單的解三角形問題。

  過程與方法:學(xué)生參與解題方案的探索,嘗試應(yīng)用觀察——猜想——證明——應(yīng)用”等思想方法,尋求最佳解決方案,從而引發(fā)學(xué)生對現(xiàn)實(shí)世界的一些數(shù)學(xué)模型進(jìn)行思考。

  情感、態(tài)度、價(jià)值觀:培養(yǎng)學(xué)生合情合理探索數(shù)學(xué)規(guī)律的數(shù)學(xué)思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。同時(shí),通過實(shí)際問題的探討、解決,讓學(xué)生體驗(yàn)學(xué)習(xí)成就感,增強(qiáng)數(shù)學(xué)學(xué)習(xí)興趣和主動性,鍛煉探究精神。樹立“數(shù)學(xué)與我有關(guān),數(shù)學(xué)是有用的,我要用數(shù)學(xué),我能用數(shù)學(xué)”的理念。

  2、教學(xué)重點(diǎn)、難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應(yīng)用。

  教學(xué)難點(diǎn):正弦定理證明及應(yīng)用。

  四、教學(xué)方法與手段

  為了更好的達(dá)成上面的教學(xué)目標(biāo),促進(jìn)學(xué)習(xí)方式的轉(zhuǎn)變,本節(jié)課我準(zhǔn)備采用“問題教學(xué)法”,即由教師以問題為主線組織教學(xué),利用多媒體和實(shí)物投影儀等教學(xué)手段來激發(fā)興趣、突出重點(diǎn),突破難點(diǎn),提高課堂效率,并引導(dǎo)學(xué)生采取自主探究與相互合作相結(jié)合的學(xué)習(xí)方式參與到問題解決的過程中去,從中體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。

  五、教學(xué)過程

  為了很好地完成我所確定的教學(xué)目標(biāo),順利地解決重點(diǎn),突破難點(diǎn),同時(shí)本著貼近生活、貼近學(xué)生、貼近時(shí)代的原則,我設(shè)計(jì)了這樣的教學(xué)過程:

  (一)創(chuàng)設(shè)情景,揭示課題

  問題1:寧靜的夜晚,明月高懸,當(dāng)你仰望夜空,欣賞這美好夜色的時(shí)候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠(yuǎn)呢?

  1671年兩個(gè)法國天文學(xué)家首次測出了地月之間的距離大約為 385400km,你知道他們當(dāng)時(shí)是怎樣測出這個(gè)距離的嗎?

  問題2:在現(xiàn)在的高科技時(shí)代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機(jī)從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實(shí)并不難,只要你學(xué)好本章內(nèi)容即可掌握其原理。(板書課題《解三角形》)

  [設(shè)計(jì)說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學(xué)生學(xué)習(xí)本章知識的興趣。

  (二)特殊入手,發(fā)現(xiàn)規(guī)律

  問題3:在初中,我們已經(jīng)學(xué)習(xí)了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實(shí)力,請你根據(jù)初中知識,解決這樣一個(gè)問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個(gè)直角三角形中的所有的邊和角用一個(gè)表達(dá)式表示出來嗎?

  引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)特殊情形下的正弦定理

  (三)類比歸納,嚴(yán)格證明

  問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當(dāng)一回老師,如果有個(gè)學(xué)生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個(gè)結(jié)論還成立嗎?

  [設(shè)計(jì)說明]此時(shí)放手讓學(xué)生自己完成,如果感覺自己解決有困難,學(xué)生也可以前后桌或同桌結(jié)組研究,鼓勵學(xué)生用不同的方法證明這個(gè)結(jié)論,在巡視的過程中讓不同方法的學(xué)生上黑板展示,如果沒有用向量的學(xué)生,教師引導(dǎo)提示學(xué)生能否用向量完成證明。

  問題5:好根據(jù)剛才我們的研究,說明這一結(jié)論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個(gè)結(jié)論仍然成立?我們光說成立不行,必須有能力進(jìn)行嚴(yán)格的理論證明,你有這個(gè)能力嗎?下面我希望你能用實(shí)力告訴我,開始。(啟發(fā)引導(dǎo)學(xué)生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務(wù)必啟發(fā)學(xué)生用向量法完成證明。)

