中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì)

時(shí)間:2024-08-13 19:25:45 雪桃 教學(xué)設(shè)計(jì) 我要投稿
  • 相關(guān)推薦

初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì)(通用14篇)

  作為一名專為他人授業(yè)解惑的人民教師,編寫教學(xué)設(shè)計(jì)是必不可少的,借助教學(xué)設(shè)計(jì)可以讓教學(xué)工作更加有效地進(jìn)行。那么什么樣的教學(xué)設(shè)計(jì)才是好的呢?以下是小編為大家收集的初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì),希望能夠幫助到大家。

初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì)(通用14篇)

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 1

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔谩度切蔚膬(nèi)角》內(nèi)容選自人教實(shí)驗(yàn)版九年義務(wù)教育七年級(jí)下冊(cè)第七章第二節(jié)第一課時(shí)。 “三角形的內(nèi)角和等于180°”是三角形的一個(gè)重要性質(zhì),它揭示了組成三角形的三個(gè)角的數(shù)量關(guān)系,學(xué)好它有助于學(xué)生理解三角形內(nèi)角之間的關(guān)系,也是進(jìn)一步學(xué)習(xí)《多邊形內(nèi)角和》及其它幾何知識(shí)的基礎(chǔ)。此外,“三角形的內(nèi)角和等于180°”在前兩個(gè)學(xué)段已經(jīng)知道了,但這個(gè)結(jié)論在當(dāng)時(shí)是通過實(shí)驗(yàn)得出的,本節(jié)要用平行線的性質(zhì)來說明它,說理中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ),三角形的內(nèi)角和定理也是幾何問題代數(shù)化的體現(xiàn)。

  (二)教學(xué)目標(biāo)

  基于對(duì)教材以上的認(rèn)識(shí)及課程標(biāo)準(zhǔn)的要求,我擬定本節(jié)課的教學(xué)目標(biāo)為:

  1、知識(shí)技能:發(fā)現(xiàn)“三角形內(nèi)角和等于180°”,并能進(jìn)行簡(jiǎn)單應(yīng)用;體會(huì)方程的思想;尋求解決問題的方法,獲得解決問題的經(jīng)驗(yàn)。

  2、數(shù)學(xué)思考:通過拼圖實(shí)踐、合作探索、交流,培養(yǎng)學(xué)生的邏輯推理、大膽猜想、動(dòng)手實(shí)踐等能力。

  3、解決問題:會(huì)用三角形內(nèi)角和解決一些實(shí)際問題。

  4、情感、態(tài)度、價(jià)值觀:在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生樂于學(xué)數(shù)學(xué),在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)自信心,在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。通過添置輔助線教學(xué),滲透美的思想和方法教育。

 。ㄈ┲仉y點(diǎn)的確立:

  1、重點(diǎn):“三角形的內(nèi)角和等于180°”結(jié)論的探究與應(yīng)用。

  2、難點(diǎn):三角形的內(nèi)角和定理的證明方法(添加輔助線)的討論

  二、學(xué)情分析

  處于這個(gè)年齡階段的學(xué)生有能力自己動(dòng)手,他們樂于嘗試、探索、思考、交流與合作,具有分析、歸納、總結(jié)的能力,他們渴望體驗(yàn)成功感和自豪感。因而老師有必要給學(xué)生充分的自由和空間,同時(shí)注意問題的開放性與可擴(kuò)展性。

  基于以上的情況,我確立了本節(jié)課的教法和學(xué)法:

  三、教法、學(xué)法

 。ㄒ唬┙谭

  基于本節(jié)課內(nèi)容的特點(diǎn)和七年級(jí)學(xué)生的心理特征,我采用了“問題情境—建立模型—解釋、應(yīng)用與拓展”的模式展開教學(xué)。本節(jié)課采用多媒體輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動(dòng)性,并提高課堂效率。

  (二)學(xué)法

  通過學(xué)生分組拼圖得出結(jié)論,小組分析尋求說理思路,從不同角度去分析、解決新問題,通過基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  四、教學(xué)過程

  我是以6個(gè)活動(dòng)的形式展開教學(xué)的,活動(dòng)1是為了創(chuàng)設(shè)情境引入課題,激發(fā)學(xué)生的學(xué)習(xí)興趣,活動(dòng)2是探討三角形內(nèi)角和定理的證明,證明的思路與方法是本節(jié)的難點(diǎn),活動(dòng)3到5是新知識(shí)的應(yīng)用,活動(dòng)6是整節(jié)課的小結(jié)提高。

