- 數(shù)學(xué)手抄報(bào)初中資料 推薦度:
- 相關(guān)推薦
初中數(shù)學(xué)手抄報(bào)資料
手抄報(bào)是一種可傳閱、可觀賞、也可張貼的報(bào)紙的另一種形式。在學(xué)校,手抄報(bào)是第二課堂的一種很好的活動(dòng)形式,具有相當(dāng)強(qiáng)的可塑性和自由性。小編整理了數(shù)學(xué)手抄報(bào)的資料,希望對(duì)大家有所幫助。
高斯(gauss 1777~1855)生于brunswick,位于現(xiàn)在德國中北部。他的祖父是農(nóng)民,父親是泥水匠,母親是一個(gè)石匠的女兒,有一個(gè)很聰明的弟弟,高斯這位舅舅,對(duì)小高斯很照顧,偶而會(huì)給他一些指導(dǎo),而父親可以說是一名「大老粗」,認(rèn)為只有力氣能掙錢,學(xué)問這種勞什子對(duì)窮人是沒有用的。
高斯很早就展現(xiàn)過人才華,三歲時(shí)就能指出父親帳冊上的錯(cuò)誤。七歲時(shí)進(jìn)了小學(xué),在破舊的教室里上課,老師對(duì)學(xué)生并不好,常認(rèn)為自己在窮鄉(xiāng)僻壤教書是懷才不遇。高斯十歲時(shí),老師考了那道著名的「從一加到一百」,終于發(fā)現(xiàn)了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數(shù)學(xué)書給高斯讀。同時(shí),高斯和大他差不多十歲的助教bartels變得很熟,而bartels的能力也比老師高得多,后來成為大學(xué)教授,他教了高斯更多更深的數(shù)學(xué)。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認(rèn)為兒子應(yīng)該像他一樣,作個(gè)泥水匠,而且也沒有錢讓高斯繼續(xù)讀書,最后的結(jié)論是--去找有錢有勢的人當(dāng)高斯的贊助人,雖然他們不知道要到哪里找。經(jīng)過這次的訪問,高斯免除了每天晚上織布的工作,每天和bartels討論數(shù)學(xué),但不久之后,bartels也沒有什么東西可以教高斯了。
1788年高斯不顧父親的反對(duì)進(jìn)了高等學(xué)校。數(shù)學(xué)老師看了高斯的作業(yè)后就要他不必再上數(shù)學(xué)課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終于找到了資助人--布倫斯維克公爵費(fèi)迪南(braunschweig),答應(yīng)盡一切可能幫助他,高斯的父親再也沒有反對(duì)的理由。隔年,高斯進(jìn)入braunschweig學(xué)院。這年,高斯十五歲。在那里,高斯開始對(duì)高等數(shù)學(xué)作研究。并且獨(dú)立發(fā)現(xiàn)了二項(xiàng)式定理的一般形式、數(shù)論上的「二次互逆定理」(law of quadratic reciprocity)、質(zhì)數(shù)分布定理(prime numer theorem)、及算術(shù)幾何平均(arithmetic-geometric mean).
1795年高斯進(jìn)入哥廷根(g?ttingen)大學(xué),因?yàn)樗谡Z言和數(shù)學(xué)上都極有天分,為了將來是要專攻古典語文或數(shù)學(xué)苦惱了一陣子。到了1796年,十七歲的高斯得到了一個(gè)數(shù)學(xué)史上極重要的結(jié)果。最為人所知,也使得他走上數(shù)學(xué)之路的,就是正十七邊形尺規(guī)作圖之理論與方法。
希臘時(shí)代的數(shù)學(xué)家已經(jīng)知道如何用尺規(guī)作出正 2m×3n×5p 邊形,其中 m 是正整數(shù),而 n 和 p 只能是0或1.但是對(duì)于正七、九、十一邊形的尺規(guī)作圖法,兩千年來都沒有人知道。而高斯證明了:
一個(gè)正 n 邊形可以尺規(guī)作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個(gè)不同「費(fèi)馬質(zhì)數(shù)」的乘積),k = 0,1,2,…
費(fèi)馬質(zhì)數(shù)是形如 fk = 22k 的質(zhì)數(shù)。像 f0 = 3,f1 = 5,f2 = 17,f3 = 257, f4 = 65537,都是質(zhì)數(shù)。高斯用代數(shù)的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但后來他的墓碑上并沒有刻上十七邊形,而是十七角星,因?yàn)樨?fù)責(zé)刻碑的雕刻家認(rèn)為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數(shù)一個(gè)重要的定理:
任一多項(xiàng)式都有(復(fù)數(shù))根。這結(jié)果稱為「代數(shù)學(xué)基本定理」(fundamental theorem of algebra).
事實(shí)上在高斯之前有許多數(shù)學(xué)家認(rèn)為已給出了這個(gè)結(jié)果的證明,可是沒有一個(gè)證明是嚴(yán)密的。高斯把前人證明的缺失一一指出來,然后提出自己的見解,他一生中一共給出了四個(gè)不同的證明。
在18XX年,高斯二十四歲時(shí)出版了《算學(xué)研究》(disquesitiones arithmeticae),這本書以拉丁文寫成,原來有八章,由于錢不夠,只好印七章。
這本書除了第七章介紹代數(shù)基本定理外,其余都是數(shù)論,可以說是數(shù)論第一本有系統(tǒng)的著作,高斯第一次介紹「同余」(congruent)的概念。
【初中數(shù)學(xué)手抄報(bào)資料】相關(guān)文章:
數(shù)學(xué)手抄報(bào)內(nèi)容資料初中06-30
初中手抄報(bào)資料08-24