  [設(shè)計(jì)說明] 放手給學(xué)生實(shí)踐的機(jī)會和時(shí)間,使學(xué)生真正的參與到問題解決的過程中去,讓學(xué)生在學(xué)數(shù)學(xué)的實(shí)踐中去感悟和提高數(shù)學(xué)的思維方法和思維習(xí)慣。同時(shí),考慮到有部分同學(xué)基礎(chǔ)較差,考個(gè)人或小組可能無法完成探究任務(wù),教師在學(xué)生動手的同時(shí),通過巡查,讓提前證明出結(jié)論的同學(xué)上黑板完成,這樣做一方面肯定了先完成的同學(xué)的先進(jìn)性,鍛煉了上黑板同學(xué)的解題過程的書寫規(guī)范性,同時(shí),也讓從無從下手的同學(xué)有個(gè)參考,不至于閑呆著浪費(fèi)時(shí)間。

  問題6:由此,你能否得到一個(gè)更一般的結(jié)論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內(nèi)容,大名鼎鼎的正弦定理(此時(shí)板書課題并用紅色粉筆標(biāo)示出正弦定理內(nèi)容)

  教師講解:告訴大家,其實(shí)這個(gè)大名鼎鼎的正弦定理是由伊朗著名的天文學(xué)家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現(xiàn)與證明的。中亞細(xì)亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個(gè)證明。也有說正弦定理的證明是13世紀(jì)的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎(chǔ)上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現(xiàn)了這個(gè)充滿著數(shù)學(xué)美的結(jié)論,不能不說也是人類數(shù)學(xué)史上的一個(gè)奇跡。老師希望21世紀(jì)的你能在今后的學(xué)習(xí)中也研究出一個(gè)被后人景仰的某某定理來,到那時(shí)我也就成了數(shù)學(xué)家的老師了。當(dāng)然,老師的希望能否變成現(xiàn)實(shí),就要看大家的了。

  [設(shè)計(jì)說明] 通過本段內(nèi)容的講解,滲透一些數(shù)學(xué)史的內(nèi)容,對學(xué)生不僅有數(shù)學(xué)美得熏陶,更能激發(fā)學(xué)生學(xué)習(xí)科學(xué)文化知識的熱情。

  (四)強(qiáng)化理解,簡單應(yīng)用

  下面請大家看我們的教材2-3頁到例題1上邊,并自學(xué)解三角形定義。

  [設(shè)計(jì)說明] 讓學(xué)生看看書,放慢節(jié)奏,有利于學(xué)生消化和吸收剛才的內(nèi)容,同時(shí)教師可以利用這段時(shí)間對個(gè)別學(xué)困生進(jìn)行輔導(dǎo),以減少掉隊(duì)的同學(xué)數(shù)量,同時(shí)培養(yǎng)學(xué)生養(yǎng)成自覺看書的好習(xí)慣。

  我們學(xué)習(xí)了正弦定理之后,你覺得它有什么應(yīng)用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個(gè)簡單的問題:

  問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。

  (本題簡單,找兩位同學(xué)上黑板完成,其他同學(xué)在底下練習(xí)本上完成,同學(xué)可以小聲音討論,完成后教師根據(jù)學(xué)生實(shí)踐中發(fā)現(xiàn)的問題給予必要的講評)

  [設(shè)計(jì)說明] 充分給學(xué)生自己動手的時(shí)間和機(jī)會,由于本題是唯一解,為將來學(xué)生感悟什么情況下三角形有唯一解創(chuàng)造條件。

  強(qiáng)化練習(xí)

  讓全體同學(xué)限時(shí)完成教材4頁練習(xí)第一題,找兩位同學(xué)上黑板。

  問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。

  [設(shè)計(jì)說明]例題2較難,目的是使學(xué)生明確,利用正弦定理有兩種可能,同時(shí),引導(dǎo)學(xué)生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學(xué)有余力的同學(xué)鼓勵他們自學(xué)探究與發(fā)現(xiàn)教材8頁得內(nèi)容:《解三角形的進(jìn)一步討論》

  (五)小結(jié)歸納,深化拓展

  1、正弦定理

  2、正弦定理的證明方法

  3、正弦定理的應(yīng)用

  4、涉及的數(shù)學(xué)思想和方法。

  [設(shè)計(jì)說明] 師生共同總結(jié)本節(jié)課的收獲的同時(shí),引導(dǎo)學(xué)生學(xué)會自己總結(jié),讓學(xué)生進(jìn)一步回顧和體會知識的形成、發(fā)展、完善的過程。

