中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

勾股定理的說課稿

時(shí)間:2022-07-25 10:24:44 說課稿 我要投稿

勾股定理的說課稿范文(精選7篇)

  作為一名默默奉獻(xiàn)的教育工作者,通常需要用到說課稿來輔助教學(xué),說課稿是進(jìn)行說課準(zhǔn)備的文稿,有著至關(guān)重要的作用。寫說課稿需要注意哪些格式呢?下面是小編整理的勾股定理的說課稿范文,僅供參考,歡迎大家閱讀。

勾股定理的說課稿范文(精選7篇)

  勾股定理的說課稿 篇1

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

  (一)創(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

  (三)質(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

  (1)這兩個(gè)圖形有什么特點(diǎn)?

  (2)你能寫出這兩個(gè)圖形的面積嗎?

  (3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

  (四)鞏固練習(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

 。ㄎ澹w納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對知識要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

  勾股定理的說課稿 篇2

  一、教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

 。ǘ┙虒W(xué)目標(biāo)知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀:激發(fā)愛國熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng)。

  教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問題

  2、實(shí)驗(yàn)操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞:勾股定理數(shù)形圖xxxx年希臘發(fā)行。美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票。

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

  (2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

 。ǘ⿲(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。

 。ㄈ┗貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  (四)知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運(yùn)用得到升華。

  基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基。通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  (五)感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

  設(shè)計(jì)說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià),一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。

  勾股定理的說課稿 篇3

  一、教材分析

  本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要創(chuàng)設(shè)問題串,提供學(xué)生活動的方案,讓學(xué)生在活動中思考,在思考中創(chuàng)新,認(rèn)識和理解勾股定理,并能利用勾股定理解決一些簡單的有關(guān)直角三角形的計(jì)算問題.

  二、教學(xué)目標(biāo)

  1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷拼圖實(shí)驗(yàn)、計(jì)算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的`學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長,通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價(jià)值.

  3、能說出勾股定理,并能用勾股定理解決簡單問題.

  三、教學(xué)重點(diǎn)

  勾股定理的探索過程.

  四、教學(xué)難點(diǎn)

  將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

  五、教學(xué)方法與教學(xué)手段

  采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.

  六、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境 提出問題

  1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識,如果一個(gè)三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

  2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

  3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個(gè)問題.板書:直角三角形三邊數(shù)量關(guān)系.

  (這是對三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)。讓學(xué)生體會到當(dāng)一般性的問題不好解決時(shí),可以先將一般問題轉(zhuǎn)化為特殊問題來研究.)

  (二)實(shí)踐探索 猜想歸納

  1、用什么方法來探求板書:直角三角形三邊數(shù)量關(guān)系呢?

  回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?

 。▽W(xué)生討論)

  課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式.

  今天,讓我們試一試通過計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.

  (從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)

  2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個(gè)正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個(gè)與正方形ABDE大小一樣的正方形嗎?

 。ㄍ焕媒處熖峁┑膶W(xué)案,合作拼圖。)

  通過拼圖,你有什么發(fā)現(xiàn)?

 。ㄈ鐖D3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動手能力.體現(xiàn)了活動——數(shù)學(xué)的思想.)

  3、拼圖活動引發(fā)我們的靈感;運(yùn)算推演

  證實(shí)我們的猜想.為了計(jì)算面積方便,我們可

  將這幅圖形放在方格紙中.如果每一個(gè)小方格的邊長記作“1”,請你求出圖中三個(gè)正方形的面積(圖4).

 。▽W(xué)生容易回答SP=9,SQ=16。)

  你是如何得到的?

 。ǹ梢詳(shù)圖形中的小方格的個(gè)數(shù),也可以通

  過正方形面積公式計(jì)算得到。)

  如何計(jì)算 ?

  (的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺前展示.學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生.)

  4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?

  (把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計(jì)算面積的圖形,讓學(xué)生體會將較難的問題轉(zhuǎn)化為簡單問題的思想)

  5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計(jì)算分別以三邊作為邊所作的正方形面積.

 。ㄟ@是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用.在前面的探求過程中有的學(xué)生沒能自己做出來,提供再一次的機(jī)會,可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗(yàn)成功的樂趣.)

  通過計(jì)算,你發(fā)現(xiàn)這三個(gè)正方形面積間有什么關(guān)系嗎?

  (SP+SQ=SR,要給學(xué)生留有思考時(shí)間.)

  6、通過以上的實(shí)驗(yàn)、操作、計(jì)算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問嗎?

  (以直角邊為邊所作的正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長為整數(shù)的直角三角形情況,那么邊長是小數(shù)時(shí),結(jié)論是否成立?教師就演示以下實(shí)驗(yàn)。)

  利用方格紙,我們方便計(jì)算直角邊為整數(shù)的情況,若直角邊為小數(shù)時(shí),所得到的正方形面積之間也有如上關(guān)系嗎?

  將網(wǎng)格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

 。ɡ脦缀萎嫲宓母咝浴討B(tài)性反映這一過程,讓學(xué)生體會到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻.)

  7、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系.至此,你對直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?