  具體過程如下:活動(dòng)1:首先用多媒體展示情境提出問題1,設(shè)計(jì)意圖是:創(chuàng)設(shè)情境,引起學(xué)生注意,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生的學(xué)習(xí)興趣,導(dǎo)入新課。在此基礎(chǔ)上由學(xué)生分組,用事先準(zhǔn)備好的三角形拼圖發(fā)現(xiàn)三角形的內(nèi)角和等于180°。設(shè)計(jì)意圖是:從豐富的拼圖活動(dòng)中發(fā)展學(xué)生思維的靈活性,創(chuàng)造性,從活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)自信心,通過小組合作培養(yǎng)學(xué)生合作、交流能力。在合作學(xué)習(xí)中增強(qiáng)集體責(zé)任感。再用多媒體演示兩個(gè)動(dòng)畫拼圖的過程。設(shè)計(jì)意圖:讓學(xué)生更加形象直觀的理解拼圖實(shí)際上只有兩種,一種是折疊,一種是角的`拼合,這為下一環(huán)節(jié)說理中添加輔助線打好基礎(chǔ),從而達(dá)到突破難點(diǎn)的目的。

  前面通過動(dòng)手大家都知道了三角形的內(nèi)角和等于180°這個(gè)結(jié)論,那么你們是否能利用我們前面所學(xué)的有關(guān)知識(shí)來說明一下道理呢?請(qǐng)看問題2,請(qǐng)各小組互相討論一下,討論完后請(qǐng)派一個(gè)代表上來說明你們小組的思路[學(xué)生的說理方法可能有四種(板書添輔助線的四種可能并用多媒體演示證明方法)]設(shè)計(jì)的目的:通過添置輔助線教學(xué),滲透美的思想和方法教育,突破本節(jié)的難點(diǎn),了解輔助線也為后繼學(xué)習(xí)打下基礎(chǔ)。在說理過程中,更加深刻地理解多種拼圖方法。同時(shí)讓學(xué)生上板分析說理過程是為了培養(yǎng)學(xué)生的語言表達(dá)能力,邏輯思維能力,多種思路的分析是為了培養(yǎng)學(xué)生的發(fā)散性思維。

  通過活動(dòng)3中問題的解決加深學(xué)生對(duì)三角形內(nèi)角和的理解,初步應(yīng)用新知識(shí),解決一些簡(jiǎn)單的問題,培養(yǎng)學(xué)生運(yùn)用方程思想解幾何問題的能力。

  活動(dòng)4向?qū)W生展示分析問題的基本方法,培養(yǎng)學(xué)生思維的廣闊性、數(shù)學(xué)語言的表達(dá)能力。把問題中的條件進(jìn)一步簡(jiǎn)化為學(xué)生用輔助線解決問題作好鋪墊。同時(shí)培養(yǎng)學(xué)生建模能力。

  活動(dòng)5通過兩上實(shí)際問題的解決加深學(xué)生對(duì)所學(xué)知識(shí)的理解、應(yīng)用。培養(yǎng)學(xué)生建模的思想及能力。

  活動(dòng)6的設(shè)計(jì)目的發(fā)揮學(xué)生主體意識(shí),培養(yǎng)學(xué)生語言概括能力。

  【教學(xué)設(shè)計(jì)說明】

  1、《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“本學(xué)段(7~9年級(jí))的數(shù)學(xué)應(yīng)結(jié)合具體的數(shù)學(xué)內(nèi)容,采用?問題情境——建立模型——解釋、應(yīng)用與拓展?的模式展開,讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用的過程…… ”因此,在本節(jié)課的教學(xué)中,我不斷的創(chuàng)造自主探究與合作交流的學(xué)習(xí)環(huán)境,讓學(xué)生有充分的時(shí)間和空間去動(dòng)手操作,去觀察分析,去得出結(jié)論,并體驗(yàn)成功,共享成功、

  2、體現(xiàn)自主學(xué)習(xí)、合作交流的新課程理念、無論是例題還是習(xí)題的教學(xué)均采用“嘗試—交流—討論”的方式,充分發(fā)揮學(xué)生的主體性,教師起引導(dǎo)、點(diǎn)撥的作用、

  3、結(jié)合評(píng)價(jià)表,對(duì)學(xué)生的課堂表現(xiàn)進(jìn)行激勵(lì)性的評(píng)價(jià),一方面有利于調(diào)動(dòng)學(xué)生的積極性,另一方面有利于學(xué)生進(jìn)行自我反思。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 2

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能目標(biāo):通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡(jiǎn)單的實(shí)際問題。

  2.過程與方法目標(biāo): 經(jīng)歷觀察、猜想、驗(yàn)證的過程,提升自身動(dòng)手操作及推理、歸納總結(jié)的能力。

  3.情感態(tài)度價(jià)值觀目標(biāo): 在參與學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗(yàn)成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  二、教學(xué)重難點(diǎn)