  (六)布置作業(yè),鞏固提高

  1、教材10頁習(xí)題1.1A組第1題。

  2、學(xué)有余力的同學(xué)探究10頁B組第1題,體會正弦定理的其他證明方法。

  證明:設(shè)三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC

  [設(shè)計(jì)說明] 對不同水平的學(xué)生設(shè)計(jì)不同梯度的作業(yè),尊重學(xué)生的個(gè)性差異,有利于因材施教的教學(xué)原則的貫徹。

高中數(shù)學(xué)說課稿 篇5

  尊敬的各位專家、評委:

  上午好!

  今天我說課的課題是人教A版必修2第二章第二節(jié)《直線與圓的位置關(guān)系》。

  我嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過程分析和評價(jià)分析五個(gè)方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè)計(jì),敬請各位專家、評委批評指正。

  一、教材分析

  地位和作用

  學(xué)生在初中的學(xué)習(xí)中已經(jīng)了解直線與圓的位置關(guān)系,并知道可以利用直線與圓的焦點(diǎn)的個(gè)數(shù)以及圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系。但是,在初中學(xué)習(xí)時(shí),利用圓心與直線的距離d與半徑r的關(guān)系判斷直線與圓的位置關(guān)系的方法卻以結(jié)論性的形式呈現(xiàn)。在高一學(xué)習(xí)了解析幾何后,要考慮的問題是如何掌握由直線和圓的方程判斷直線與圓的位置關(guān)系的方法。解決問題的方法主要是幾何法和代數(shù)法。其中幾何法應(yīng)該是在初中學(xué)習(xí)的基礎(chǔ)上,結(jié)合高中所學(xué)的點(diǎn)到直線的距離公式求出圓心與直線的距離d后,比較與半徑r的關(guān)系。從而作出判斷,適可而止第引進(jìn)用聯(lián)立方程組轉(zhuǎn)化為二次方程判別根的“純代數(shù)判別法”,并與“幾何法”欣賞比較,以決優(yōu)劣,從而也深化了基本的“幾何法”。含參數(shù)的問題、簡單的弦的問題、切線問題等綜合問題作為進(jìn)一步的拓展提高或綜合應(yīng)用,也適度第引入課堂教學(xué)中,但以深化“判定直線與圓的位置關(guān)系”為目的,要控制難度。雖然學(xué)生學(xué)習(xí)解析幾何了,但是把幾何問題代數(shù)化無論是思維習(xí)慣還是具體轉(zhuǎn)化方法,學(xué)生仍是似懂非懂,因此應(yīng)不斷強(qiáng)化,逐漸內(nèi)化為學(xué)生的習(xí)慣和基本素質(zhì)。

  二、目標(biāo)分析

  (一)、教學(xué)目標(biāo)

  1、知識與技能

  理解直線與圓的位置的種類;

  利用平面直角坐標(biāo)系中點(diǎn)到直線的距離公式求圓心到直線的距離;

  會用點(diǎn)到直線的距離來判斷直線與圓的位置關(guān)系。

  2、過程與方法

  設(shè)直線L:ax+by+c=o,圓C:x2+y2+Dx+Ey+F=0,圓的半徑為r,圓心(- ,- )到直線的距離為d,則判別直線與圓的位置關(guān)系的根據(jù)有以下幾點(diǎn):

  當(dāng)d >r時(shí),直線l與圓c相離;

  當(dāng)d =r時(shí),直線l與圓c相切;

  當(dāng)d

  3、情態(tài)與價(jià)值觀

  讓學(xué)生通過觀察圖形,理解并掌握直線與圓的位置關(guān)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  (二)、教學(xué)重點(diǎn)與難點(diǎn)

