棱錐的概念和性質(zhì)優(yōu)秀說(shuō)課稿模板
一、說(shuō)教材
1、本節(jié)在教材中的地位和作用:
本節(jié)是棱柱的后續(xù)內(nèi)容,又是學(xué)習(xí)球的必要基礎(chǔ)。第一課時(shí)的教學(xué)目的是讓學(xué)生掌握棱錐的一些必要的基礎(chǔ)知識(shí),同時(shí)培養(yǎng)學(xué)生猜想、類(lèi)比、比較、轉(zhuǎn)化的能力。著名的生物學(xué)家達(dá)爾文說(shuō):“最有價(jià)值的知識(shí)是關(guān)于方法和能力的知識(shí)”,因此,應(yīng)該利用這節(jié)課培養(yǎng)學(xué)生學(xué)習(xí)方法、提高學(xué)習(xí)能力。
2. 教學(xué)目標(biāo)確定:
(1)能力訓(xùn)練要求
、偈箤W(xué)生了解棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高的概念。
、谑箤W(xué)生掌握截面的性質(zhì)定理,正棱錐的性質(zhì)及各元素間的關(guān)系式。
(2)德育滲透目標(biāo)
、倥囵B(yǎng)學(xué)生善于通過(guò)觀察分析實(shí)物形狀到歸納其性質(zhì)的能力。
②提高學(xué)生對(duì)事物的感性認(rèn)識(shí)到理性認(rèn)識(shí)的能力。
、叟囵B(yǎng)學(xué)生“理論源于實(shí)踐,用于實(shí)踐”的觀點(diǎn)。
3. 教學(xué)重點(diǎn)、難點(diǎn)確定:
重 點(diǎn):1.棱錐的截面性質(zhì)定理 2.正棱錐的性質(zhì)。
難 點(diǎn):培養(yǎng)學(xué)生善于比較,從比較中發(fā)現(xiàn)事物與事物的區(qū)別。
二、說(shuō)教學(xué)方法和手段
1、教法:
“以學(xué)生參與為標(biāo)志,以啟迪學(xué)生思維,培養(yǎng)學(xué)生創(chuàng)新能力為核心”。
在教學(xué)中根據(jù)高中生心理特點(diǎn)和教學(xué)進(jìn)度需要,設(shè)置一些啟發(fā)性題目,采用啟發(fā)式誘導(dǎo)法,講練結(jié)合,發(fā)揮教師主導(dǎo)作用,體現(xiàn)學(xué)生主體地位。
2、教學(xué)手段:
根據(jù)《教學(xué)大綱》中“堅(jiān)持啟發(fā)式,反對(duì)注入式”的教學(xué)要求,針對(duì)本節(jié)課概念性強(qiáng),思維量大,整節(jié)課以啟發(fā)學(xué)生觀察思考、分析討論為主,采用“多媒體引導(dǎo)點(diǎn)撥”的教學(xué)方法以多媒體演示為載體,以“引導(dǎo)思考”為核心,設(shè)計(jì)課件展示,并引導(dǎo)學(xué)生沿著積極的思維方向,逐步達(dá)到即定的教學(xué)目標(biāo),發(fā)展學(xué)生的邏輯思維能力;學(xué)生在教師營(yíng)造的“可探索”的環(huán)境里,積極參與,生動(dòng)活潑地獲取知識(shí),掌握規(guī)律、主動(dòng)發(fā)現(xiàn)、積極探索。
三、說(shuō)學(xué)法:
這節(jié)課的核心是棱錐的截面性質(zhì)定理,.正棱錐的性質(zhì)。教學(xué)的指導(dǎo)思想是:遵循由已知(棱柱)探究未知(棱錐)、由一般(棱錐)到特殊(正棱錐)的認(rèn)識(shí)規(guī)律,啟發(fā)學(xué)生反復(fù)思考,不斷內(nèi)化成為自己的認(rèn)知結(jié)構(gòu)。
四、 學(xué)程序:
[復(fù)習(xí)引入新課]
1.棱柱的性質(zhì):(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過(guò)不相鄰的兩條側(cè)棱的截面是平行四邊形
2.幾個(gè)重要的`四棱柱:平行六面體、直平行六面體、長(zhǎng)方體、正方體
思考:如果將棱柱的上底面給縮小成一個(gè)點(diǎn),那么我們得到的將會(huì)是什么樣的體呢?
[講授新課]
1、棱錐的基本概念
(1).棱錐及其底面、側(cè)面、側(cè)棱、頂點(diǎn)、高、對(duì)角面的概念
(2).棱錐的表示方法、分類(lèi)
2、棱錐的性質(zhì)
(1). 截面性質(zhì)定理:如果棱錐被平行于底面的平面所截,那么截面和底面相似,并且它們面積的比等于截得的棱錐的高與已知棱錐的高的平方比
已知:如圖(略),在棱錐S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并與SH交于H’。
證明:(略)
引申:如果棱錐被平行于底面的平面所截,則截得的小棱錐與已知棱錐
的側(cè)面積比也等于它們對(duì)應(yīng)高的平方比、等于它們的底面積之比。
(2).正棱錐的定義及基本性質(zhì):
正棱錐的定義:①底面是正多邊形
、陧旤c(diǎn)在底面的射影是底面的中心
①各側(cè)棱相等,各側(cè)面是全等的等腰三角形;各等腰三角形底邊上的高相等,它們叫做正棱錐的斜高;
、诶忮F的高、斜高和斜高在底面內(nèi)的射影組成一個(gè)直角三角形;
棱錐的高、側(cè)棱和側(cè)棱在底面內(nèi)的射影也組成一個(gè)直角三角形
引申: ①正棱錐的側(cè)棱與底面所成的角都相等;
②正棱錐的側(cè)面與底面所成的二面角相等;
(3)正棱錐的各元素間的關(guān)系
下面我們結(jié)合圖形,進(jìn)一步探討正棱錐中各元素間的關(guān)系,為研究方便將課本 圖9-74(略)正棱錐中的棱錐S-OBM從整個(gè)圖中拿出來(lái)研究。
引申:
、儆^察圖中三棱錐S-OBM的側(cè)面三角形狀有何特點(diǎn)?
(可證得∠SOM =∠SOB =∠SMB =∠OMB =900,所以側(cè)面全是直角三角形。)
、谌舴謩e假設(shè)正棱錐的高SO= h,斜高SM= h’,底面邊長(zhǎng)的一半BM= a/2,底面正多邊形外接圓半徑OB=R,內(nèi)切圓半徑OM= r,側(cè)棱SB=L,側(cè)面與底面的二面角∠SMO= α ,側(cè)棱與底面組成的角∠SBO= β, ∠BOM=1800/n (n為底面正多邊形的邊數(shù))請(qǐng)?jiān)囃ㄟ^(guò)三角形得出以上各元素間的關(guān)系式。
(課后思考題)
[例題分析]
例1.若一個(gè)正棱錐每一個(gè)側(cè)面的頂角都是600,則這個(gè)棱錐一定不是( )
A.三棱錐 B.四棱錐 C.五
【棱錐的概念和性質(zhì)優(yōu)秀說(shuō)課稿】相關(guān)文章:
《棱錐的概念和性質(zhì)》說(shuō)課稿范文04-11
高三數(shù)學(xué)棱錐概念和性質(zhì)說(shuō)課稿09-08
高中數(shù)學(xué)《棱錐的概念和性質(zhì)》說(shuō)課稿01-08