 。娣e是邊長的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)

  (這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)

  8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音.

  (這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國悠久歷史文化,激勵學(xué)生發(fā)奮學(xué)習(xí)的情感.)

  9、閱讀課本,提出問題

  (讓學(xué)生有將知識內(nèi)化為自己的知識結(jié)構(gòu)的過程,教師巡視,對有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則.)

 。ㄈ┱n堂練習(xí) 鞏固新知

  1.完成課本第45頁練習(xí)第1題、第2題.

  (1)求下列直角三角形中未知邊的長:

 。2)求下列圖中未知數(shù)x、y、z的值:

 。ǔ浞掷谜n本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

  2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個(gè)不自覺的學(xué)生沿對角線踏出了一條斜“路”,這種情況在生活中時(shí)有發(fā)生。請問同學(xué)們:

 。1)這幾位同學(xué)為什么不走正路,走斜“路”?

 。2)他們知道走斜“路”比正路少走幾步嗎?

 。3)他們這樣這樣做,值得嗎?

  (這是一道貼近學(xué)生生活的實(shí)例,在勾股定理的運(yùn)用中滲透了德育教育)

  (四)課堂小結(jié) 布置作業(yè)

  1、通過本節(jié)課的學(xué)習(xí),大家有什么收獲?有什么疑問?你認(rèn)為還有什么要繼續(xù)探索的問題?

 。▽W(xué)生總結(jié)本堂課的收獲,可以是知識、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力.如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個(gè)三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識.)

  2、作業(yè)

 。1)課本第471頁第2題,并完成第45頁的實(shí)驗(yàn)。

 。2)在以下網(wǎng)頁中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請你結(jié)合本節(jié)課的學(xué)習(xí)和從網(wǎng)上或書本上自學(xué)到的知識寫一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

 。ㄗ鳂I(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)

  七、教學(xué)設(shè)計(jì)說明:

  本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察——猜想——?dú)w納——驗(yàn)證——應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  本節(jié)課從學(xué)生的原有認(rèn)知出發(fā)提出問題,揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理。教科書設(shè)計(jì)了在方格紙上通過計(jì)算面積的方法探究勾股定理的活動,在此基礎(chǔ)上,為了更好地展示這一探索過程,本節(jié)課先讓學(xué)生回顧利用圖形面積探求數(shù)學(xué)公式的經(jīng)歷,以此確定研究方法。繼而設(shè)計(jì)了剪紙活動,從中引發(fā)學(xué)生的猜想,再利用幾何畫板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀察、猜想、歸納的過程。其中SR的求法是探求過程中的難點(diǎn),應(yīng)讓學(xué)生充分地思考、討論、總結(jié)方法。通過對特殊到一般的考查,讓學(xué)生主動建立由數(shù)到形,由形到數(shù)的聯(lián)想,從中使學(xué)生不斷積累數(shù)學(xué)活動的經(jīng)驗(yàn),歸納出直角三角形三邊數(shù)量之間的關(guān)系。在教學(xué)中鼓勵學(xué)生采用觀察分析,自主探索,合作交流的學(xué)習(xí)方法,培養(yǎng)學(xué)生主動的動手,動腦,動口的學(xué)習(xí)習(xí)慣和能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神。

  練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用。題目的設(shè)計(jì)中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節(jié)幾何課全面地考查了學(xué)生的各方面思維。

  讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面。給學(xué)生自由的空間,鼓勵學(xué)生多說。這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力。

  作業(yè)為了達(dá)到提高鞏固的目的,提供給學(xué)生網(wǎng)址是為了拓展學(xué)生的視野,以期學(xué)生能主動地探求對勾股定理更深入的認(rèn)識。

  勾股定理的說課稿 篇4

  一、教材分析:

 。ㄒ唬┙滩牡牡匚慌c作用

  從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

  從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;勾股定理又是對學(xué)生進(jìn)行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。

  根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中情感態(tài)度方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

 。ǘ┲攸c(diǎn)與難點(diǎn)

  為變被動接受為主動探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引導(dǎo)學(xué)生動手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法葉圣陶說過"教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)。"因此教師利用幾何直觀提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

  學(xué)法指導(dǎo)為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識的形成過程。

  三、教學(xué)過程

  我國數(shù)學(xué)文化源遠(yuǎn)流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

  首先,情境導(dǎo)入古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊(yùn)含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。

  第二步追溯歷史解密真相

  勾股定理的探索過程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動。

  從上面低起點(diǎn)的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補(bǔ)"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認(rèn)知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示"割"的方法,"補(bǔ)"的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達(dá)能力。

  感性認(rèn)識未必是正確的,推理驗(yàn)證證實(shí)我們的猜想。

  第三步推陳出新借古鼎新

  教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。對比"古"、"今"兩種證法,讓學(xué)生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍(lán)而勝于藍(lán)"的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號意識。

  教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

  第四步取其精華古為今用

  我按照"理解—掌握—運(yùn)用"的梯度設(shè)計(jì)了如下三組習(xí)題。

  (1)對應(yīng)難點(diǎn),鞏固所學(xué)。

 。2)考查重點(diǎn),深化新知。

 。3)解決問題,感受應(yīng)用。

  第五步溫故反思任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵學(xué)生從"四基"的要求對本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