  1、重點(diǎn):直線與圓的位置關(guān)系的幾何圖形及其判斷方法。

  2、難點(diǎn):用坐標(biāo)判斷直線與圓的位置關(guān)系。

  三、教法學(xué)法分

  (一)、教法

  教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

  1、啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。

  2、采用“從特殊到一般”、“從具體到抽象”的方法。

  3、體現(xiàn)“對比聯(lián)系”、“數(shù)形結(jié)合”及“分類討論”的思想方法。

  4、投影儀演示法。

  在整個(gè)過程中,應(yīng)以學(xué)生看,學(xué)生想,學(xué)生議,學(xué)生練為主體,教師在學(xué)生仔細(xì)觀察、類比、想象的基礎(chǔ)上通過問題串的形式加以引導(dǎo)點(diǎn)撥,對照,歸納,整理,只有這樣,才能喚起學(xué)生對原有知識的回憶,自覺地找到新舊知識的聯(lián)系,使新學(xué)知識更牢固,理解更深刻。

  (二)、學(xué)法

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為,學(xué)習(xí)是學(xué)生積極主動地建構(gòu)知識的過程,學(xué)習(xí)應(yīng)該與學(xué)生熟悉的背景相聯(lián)系。在教學(xué)中,讓學(xué)生在問題情境中,經(jīng)歷知識的形成和發(fā)展,通過觀察、操作、歸納、探索、交流、反思參與學(xué)習(xí),認(rèn)識和理解數(shù)學(xué)知識,學(xué)會學(xué)習(xí),發(fā)展能力。

  四、教學(xué)過程分析

  (一)、教學(xué)過程設(shè)計(jì)

  問題 設(shè)計(jì)意圖 師生活動

  1、初中學(xué)過的平面幾何中,直線與圓的位置關(guān)系有幾類? 啟發(fā)學(xué)生由圖形獲取判斷直線與圓的位置關(guān)系的直觀認(rèn)知,引入新課 師:讓學(xué)生之間進(jìn)行討論,交流,引導(dǎo)學(xué)生觀察圖形,導(dǎo)入新課

  生:看圖,并說出自己的看法

  2、直線與圓的位置關(guān)系有幾種? 得出直線與圓的位置關(guān)系的幾何特征與種類 師:引導(dǎo)學(xué)生利用類比,歸納的'思想,總結(jié)直線與圓的位置關(guān)系的種類,進(jìn)一步神話數(shù)形結(jié)合的數(shù)學(xué)思想

  生:學(xué)生觀察圖形,利用類比,歸納的思想,總結(jié)直線與圓的位置關(guān)

  3、在初中,我們怎么樣判斷直線與圓的位置關(guān)系呢?如何用直線與圓的方程判斷他們之間的位置關(guān)系呢?

  你能說出判斷直線與圓的位置關(guān)系的兩

  種方法嗎? 使學(xué)生回憶初中的數(shù)學(xué)知識,培養(yǎng)抽象的概括能力。

  抽象判斷呢直線與圓的位置關(guān)系的思路和方法 師:引導(dǎo)學(xué)生回憶初中判斷直線與圓的位置關(guān)系的思想過程

  生:回憶直線與圓的位置關(guān)系的判斷過程

  師:引導(dǎo)學(xué)生從集合的角度判斷直線與圓的方法

  生:利用圖形,尋求兩種方法的數(shù)學(xué)思路

  5、你能用兩種判斷直線與圓的位置關(guān)系的數(shù)學(xué)思路解決例1的問題嗎? 體會判斷直線與圓的位置關(guān)系的思想方法,關(guān)注量與量的之間的關(guān)系 師:指導(dǎo)學(xué)生閱讀教材書上的例1

  生:閱讀教材書上的例1,并完成教材書上的136頁的練習(xí)題2

  6、通過學(xué)習(xí)教材書上的例1,你能總結(jié)下判斷直線與圓的位置 關(guān)系的步驟嗎? 是學(xué)生熟悉判斷直線與圓的位置關(guān)系的基本步驟 生:于都例1

  師:分析例1 ,并展示解答過程,啟發(fā)學(xué)生概括判斷直線與圓的位置關(guān)系的基本步驟,注意給學(xué)生留有思考的時(shí)間

  生:交流自己總結(jié)的步驟

  7、通過學(xué)習(xí)教材書上的例2,你能說明例2中體現(xiàn)的數(shù)學(xué)思想方法嗎? 進(jìn)一步深化數(shù)形結(jié)合的數(shù)學(xué)思想 師:指導(dǎo)學(xué)生閱讀并完成教材書上的例2 ,啟發(fā)學(xué)生利用數(shù)形結(jié)合的數(shù)學(xué)思想解決問題