  重點(diǎn):掌握三角形內(nèi)角和定理。

  難點(diǎn):理解三角形內(nèi)角和定理推理的過程。

  三、教學(xué)過程

  尊敬的各位老師大家好,我是小學(xué)數(shù)學(xué)組2號(hào)考生,今天我試講的題目是三角形內(nèi)角和,下面我將正式開始我的試講。

  上課,同學(xué)們好,請(qǐng)坐。

  【導(dǎo)入】

  同學(xué)們,上課之前呢我們先來看一下大屏幕,老師給大家準(zhǔn)備了幾張照片我們來看一下,在圖形的王國(guó)中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場(chǎng)激烈的爭(zhēng)吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個(gè)鈍角,可是其它兩個(gè)角都很小,而我的三個(gè)角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭(zhēng)了,我們的內(nèi)角和是一樣大的,因?yàn)槿切蔚膬?nèi)角和是180°”。

  那同學(xué)們,大家同不同意它的說法呀,老師看到同學(xué)們都很疑惑的樣子,沒關(guān)系,今天這位節(jié)課我們就一起來研究一下這個(gè)問題,學(xué)習(xí)一下——三角形的內(nèi)角和。

  【新授】

  活動(dòng)一:

  那同學(xué)們,接下來啊我們拿出尺字,畫出幾個(gè)三角形,然后測(cè)量并計(jì)算一下,三角形3個(gè)內(nèi)角的和各是多少度呢?給大家三分鐘時(shí)間同桌之間相互交流一下這個(gè)問題。

  老師看到同學(xué)們都安靜了下來,第三排這位同學(xué),你來說一說你們兩個(gè)人的結(jié)論。哦,他說呀他們發(fā)現(xiàn)他們兩人畫出的直角三角形內(nèi)角和都是180度,你們的思路非常清晰,請(qǐng)坐!后邊同學(xué)有不同意見,你來說,他說呀他們兩人畫出的銳角三角形也是180度。也是正確的,請(qǐng)坐!

  活動(dòng)二:

  那同學(xué)們,是不是所有的三角形的內(nèi)角和都是180°呢?如何進(jìn)行驗(yàn)證呢?

  那接下來5分鐘我們前后排4個(gè)人一小組進(jìn)行討論,待會(huì)啊老師會(huì)找同學(xué)提問。

  老師看到同學(xué)們都很迷茫,給大家一點(diǎn)小提示,我們可以用剪拼的形式來驗(yàn)證一下。

  好時(shí)間到,哪位同學(xué)來告訴一下老師,你們的討論結(jié)果呢。你們小組討論的最激烈,你來告訴一下老師,他說呀他們小組是將三種不同類型的三角形的`三個(gè)角剪下來,再拼一拼,發(fā)現(xiàn)都拼成一個(gè)了平角,你們的方法非常獨(dú)特,請(qǐng)坐!那大家的方法和它們的方法是一樣的嗎?

  看來同學(xué)們的思路都非常的清晰,那同學(xué)們,由此我們就驗(yàn)證得出了,三角形的內(nèi)角和就是180度。

  觀察一下黑板上這些內(nèi)容,以上就是本節(jié)課所要學(xué)習(xí)的三角形內(nèi)角和。

  【鞏固練習(xí)】

  通過本節(jié)課的學(xué)習(xí),相信大家對(duì)平行四邊形有了更深的了解。我們看向黑板,接下來給大家兩分鐘時(shí)間來做一下這道題鞏固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度數(shù)。課代表來黑板上板書一下。老師看到同學(xué)們筆都放下了,我們一起來看一下黑板上同學(xué)的答案,∠3=15°,同學(xué)們的答案和他的是一樣的嗎,看來同學(xué)們對(duì)本節(jié)課知識(shí)的掌握都已經(jīng)非常扎實(shí)了。

  【課堂小結(jié)】

  不知不覺本節(jié)課馬上就接近了尾聲,哪位同學(xué)來說一下本節(jié)課你都有哪些收獲呢?(停頓2秒)第二排手舉得最高這位同學(xué)你來說一下,哦,他說啊,通過本節(jié)課的學(xué)習(xí)他掌握了三角形當(dāng)中一個(gè)新的特點(diǎn),三角形的內(nèi)角和是180度,總結(jié)的非常全面見,請(qǐng)坐!

  【作業(yè)布置】

  接下來老師來給大家布置個(gè)小任務(wù),回家之后仔細(xì)觀察一下家中的物體,看一看那些物品是三角形的,動(dòng)手測(cè)量一下內(nèi)角和,看一看是否滿足180度,下節(jié)課一起來交流討論一下,今天這節(jié)課就上到這里,同學(xué)們?cè)僖姟?/p>

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 3

  【教學(xué)目標(biāo)】

  1.學(xué)生動(dòng)手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)"三角形內(nèi)角和等于180度"的規(guī)律。

  2.在探究過程中,經(jīng)歷知識(shí)產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識(shí)和初步的空間思維能力。

  3.體驗(yàn)探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。

  【教學(xué)重點(diǎn)】

  探究發(fā)現(xiàn)和驗(yàn)證"三角形的內(nèi)角和為180度"的規(guī)律。

  【教學(xué)難點(diǎn)】

  理解并掌握三角形的內(nèi)角和是180度。

  【教具準(zhǔn)備】

  PPT課件、三角尺、各類三角形、長(zhǎng)方形、正方形。

  【學(xué)生準(zhǔn)備】

  各類三角形、長(zhǎng)方形、正方形、量角器、剪刀等。

  【教學(xué)過程】

  口算訓(xùn)練(出示口算題)

  訓(xùn)練學(xué)生口算的速度與正確率。

  一、謎語導(dǎo)入

  (出示謎語)

  請(qǐng)畫出你猜到的圖形。誰來公布謎底?