  勾股定理的說課稿 篇5

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級《數(shù)學(xué)》下冊內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來,在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標(biāo)

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

  1、知識目標(biāo)

  知道勾股定理的由來,初步理解割補(bǔ)拼接的面積證法。

  掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

  2、能力目標(biāo)

  在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

  3、情感目標(biāo)

  通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識的發(fā)生、發(fā)展過程。

  介紹“趙爽弦圖”,讓學(xué)生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級學(xué)生構(gòu)造能力較低以及對面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問題診斷

  本 節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對于學(xué)生來說, 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段] 針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識,并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動手、動口、動腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動感和責(zé)任感,這樣對掌握新知會事半功倍。

  六、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,引入新課

  本節(jié)課開始利用多媒體介紹了在北京召開的2002年 國際數(shù)學(xué)家大會的會標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué) 生思維的閘門,激勵探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃樱谳p松愉悅的氛圍中學(xué)到知識。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測:是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。

  3、實(shí)驗(yàn)探究,證明結(jié)論

  因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

  5、自己動手,拼出弦圖

  讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長為a、b、c的 直角三角形進(jìn)行拼圖,小組活動,拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結(jié)反思

  通 過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動。在活動中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識,從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動腦、動手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過自己活動得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

  七、設(shè)計(jì)說明

  1、根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好的思維品質(zhì)的形成有重要作用,對學(xué)生終身發(fā)展也有很大作用。

  勾股定理的說課稿 篇6

各位領(lǐng)導(dǎo):

  上午好!今天我說課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內(nèi)容在全書和章節(jié)的地位。

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實(shí)際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1、知識與能力目標(biāo)。

 。1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;

  (2)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

  2、過程與方法目標(biāo)。

  在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀。

  通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn):勾股定理的證明與運(yùn)用

  2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理

  3、難點(diǎn)成因:

  對于勾股定理的得出,首先需要學(xué)生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

  (1)創(chuàng)設(shè)情景,激發(fā)思維:

  創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程;

  (2)自主探索,敢于猜想:

  充分讓自己動手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個(gè)活動的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

  (3)張揚(yáng)個(gè)性,展示風(fēng)采:

  實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調(diào)動了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析:

  1、教法分析:

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動手操作-歸納驗(yàn)證-問題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。

  2、學(xué)法分析:

  新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì):

  (一)創(chuàng)設(shè)情景:

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  2、緊接著讓學(xué)生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

  3、再問:

  當(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證:

  1、歸納:

  通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。

  2、驗(yàn)證:

  先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計(jì)算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問題解決:

  1、讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。

  2、自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié):

  1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

  (1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

  (2)康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  3、目的:對學(xué)生進(jìn)行愛國主義教育,激勵學(xué)生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會定理與實(shí)際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!

  勾股定理的說課稿 篇7

  今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級數(shù)學(xué)下冊第十八章第一節(jié)的第一課時(shí)。

  一、教學(xué)背景分析

  1、教材分析

  本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過2002年國際數(shù)學(xué)家大會的會徽圖案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識,能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動手、動口、動腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識的樂趣。

  3、教學(xué)目標(biāo):

  根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

  知識與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.

  過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。

  情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)

  重難點(diǎn)為探索和證明勾股定理.

  二、教材處理

  根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生學(xué)習(xí)積極性,并開展以探究活動為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

  2、學(xué)法

  “授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  3、教學(xué)模式

  根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境,引入新課

  利用多媒體課件,給學(xué)生出示2002年國際數(shù)學(xué)家大會的場面,通過觀察會徽圖案,提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。

  (二)引導(dǎo)學(xué)生,探究新知

  1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

  2、提出猜想:在活動1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

  3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明.通過活動3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵創(chuàng)新,小組競賽,引入競爭,教師參與討論,與學(xué)生交流,獲取信息,從而有針對性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

  4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語言表達(dá)能力和歸納概括能力。

 。ㄈ┓答佊(xùn)練,鞏固新知

  學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課目標(biāo)的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:

  A組動腦筋,想一想,是本節(jié)基礎(chǔ)知識的理解和直接應(yīng)用;

  B組求陰影部分的面積,建立了新舊知識的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力。

  C組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會,讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實(shí)踐,反過來又作用于實(shí)踐的應(yīng)用意識,達(dá)到了學(xué)以致用的目的。

 。ㄋ模w納小結(jié),深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。

 。ㄎ澹┎贾米鳂I(yè),拓展新知

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

 。┌鍟O(shè)計(jì),明確新知

  本節(jié)課的板書設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。

【勾股定理的說課稿】相關(guān)文章:

《勾股定理》說課稿07-10

勾股定理的說課稿07-30

勾股定理說課稿04-27

《勾股定理》說課稿02-14

勾股定理說課稿精選06-14

勾股定理說課稿03-25

勾股定理的說課稿04-21

《勾股定理》的說課稿06-08

勾股定理的說課稿01-30

《勾股定理》說課稿11-11