  生:閱讀教材書上的例2 ,并完成137的練習(xí)題

  8、通過例2的學(xué)習(xí),你發(fā)現(xiàn)了什么? 明確弦長的運(yùn)算方法 師:引導(dǎo)并啟發(fā)學(xué)生探索直線與圓的相交弦的求法

  生:通過分析,抽象,歸納,得出相交弦的運(yùn)算方法

  9、完成教材書上的136頁的習(xí)題1234 鞏固所學(xué)過的知識,進(jìn)一步理解和掌握直線與圓的位置關(guān)系 師:指導(dǎo)學(xué)生完成練習(xí)題

  生:互相討論交流,完成練習(xí)題

  10、課堂小結(jié)

  教師提出下列問題讓學(xué)生思考

  通過直線與圓的位置關(guān)系的判斷,你學(xué)到什么了?

  判斷直線與圓的位置關(guān)系有幾種方法?他們的特點(diǎn)是什么?

  如何求直線與圓的相交弦長?

  (二)、作業(yè)設(shè)計(jì)

  作業(yè)分為必做題和選擇題,必做題是對本節(jié)課學(xué)生知識水平的反饋,選擇題是對本節(jié)課內(nèi)容的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。

  我設(shè)計(jì)了以下作業(yè):

  必做題:課后習(xí)題A 1,2,3;

  選擇題:課后習(xí)題B1,2,3;

  (三)、板書設(shè)計(jì)

  板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進(jìn)程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評價(jià)分析

  學(xué)生學(xué)習(xí)的結(jié)果評價(jià)固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過程評價(jià)。我采用了及時(shí)點(diǎn)評、延時(shí)點(diǎn)評與學(xué)生互評相結(jié)合,全面考查學(xué)生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過程中評價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過鞏固練習(xí)考查學(xué)生對本節(jié)是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。

  以上就是我對本節(jié)課的理解和設(shè)計(jì),敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學(xué)說課稿 篇6

  說課:古典概型

  麻城理工學(xué)校謝衛(wèi)華

 。ㄒ唬┙滩牡匚患白饔:本節(jié)課是高中數(shù)學(xué)(必修

  3)第三章概率的第二節(jié)古典概型的第一課時(shí),是在

  隨機(jī)事件的概率之后,幾何概型之前,尚未學(xué)習(xí)排列組合的情況下教學(xué)的。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。學(xué)好古典概型可以為其它概率的學(xué)習(xí)奠定基礎(chǔ),同時(shí)有利于理解概率的概念,有利于計(jì)算一些事件的概率,有利于解釋生活中的一些問題。

  根據(jù)本節(jié)課的地位和作用以及新課程標(biāo)準(zhǔn)的具體要求,制訂教學(xué)重點(diǎn):理解古典概型的概念及利用古典概型求解隨機(jī)事件的概率;

  根據(jù)本節(jié)課的內(nèi)容,即尚未學(xué)習(xí)排列組合,以及學(xué)生的心理特點(diǎn)和認(rèn)知水平,制定了教學(xué)難點(diǎn):如何判斷一個(gè)試驗(yàn)是否是古典概型,分清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

 。ǘ└鶕(jù)新課程標(biāo)準(zhǔn),并結(jié)合學(xué)生心理發(fā)展的需求,以及人格、情感、價(jià)值觀的具體要求制訂教學(xué)目標(biāo):

  1.知識與技能

  (1)理解古典概型及其概率計(jì)算公式(2)會用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率2.情感態(tài)度與價(jià)值觀

  概率教學(xué)的核心問題是讓學(xué)生了解隨機(jī)現(xiàn)象與概率的意義,加強(qiáng)與實(shí)際生活的聯(lián)系,以科學(xué)的態(tài)度評價(jià)身邊的一些隨機(jī)現(xiàn)象。適當(dāng)?shù)卦黾訉W(xué)生合作學(xué)習(xí)交流的機(jī)會,盡量地讓學(xué)生自己舉出生活和學(xué)習(xí)中與古典概型有關(guān)的實(shí)例。使得學(xué)生在體會概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神

  (三)教學(xué)方法:根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,通過模擬試驗(yàn)讓學(xué)生理解古典概型的特征,觀