  同桌互相看一看,你們畫出的三角形一樣嗎?

  誰來說說,你畫出的是什么三角形?(學(xué)生匯報(bào))

  (1)銳角三角形,(銳角三角形中有幾個(gè)銳角?)

  (2)直角三角形,(直角三角形中可以有兩個(gè)直角嗎?)

  (3)鈍角三角形,(鈍角三角形中可以有兩個(gè)鈍角嗎?)

  看來,在一個(gè)三角形中,只能有一個(gè)直角或一個(gè)鈍角,為什么不能有兩個(gè)直角或兩個(gè)鈍角呢?三角形的三個(gè)角究竟存在什么奧秘呢?這節(jié)課,我們一起來學(xué)習(xí)"三角形的內(nèi)角和。"(板書課題:三角形的內(nèi)角和)

  看到這個(gè)課題,你有什么疑問嗎?

  (1)什么是內(nèi)角?有沒有同學(xué)知道?

  內(nèi):里面,三角形里面的角。

  三角形有幾個(gè)內(nèi)角呢?請(qǐng)指出你畫的三角形的內(nèi)角,并分別標(biāo)上∠1、∠2、∠3.

  (2)誰還有疑問?什么是內(nèi)角和?誰來解釋?(三個(gè)內(nèi)角度數(shù)的和)。

  (3)大膽猜測(cè)一下,三角形的內(nèi)角和是多少度呢?

  【設(shè)計(jì)意圖】

  創(chuàng)設(shè)數(shù)學(xué)化的情境。學(xué)生用已經(jīng)學(xué)的三角形的特征只能解釋"不能是這樣",而不能解釋"為什么不能是這樣".這樣引入問題恰好可以利用學(xué)生的這種認(rèn)知沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  二、探究新知

  有猜想就要有驗(yàn)證,我們一起來探究用什么方法能知道三角形的內(nèi)角和呢?

  1、確定研究范圍

  先請(qǐng)大家想一想,研究三角形的內(nèi)角和,是不是應(yīng)該包括所用的三角形?

  只研究你畫出的那一個(gè)三角形,行嗎?

  那就隨便畫,挨個(gè)研究吧?(太麻煩了)

  怎么辦?請(qǐng)你想個(gè)辦法吧。

  分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)

  2、探究三角形的內(nèi)角和

  思考一下:你準(zhǔn)備用什么方法探究三角形的內(nèi)角和呢?

  小組合作:從你的學(xué)具袋中,任選一個(gè)三角形,來探究三角形的內(nèi)角和是多少度?

  小組匯報(bào):

  (1)量一量:把三角形三個(gè)內(nèi)角的度數(shù)相加。

  直接測(cè)量的方法挺好,雖然測(cè)量有誤差,但我們知道了三角形的內(nèi)角和在180°左右。究竟是不是一定就是180°呢?哪個(gè)小組還有不同的方法?

  (2)拼一拼:把三角形的三個(gè)內(nèi)角剪下來,拼成了一個(gè)平角。

  能想到這種剪一剪拼一拼的方法,真不簡(jiǎn)單。三個(gè)角拼在一起,看起來像個(gè)平角,究竟是不是平角呢?誰還有別的方法?

  (3)折一折:把三角形的三個(gè)角折下來,拼成了一個(gè)平角。

  這種方法真了不起,能借助平角的度數(shù)來推想三角形內(nèi)角和是180°。

  總結(jié):同學(xué)們動(dòng)腦思考,動(dòng)手操作,運(yùn)用不同的方法來驗(yàn)證三角形的內(nèi)角和。這三種方法都很好,但在操作過程中,難免會(huì)有誤差,不太有說服力。我們能不能借助學(xué)過的圖形,更科學(xué)更準(zhǔn)確的來驗(yàn)證三角形的內(nèi)角和?

  3、演繹推理的方法。

  正方形四個(gè)角都是直角,正方形內(nèi)角和是多少度?

  你能借助正方形創(chuàng)造出三角形嗎?(對(duì)角折)

  把正方形分成了兩個(gè)完全一樣的直角三角形,每個(gè)直角三角形的內(nèi)角和:360°÷2=180°

  再來看看長(zhǎng)方形:沿對(duì)角線折一折,分成了兩個(gè)完全一樣的直角三角形,內(nèi)角和:360°÷2=180°

  這種方法避免了在剪拼過程中操作出現(xiàn)的誤差,

  舉例驗(yàn)證,你發(fā)現(xiàn)了什么?

