八年級《不等式及其基本性質(zhì)》說課稿
作為一名辛苦耕耘的教育工作者,就不得不需要編寫說課稿,寫說課稿能有效幫助我們總結(jié)和提升講課技巧。那么寫說課稿需要注意哪些問題呢?下面是小編收集整理的八年級《不等式及其基本性質(zhì)》說課稿,希望能夠幫助到大家。
《不等式的基本性質(zhì)》它是北師大版八年級下冊第二章第二節(jié)的內(nèi)容。今天我將從教材分析,教學(xué)目標,教學(xué)重難點,教法學(xué)法,教學(xué)過程這五個方面談?wù)勎覍@節(jié)課處理的一些不成熟的看法:
本節(jié)內(nèi)容不等式的基本性質(zhì),它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng)用,所以對不等式的學(xué)習(xí)有著重要的實際意義。同時,不等式的基本性質(zhì)也為學(xué)生以后順利學(xué)習(xí)解一元一次不等式和解一元一次不等式組的有關(guān)內(nèi)容的理論基礎(chǔ),起到重要的奠基作用。
根據(jù)《新課程標準》的要求,教材的內(nèi)容兼顧我班學(xué)生的特點,我制定了如下教學(xué)目標:
知識與技能:
1. 感受生活中存在的不等關(guān)系,了解不等式的意義。
2. 掌握不等式的基本性質(zhì)。
過程與方法:經(jīng)歷不等式的基本性質(zhì)的探索過程,初步體會不等式與等式的異同。
情感態(tài)度與價值觀:經(jīng)歷由具體實例建立不等式模型的過程,進一步符號感與數(shù)學(xué)化的能力。
教學(xué)重難點:
重點:不等式概念及其基本性質(zhì)
難點:不等式基本性質(zhì)3
教法與學(xué)法:
1. 教學(xué)理念: “ 人人學(xué)有用的數(shù)學(xué)”
2. 教學(xué)方法:觀察法、引導(dǎo)發(fā)現(xiàn)法、討論法.
3. 教學(xué)手段:多媒體應(yīng)用教學(xué)
4. 學(xué)法指導(dǎo):嘗試,猜想,歸納,總結(jié)
根據(jù)《數(shù)學(xué)課程標準》的要求,教材和學(xué)生的特點,我制定了以下四個教學(xué)環(huán)節(jié)。下面我將具體的教學(xué)過程闡述一下:
一、復(fù)習(xí)導(dǎo)入新課
上課開始,我首先帶領(lǐng)學(xué)生學(xué)習(xí)本節(jié)課的教學(xué)目標,讓學(xué)生明白本節(jié)課學(xué)習(xí)的目標。
1.探索并掌握不等式的基本性質(zhì),并運用它對不等式進行變形.
2.理解不等式性質(zhì)與等式性質(zhì)的聯(lián)系與區(qū)別.
3.提高觀察、比較、歸納的.能力,滲透類比的思想方法.
二、探求新知,講授新課
第一部分:學(xué)前練習(xí)
1. -7 ≤ -5, 3+4>1+4
5+3≠12-5, x ≥ 8
a+2>a+1, x+3 <6
(1)上述式子有哪些表示數(shù)量關(guān)系的符號?這些符號表示什么關(guān)系?
(2)這些符號兩側(cè)的代數(shù)式可隨意交換位置嗎?
(3)什么叫不等式?
目的:設(shè)計該部分是為了讓學(xué)生上新課之前先回顧一下上節(jié)課學(xué)習(xí)的內(nèi)容。
第二部分:探究新知:
1.商場A種服裝的價格為60元,B種服裝的價格為80元
(1)兩種服裝都漲價10元,哪種服裝價格高?漲價15元呢?
。2)兩種服裝都降價5元,哪種服裝價格高?降價15元呢?
。3)兩種服裝都打8折出售,哪種服裝價格高?
2.已知 4 > 3,填空:
4×(-1)——3 ×(-1)
4×(-5)——3 ×(-5)
目的:設(shè)計該部分的目的是為了引出不等式的基本性質(zhì)做鋪墊。
第三部分:不等式的基本性質(zhì)的探究
1:填空: 60 < 80
60+10 80+10
60-5 80-5
60+a 80+a
性質(zhì)1,不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變.
2:填空(1):60 < 80
60 ×0.8 80 ×0.8
填空(2): 4 > 3
4×5 3×5
4÷2 3÷2
性質(zhì)2,不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。
3:填空: 4 > 3
4×(-1) 3×(-1)
4×(-5) 3×(-5)
4÷(-2) 3÷(-2)
性質(zhì)3,不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。
三、小結(jié)不等式的三條基本性質(zhì)
1. 不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變;
2. 不等式兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;
3.*不等式兩邊都乘(或除以)同一個負數(shù),不等號的方向改變 ;
與等式的基本性質(zhì)有什么聯(lián)系與區(qū)別?
四、典型例題
例1.根據(jù)不等式的基本性質(zhì),把下列不等式化成x<a或x>a的形式:
(1) x-2< 3 (2) 6x< 5x-1
(3) 1/2 x>5 (4) -4x>3
解:(1)根據(jù)不等式基本性質(zhì)1,兩邊都加上2,
得: x-2+2<3+2
x<5
(2)根據(jù)不等式基本性質(zhì)1,兩邊都減去5x,
得: 6x-5x<5x-1-5x
x<-1
例2.設(shè)a>b,用“<”或“>”填空:
(1)a-3 b-3 (2) -4a -4b
解:(1) ∵a>b
∴兩邊都減去3,由不等式基本性質(zhì)1
得 a-3>b-3
(2) ∵a>b,并且-4<0
∴兩邊都乘以-4,由不等式基本性質(zhì)3
得 -4a<-4b
五、變式訓(xùn)練:
1、已知x<y,用“<”或“>”填空。
。1)x+2 y+2 (不等式的基本性質(zhì) )
(2) 3x 3y (不等式的基本性質(zhì) )
。3)-x -y (不等式的基本性質(zhì) )
(4)x-m y-m (不等式的基本性質(zhì) )
2、若a-b<0,則下列各式中一定成立的是( )
A.a>b B.ab>0
C. D.-a>-b
3、若x是任意實數(shù),則下列不等式中,恒成立的是( )
A.3x>2x B.3x2>2x2
C.3+x>2 D.3+x2>2
六 、小結(jié)
七、作業(yè)的布置
八、 以上是我對這節(jié)課的教學(xué)的看法,希望各位專家指正。謝謝!
【八年級《不等式及其基本性質(zhì)》說課稿】相關(guān)文章:
不等式的基本性質(zhì)課后說課12-17
絕對值不等式的基本性質(zhì)10-12
等式的基本性質(zhì)說課稿11-04
不等式的8條基本性質(zhì)是什么10-12
比例的意義和基本性質(zhì)說課稿11-12
比例和比例的基本性質(zhì)說課稿11-02
不等式的性質(zhì)教學(xué)反思05-18