  察類比各個(gè)試驗(yàn),歸納總結(jié)出古典概型的概率計(jì)算公式,體現(xiàn)了化歸的重要思想,掌握列舉法,學(xué)會運(yùn)用數(shù)形結(jié)合、分類討論的思想解決概率的計(jì)算問題。

 。ㄋ模┙虒W(xué)過程:

  一、提出問題引入新課:在課前,教師布置任務(wù),以數(shù)學(xué)小組為單位,完成下面兩個(gè)模擬試驗(yàn):試驗(yàn)一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄“正面朝上”和“反面朝上”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由科代表匯總;

  試驗(yàn)二:拋擲一枚質(zhì)地均勻的骰子,分別記錄“1點(diǎn)”、“2點(diǎn)”、“3點(diǎn)”、“4點(diǎn)”、“5點(diǎn)”和“6點(diǎn)”的次數(shù),要求每個(gè)數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由科代表匯總。

  教師最后匯總方法、結(jié)果和感受,并提出問題:1.用模擬試驗(yàn)的方法來求某一隨機(jī)事件的概率好不好?為什么?2.根據(jù)以前的學(xué)習(xí),上述兩個(gè)模擬試驗(yàn)的每個(gè)結(jié)果之間都有什么特點(diǎn)?

  二、思考交流形成概念:學(xué)生觀察對比得出兩個(gè)模擬試驗(yàn)的相同點(diǎn)和不同點(diǎn),教師給出基本事件的概念,并對相關(guān)特點(diǎn)加以說明,加深新概念的理解。我們把上述試驗(yàn)中的隨機(jī)事件稱為基本事件,它是試驗(yàn)的每一個(gè)可能結(jié)果。

  基本事件有如下的兩個(gè)特點(diǎn):(1)任何兩個(gè)基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。給出例題1,讓學(xué)生自行解決,從而進(jìn)一步理解基本事件,然后讓學(xué)生先觀察對比,找出兩個(gè)模擬試驗(yàn)和例1的共同特點(diǎn),再概括總結(jié)得到的結(jié)論,(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè)(有限性);(2)每個(gè)基本事件出現(xiàn)的可能性相等(等可能性)。我們將具有這兩個(gè)特點(diǎn)的概率模型稱為古典概率概型,簡稱

  古典概型。

  三、觀察分析推導(dǎo)公式:教師提出問題:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機(jī)事件出現(xiàn)的概率如何計(jì)算?引導(dǎo)學(xué)生類比分析兩個(gè)模擬試驗(yàn)和例1的概率,先通過用概率加法公式求出隨機(jī)事件的概率,再對比概率

  結(jié)果,發(fā)現(xiàn)其中的聯(lián)系。實(shí)驗(yàn)一中,出現(xiàn)正面朝上的概率與反面朝上的概率相等,即

  1“出現(xiàn)正面朝上”所包含的基本事件的個(gè)數(shù),試驗(yàn)二中,出現(xiàn)各個(gè)點(diǎn)的概率相等,即

  P(“出現(xiàn)正面朝上”)==

  2基本事件的總數(shù)3“出現(xiàn)偶數(shù)點(diǎn)”所包含的基本事件的個(gè)數(shù),根據(jù)上述兩則模擬試驗(yàn),可以概括總結(jié)出,古典

  P(“出現(xiàn)偶數(shù)點(diǎn)”)==

  6基本事件的總數(shù)

  概型計(jì)算任何事件的

  的理解,教師提問:在使用古典概型的概率公式時(shí),應(yīng)該注意什么?學(xué)生回答,教師歸納:應(yīng)該注意,(1)要判斷該概率模型是不是古典概型;

  (2)要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。

  四、例題分析推廣應(yīng)用:通過例題2及3,鞏固學(xué)生對已學(xué)知識的掌握,提高學(xué)生分析問題、解決問題的能力。讓學(xué)生明確決概率的計(jì)算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機(jī)事件A包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。適時(shí)利用列表數(shù)形結(jié)合和分類討論等思想方法,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。

  五、總結(jié)概括加深理解:學(xué)生小結(jié)歸納,不足的地方老師補(bǔ)充說明。使學(xué)生對本節(jié)課的知識有一個(gè)系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機(jī)地串聯(lián)起來,便于記憶和應(yīng)用,也進(jìn)一步升華了這節(jié)課所要表達(dá)的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。

 。ㄎ澹┎贾米鳂I(yè)P123練習(xí)1、2題(六)板書設(shè)計(jì)

  3.2.13.2.1古典概型古典概型試驗(yàn)一試驗(yàn)二基本事件

  古典概型概率

  計(jì)算公式

  例3列表

  例1樹狀圖古典概型

  例2

  以上是我對《古典概型概型》這節(jié)課的理解和處理方法,歡迎各位專家朋友批評指正,謝謝!