  通過驗(yàn)證,知道了直角三角形的內(nèi)角和是180度。

  你能把銳角三角形變成直角三角形嗎?

  把銳角三角形沿高對(duì)折,分成了兩個(gè)直角三角形。

  一個(gè)直角三角形的內(nèi)角和是180°,那么這個(gè)銳角三角形的內(nèi)角和就是180°×2=360°了,對(duì)嗎?(360-180=180°)

  通過計(jì)算,我們知道了這個(gè)銳角三角形的內(nèi)角和是180°,那么所有的銳角三角形的內(nèi)角和都是180°嗎?你是怎么知道的?

  通過剛才的計(jì)算,你發(fā)現(xiàn)了什么?(銳角三角形內(nèi)角和180°)

  鈍角三角形的內(nèi)角和,你們會(huì)驗(yàn)證嗎?誰來說說你的想法?180×2-90-90=180°

  通過驗(yàn)證,你又發(fā)現(xiàn)了什么?(鈍角三角形內(nèi)角和180°)

  4、總結(jié)

  通過分類驗(yàn)證,我們發(fā)現(xiàn):直角180,銳角180,鈍角180,也就是說:三角形的內(nèi)角和是180°。也驗(yàn)證了我們的猜想是正確的。(板書)

  5、想一想,下面三角形的內(nèi)角和是多少度?(小--大)

  你有什么新發(fā)現(xiàn)?(三角形的內(nèi)角和與它的大小,形狀沒有關(guān)系。)

  【設(shè)計(jì)意圖】

  為了滿足學(xué)生的探究欲望,發(fā)揮學(xué)生的主觀能動(dòng)性,通過獨(dú)立探究和組內(nèi)交流,實(shí)現(xiàn)對(duì)多種方法的體驗(yàn)和感悟。學(xué)生通過小組合作的方式學(xué)到方法,分享經(jīng)驗(yàn),更重要的是領(lǐng)悟到科學(xué)研究問題的方法。就學(xué)生的發(fā)展而言,探究的過程比探究獲得的結(jié)論更有價(jià)值。

  三、自主練習(xí)

  1、在一個(gè)三角形中,如果想求一個(gè)角的度數(shù),至少得知道幾個(gè)角的度數(shù)呢?(2個(gè))那我們就試一試,挑戰(zhàn)第一關(guān)。(兩道題)

  2、算得真快!如果只知道一個(gè)角的度數(shù),還能求出未知角的度數(shù)嗎?挑戰(zhàn)第二關(guān)。(三道題)

  3、說得真清楚,如果一個(gè)角的度數(shù)也不知道,你還能求出未知角的度數(shù)嗎?挑戰(zhàn)第三關(guān)。(一道題)

  師:同學(xué)們真了不起,從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的度數(shù)也不知道,都能正確求出未知角的度數(shù)。

  4、學(xué)無止境,課下,請(qǐng)你利用三角形的內(nèi)角和,探究一下四邊形、五邊形、六邊形的內(nèi)角和各是多少度?

  【設(shè)計(jì)意圖】

  練習(xí)由淺入深,層層遞進(jìn)。從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的`度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),梯度訓(xùn)練,拓展思維。

  四、課堂總結(jié)

  同學(xué)們,回想一下,這節(jié)課我們學(xué)習(xí)了什么?通過這節(jié)課的學(xué)習(xí),你有哪些收獲呢?

  真了不起,同學(xué)們不僅學(xué)到了知識(shí),還掌握了學(xué)習(xí)的方法。"在數(shù)學(xué)的天地里,重要的不是我們知道什么,而是我們?cè)趺粗赖?,在這節(jié)課上,重要的不是我們知道了三角形的內(nèi)角和是180°,而是我們通過猜測(cè),一步一步驗(yàn)證,得到這個(gè)規(guī)律的過程。

  課后反思

  《三角形的內(nèi)角和》是五四制青島版四年級(jí)上冊(cè)第四單元的信息窗二,本節(jié)課是在學(xué)生學(xué)習(xí)了與三角形有關(guān)的概念、邊、角之間的關(guān)系的基礎(chǔ)上,讓學(xué)生動(dòng)手操作,通過一系列活動(dòng)得出"三角形的內(nèi)角和等于180°".

  本著"學(xué)貴在思,思源于疑"的思想,這節(jié)課我不斷創(chuàng)設(shè)問題情境,讓學(xué)生去猜想、去探究、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念。"問題的提出往往比解答問題更重要",其實(shí)三角形內(nèi)角和是多少?大部分的學(xué)生已經(jīng)知道了這一知識(shí),所以很輕松地就可以答出。但是只是"知其然而不知其所以然".