  說課教案:古典概型

  麻城理工學(xué)校謝衛(wèi)華

高中數(shù)學(xué)說課稿 篇7

  一.說教材

  1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標(biāo)函數(shù)。應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。

  2.地位作用:線性規(guī)劃是數(shù)學(xué)規(guī)劃中理論較完整、方法較成熟、應(yīng)用較廣泛的一個(gè)分支,它可以解決科學(xué)研究、工程設(shè)計(jì)、經(jīng)濟(jì)管理等許多方面的實(shí)際問題。簡單的線性規(guī)劃是在學(xué)習(xí)了直線方程的基礎(chǔ)上,介紹直線方程的一個(gè)簡單應(yīng)用。通過這部分內(nèi)容的學(xué)習(xí),使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實(shí)際問題中的應(yīng)用,以培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實(shí)際問題的能力。

  3.教學(xué)目標(biāo)

  (1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標(biāo)函數(shù)。

  了解并初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。

  (2)過程與方法:提高學(xué)生數(shù)學(xué)地提出、分析和解決問題的能力,發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識,力求對現(xiàn)實(shí)世界中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。

  (3)情感、態(tài)度與價(jià)值觀:體會數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想,逐步認(rèn)識數(shù)學(xué)的應(yīng)用價(jià)值,提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的自信心。

  4.重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和用好圖解法

  難點(diǎn):如何用圖解法尋找線性規(guī)劃的最優(yōu)解。

  二.說教學(xué)方法

  教學(xué)過程是教師和學(xué)生共同參與的過程,啟發(fā)學(xué)生自主性學(xué)習(xí),充分調(diào)動學(xué)生的積極性、主動性;有效地滲透數(shù)學(xué)思想方法,提高學(xué)生素質(zhì)。根據(jù)這樣的原則和所要完成的教學(xué)目標(biāo),并為激發(fā)學(xué)生的學(xué)習(xí)興趣,我采用如下的教學(xué)方法:

  (1)啟發(fā)引導(dǎo)學(xué)生思考、分析、實(shí)驗(yàn)、探索、歸納。這能充分調(diào)動學(xué)生的主動性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點(diǎn)、解決難點(diǎn);也有利于發(fā)揮學(xué)生的創(chuàng)造性。

  (3)體現(xiàn)“等價(jià)轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學(xué)生的主觀能動性,有利于提高學(xué)生的各種能力。

  三.說學(xué)法指導(dǎo)

  教給學(xué)生方法比教給學(xué)生知識更重要,本節(jié)課注重調(diào)動學(xué)生積極思考、主動探索,盡可能地增加學(xué)生參與教學(xué)活動的時(shí)間和空間,我進(jìn)行了以下學(xué)法指導(dǎo):觀察分析、聯(lián)想轉(zhuǎn)化、動手實(shí)驗(yàn)、練習(xí)鞏固。

  (1)觀察分析:通過引例讓學(xué)生觀察化舊知為新知,造成學(xué)生認(rèn)知沖突。

  (2)聯(lián)想轉(zhuǎn)化:學(xué)生通過分析、探索、得出解決問題的方法。

  (3)動手實(shí)驗(yàn):通過作圖、實(shí)驗(yàn)、從而得出一般解題步驟。

  (4)練習(xí)鞏固:讓學(xué)生知道數(shù)學(xué)重在運(yùn)用,從而檢驗(yàn)知識的應(yīng)用情況,找出未掌握的內(nèi)容及其差距。

  四.說教學(xué)程序

  1、導(dǎo)入課題: 由一個(gè)不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學(xué)生認(rèn)知沖突。