  為此,我設(shè)計(jì)了大量的操作活動(dòng):畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環(huán)節(jié)。在操作活動(dòng)中,老師有"扶"有"放".做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動(dòng)過程,生動(dòng)又形象,吸引學(xué)生的注意力。使學(xué)生感受到每種活動(dòng)的特點(diǎn),這對(duì)他認(rèn)識(shí)能力的提高是有幫助的。

  最后通過習(xí)題鞏固三角形內(nèi)角和知識(shí),培養(yǎng)學(xué)生思維的廣闊性,為了強(qiáng)化學(xué)生對(duì)這節(jié)課的掌握,從知道兩個(gè)角的度數(shù),到知道一個(gè)角的度數(shù),再到一個(gè)角的度數(shù)也不知道,要求學(xué)生求出未知角的的度數(shù),層級(jí)練習(xí),步步加深,梯度訓(xùn)練。

  教學(xué)是遺憾的藝術(shù)。當(dāng)然本節(jié)課的教學(xué)中,存在許多不盡如意之處:

  1、讓學(xué)生養(yǎng)成良好的學(xué)具運(yùn)用習(xí)慣,特別是小組學(xué)生在合作操作時(shí),應(yīng)有效指導(dǎo),對(duì)學(xué)生及時(shí)評(píng)價(jià),激勵(lì)表揚(yáng),調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性與主動(dòng)性。

  2、學(xué)生在介紹剪拼的方法時(shí),可以讓介紹的學(xué)生先上臺(tái)演示是如何把內(nèi)角拼在一起,這樣學(xué)生在動(dòng)手操作的時(shí)候就可以節(jié)省時(shí)間。

  3、在做練習(xí)時(shí),為了趕時(shí)間,題出現(xiàn)的頻率較快,留給學(xué)生計(jì)算思考的時(shí)間不足,可能只照顧到好學(xué)生的進(jìn)程,沒有關(guān)注全體學(xué)生,今后應(yīng)注意這一點(diǎn)。

  教學(xué)是一門藝術(shù),上一節(jié)課容易,上好一節(jié)課談何容易,在今后的課堂教學(xué)中,只有勤學(xué)、多練,才能更好的為學(xué)生的學(xué)習(xí)和成長(zhǎng)服務(wù),讓自己的人生舞臺(tái)綻放光彩。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 4

  教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):通過測(cè)量、拼、折疊等方法探索和發(fā)現(xiàn)三角形的內(nèi)角和等于180°;已知三角形兩個(gè)角的度數(shù),會(huì)求出第三個(gè)角的度數(shù)。

  2、能力目標(biāo):通過討論爭(zhēng)辯、操作、推理等培養(yǎng)學(xué)生的思維能力和解決問題的能力;培養(yǎng)學(xué)生的空間觀念,使學(xué)生的創(chuàng)新能力得到發(fā)展;使學(xué)生初步掌握由特殊到一般的邏輯思辨方法和先猜想后驗(yàn)證的研究問題的方法。

  3、情感目標(biāo):培養(yǎng)學(xué)生的合作精神和探索精神;培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)的意識(shí)。

  教學(xué)重、難點(diǎn):

  掌握三角形的內(nèi)角和是180°。驗(yàn)證三角形的內(nèi)角和是180°。

  學(xué)生分析:

  在上學(xué)期學(xué)生已經(jīng)掌握了角的分類及度量問題。在本課之前,學(xué)生又研究了三角形的分類。這些都為進(jìn)一步研究三角形內(nèi)角和作了知識(shí)儲(chǔ)備和心理準(zhǔn)備,為本課內(nèi)容的教學(xué)作了鋪墊。三角形的內(nèi)角和是三角形的`一個(gè)重要性質(zhì)。它有助于理解三角形的三個(gè)內(nèi)角之間的關(guān)系,是進(jìn)一步學(xué)習(xí)、研究幾何問題的基礎(chǔ)。

  教學(xué)流程:

  一、創(chuàng)設(shè)情境,激發(fā)興趣

 。ㄕn件出示:兩個(gè)三角形爭(zhēng)論,大的對(duì)小的說,我的內(nèi)角和比你大。)

  (學(xué)生小聲議論著,爭(zhēng)論著。)

  師:同學(xué)們,你們能不能幫助大三角形和小三角形解決這個(gè)問題啊?

  生:可以把這兩個(gè)三角形的內(nèi)角比一比。

  生:它們不是一個(gè)角在比較,可怎么比呀?

  生:我們先畫出一個(gè)大三角形,再畫一個(gè)小三角形。分別量一量這兩個(gè)三角形三個(gè)內(nèi)角的度數(shù),這樣就知道誰的內(nèi)角和大,誰的內(nèi)角和小啦。

  師:那好,我們今天就來研究“三角形的內(nèi)角和”。(板書課題。)

  【設(shè)計(jì)意圖:通過多媒體出示,引起學(xué)生興趣,使學(xué)生想探索大、小三角形的內(nèi)角和到底誰大?】

  二、動(dòng)手操作,探索新知

  1、初步感知。

  師讓學(xué)生分別畫出不同形狀的三角形。學(xué)生用量角器測(cè)量三角形三個(gè)內(nèi)角的度數(shù),并做著記錄,并統(tǒng)一填表格。(表格略。)

  生匯報(bào)測(cè)量的結(jié)果:內(nèi)角和約等于180°。

  師啟發(fā)學(xué)生發(fā)現(xiàn)三角形的內(nèi)角和180°。(師板書:三角形的內(nèi)角和是180°。)

  【設(shè)計(jì)意圖:通過這種方法可以得出準(zhǔn)確的結(jié)論,也容易被學(xué)生理解和接受。可能出現(xiàn)問題:用測(cè)量的方法得到的結(jié)果不是剛好180°。使學(xué)生明白是因?yàn)闇y(cè)量存在誤差的緣故!

  2、用拼角法驗(yàn)證。

  師:剛才同學(xué)們發(fā)現(xiàn),三角形的內(nèi)角和約等于180°,那么到底是不是這樣呢?

  生:我們手里有一些三角形,可以動(dòng)手拼一拼。

  生:還可以剪一剪。

  師:那同學(xué)們就開始吧!

  (學(xué)生動(dòng)手進(jìn)行拼、剪、折等方法,檢驗(yàn)三角形內(nèi)角和的度數(shù)。)

  生:銳角三角形的內(nèi)角可以拼成一個(gè)平角。因?yàn)槠浇鞘?80°,所以銳角三角形的三個(gè)內(nèi)角和是180°。

  生:我把一個(gè)直角三角形的三個(gè)內(nèi)角剪下來,拼成了一個(gè)平角,所以直角三角形的三個(gè)內(nèi)角和也是180°。

  生:鈍角三角形的內(nèi)角和也是180°。

 。◣煱鍟喝切蔚膬(nèi)角和是180°。)

  【設(shè)計(jì)意圖:使學(xué)生明確,因?yàn)槿嫜芯苛酥苯侨切、銳角三角形和鈍角三角形這三類三角形的內(nèi)角和,所以可以得出“三角形的內(nèi)角和等于180°”這一結(jié)論。通過這些過程使學(xué)生明白:探究問題有不同的方法、途徑,并且方法之間可以互為驗(yàn)證,達(dá)到結(jié)論的統(tǒng)一,從而使學(xué)生明白獲得探究問題的方法比獲得結(jié)論更為重要!

  三、鞏固新知,拓展應(yīng)用

  1.出示題目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度數(shù)。

  2.已知∠1、∠2、∠3是三角形的三個(gè)內(nèi)角,猜一猜下面的三角形各是什么三角形?(圖略,分別是銳角、直角、鈍角三角形。)學(xué)生猜后,教師抽去遮蓋的紙,進(jìn)行驗(yàn)證。

  通過以上的練習(xí)使學(xué)生對(duì)三角形內(nèi)角和的應(yīng)用有個(gè)初步認(rèn)識(shí),并積累解決問題的經(jīng)驗(yàn)。

  3.師:(出示一個(gè)大三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(出示一個(gè)很小的三角形)它的內(nèi)角和是多少度?

  生:180 °。

  師:(把大三角形平均分成兩份。指均分后的一個(gè)小三角形)它的內(nèi)角和是多少度?(生有的答90°,有的答180°。)

  師:哪個(gè)對(duì)?為什么?

  生:180°對(duì),因?yàn)樗是一個(gè)三角形。

  師:每個(gè)小三角形的度數(shù)是180°,那么這樣的兩個(gè)小三角形拼成一個(gè)大三角形,內(nèi)角和是多少度?(這時(shí)學(xué)生的答案又出現(xiàn)了180°和360°兩種。)師:究竟誰對(duì)呢?(學(xué)生臉上露出疑問。經(jīng)過一番激烈的討論探究后,學(xué)生開始舉手回答。)

  生:180°。因?yàn)閮蓚(gè)三角形拼在一起,就變成了一個(gè)三角形了,每個(gè)三角形的內(nèi)角和總是180°。

  生:我發(fā)現(xiàn)兩個(gè)小三角形拼成一個(gè)大三角形,拼接在一起的兩條邊上的兩個(gè)角沒有了,比原來兩個(gè)三角形少180°,所以大三角形的內(nèi)角和還是180°,不是360°。

  師:你真聰明。(課件演示。)

  四、小結(jié)

  師:同學(xué)們,你們今天學(xué)了“三角形的內(nèi)角和是180°”的新知識(shí),現(xiàn)在能來幫助大、小三角形進(jìn)行評(píng)判了吧?(生答能。)

  師:說一說本節(jié)課的收獲。這節(jié)課你掌握了哪些知識(shí)?學(xué)會(huì)了哪些研究問題的方法?

  五、探究性作業(yè)

  求下面幾個(gè)多邊形的內(nèi)角和。(圖形略。)

  【設(shè)計(jì)意圖:通過這樣的練習(xí),培養(yǎng)學(xué)生思維的靈活性、多樣性,使不同層次的學(xué)生得到不同的發(fā)展,體現(xiàn)教學(xué)的層次性!