  3、導(dǎo)學(xué)達(dá)標(biāo)之一:創(chuàng)設(shè)情境、形成概念

  通過引例的問題讓學(xué)生探索解決新問題的方法。

  (設(shè)計(jì)意圖:利用已經(jīng)學(xué)過的知識逐步分析,學(xué)以致用,使學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,從而提高學(xué)生數(shù)學(xué)的地提出、分析和解決問題的能力。)

  然后老師逐步引導(dǎo),動手實(shí)驗(yàn),化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關(guān)概念:線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。

  (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察和分析問題,激發(fā)學(xué)生的探索欲望,從而培養(yǎng)學(xué)生的解決問題和總結(jié)歸納的能力。)

  4.導(dǎo)學(xué)達(dá)標(biāo)之二:針對問題、舉例講解、形成技能

  例一:課本61頁例3

  (創(chuàng)設(shè)意境:,練習(xí)是使學(xué)生明白數(shù)學(xué)來源于實(shí)際又運(yùn)用于實(shí)際,同時(shí)使學(xué)生進(jìn)初步應(yīng)用線性規(guī)劃的圖解法解決一些實(shí)際問題。)

  6.鞏固目標(biāo):

  練習(xí)一:學(xué)生做課堂練習(xí)P64例4

  (叫學(xué)生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實(shí)際意義,考慮取值范圍。造成新的認(rèn)知沖突,從而研究探索,得到整點(diǎn)最優(yōu)解的一種求法。)

  練習(xí)二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準(zhǔn)備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個(gè)書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個(gè)書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)

  (設(shè)計(jì)意圖:通過實(shí)際問題,激發(fā)學(xué)生興趣,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,力求學(xué)生能夠?qū)ΜF(xiàn)實(shí)生活中蘊(yùn)含的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。)

  7.歸納與小結(jié):

  小結(jié)本課的主要學(xué)習(xí)內(nèi)容是什么?(由師生共同來完成本課小結(jié))

  (創(chuàng)設(shè)意境:讓學(xué)生參與小結(jié),引導(dǎo)學(xué)生對所學(xué)知識進(jìn)行反思,有利于加強(qiáng)學(xué)生記憶和形成良好的數(shù)學(xué)思維習(xí)慣)

  8.布置作業(yè):

  P64. 2

  五.說板書設(shè)計(jì)

  板書設(shè)計(jì)為表格式,這樣的板書簡明清楚,重點(diǎn)突出,加深學(xué)生對重點(diǎn)知識的理解和掌握,同時(shí)便于記憶,有利于提高教學(xué)效果。

高中數(shù)學(xué)說課稿 篇8

  各位評委:下午好!

  我叫 ,來自 。今天我說課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

  (一)教材的地位和作用

  《 》是人教版出版社 第 冊、第 單元的內(nèi)容。《》既是 在知識上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

 。ǘ、學(xué)情分析

  通過前一階段的教學(xué),學(xué)生對 的認(rèn)識已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:

  知識層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.

  (三)教學(xué)課時(shí)

  本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。)

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識與技能:

  過程與方法:

  情感態(tài)度:

 。ɡ纾簞(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認(rèn)識,對學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節(jié)課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。

  五、說教學(xué)過程

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

 。ㄒ唬﹦(chuàng)設(shè)情景………………….

  (二)比舊悟新………………….

 。ㄈw納提煉…………………

 。ㄋ模⿷(yīng)用新知,熟練掌握 …………………

  (五)總結(jié)…………………

 。┳鳂I(yè)布置…………………

  (七)板書設(shè)計(jì)…………………

  以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝

  著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

【關(guān)于高中數(shù)學(xué)說課稿模板匯編八篇】相關(guān)文章:

高中數(shù)學(xué)說課稿(精選10篇)11-02

人教版高中數(shù)學(xué)必修一說課稿 函數(shù)的概念說課稿11-02

初中地理說課稿模板《北京》說課稿12-29

《離騷》說課稿模板12-05

蘭亭集序說課稿模板匯編九篇04-05

關(guān)于《蒸發(fā)》說課稿11-30

關(guān)于《蝸!氛f課稿11-30

小學(xué)音樂說課稿模板12-27

《過秦論》優(yōu)秀說課稿模板12-28

人教版高中數(shù)學(xué)A版必修二 傾斜角與斜率說課稿11-02