  反思:

  1、重視動(dòng)手操作,讓學(xué)生在探究中收獲知識(shí)。《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。”本節(jié)課通過量、折、剪、拼等多種活動(dòng),使學(xué)生主動(dòng)探究,找到新舊知識(shí)的聯(lián)系,得出研究問題的結(jié)論,有利于學(xué)生培養(yǎng)空間觀念和動(dòng)手操作能力。

  2、小組合作學(xué)習(xí)是新課程倡導(dǎo)的學(xué)習(xí)方式,有利于培養(yǎng)學(xué)生的合作意識(shí)、探索能力、團(tuán)隊(duì)精神。我們要從平時(shí)抓起,在平常的課堂中開展小組合作學(xué)習(xí),可以是前后四人為一組,深入探究合作學(xué)習(xí)的方法和途徑。這樣學(xué)生學(xué)習(xí)方式的轉(zhuǎn)變才能落到實(shí)處,才不會(huì)變成某些公開課的擺設(shè)

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 5

  教學(xué)目標(biāo):

  1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動(dòng)交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識(shí)和能力,讓學(xué)生經(jīng)歷猜測(cè)探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實(shí)驗(yàn)活動(dòng)中體驗(yàn)探索的過程和方法。

  3、通過運(yùn)用三角形內(nèi)角和的性質(zhì)解決一些簡(jiǎn)單的問題,使學(xué)生體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,體會(huì)到數(shù)學(xué)的價(jià)值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。

  教學(xué)重點(diǎn):

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和是180的探索和驗(yàn)證。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請(qǐng)大家猜一個(gè)謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅(jiān)。三竿首尾連,學(xué)問不簡(jiǎn)單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學(xué)問?

  生:三角形有三條邊,三個(gè)角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個(gè)三角形中最多只能有一個(gè)直角,最多只能有一個(gè)鈍角,最少有兩個(gè)銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個(gè)三角形的內(nèi)角和都是180嗎?

 。ǜ鶕(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個(gè)?)

  二、自主探索,實(shí)踐驗(yàn)證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認(rèn)為三角形的內(nèi)角就是指三角形的三個(gè)角。

  師:三角形的每個(gè)角都是三角形的內(nèi)角,每個(gè)三角形都有三個(gè)內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認(rèn)為三角形的內(nèi)角和就是把三角形的三個(gè)內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個(gè)內(nèi)角編上序號(hào)1、2、3、我們叫它1、2、3,這三個(gè)角的度數(shù)和,就是這個(gè)三角形的內(nèi)角和。

  3、實(shí)踐驗(yàn)證

  師:每個(gè)三角形的內(nèi)角和都是180嗎?用什么方法來驗(yàn)證呢?

  生:量一量每個(gè)角的度數(shù),然后加起來看看是不是180。

  師:請(qǐng)大家拿出課前準(zhǔn)備的三角形,親自量一量,算一算。(學(xué)生動(dòng)手量一量)

  師:誰愿意把你的勞動(dòng)成果和大家分享一下?

  生:我量的這個(gè)三角形的三個(gè)內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學(xué)量的是一個(gè)銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個(gè)三角形的三個(gè)內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋(gè),也比較特殊,是一個(gè)等腰直角三角形。

  生:我量的是三角尺中的另一個(gè),三個(gè)內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個(gè)內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測(cè)量會(huì)有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個(gè)內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學(xué)來不得半點(diǎn)虛假,看來這個(gè)是不能讓大家信服的。那還可以用什么方法來驗(yàn)證呢?下面請(qǐng)同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進(jìn)行驗(yàn)證,比一比哪些組的方法富有新意,開始!

 。▽W(xué)生在小組內(nèi)進(jìn)行探索驗(yàn)證。教師巡視,參與到學(xué)生的研究中)

  師:請(qǐng)每個(gè)小組選擇一個(gè)代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運(yùn)用了折一折的方法,把三角形的三個(gè)內(nèi)角都向內(nèi)折,三個(gè)內(nèi)角就拼成了一個(gè)平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

  (其它的成員展示不同的三角形)

  師:看這個(gè)小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進(jìn)行驗(yàn)證,老師實(shí)在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個(gè)小組和他們的方法不一樣?

  生:我們小組把三角形的三個(gè)內(nèi)角都撕了下來,拼在了一起,正好拼成了一個(gè)平角,也就是180。我們也實(shí)驗(yàn)了不同的三角形,三個(gè)內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。

  師:這個(gè)小組的方法簡(jiǎn)便,易操作,很好。

  生:我們小組成員是這樣想的,一個(gè)長(zhǎng)方形有4個(gè)直角,每個(gè)直角90,那么長(zhǎng)方形的內(nèi)角和就是360,每個(gè)長(zhǎng)方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的.內(nèi)角和就是180。 師:你們小組很聰明,從長(zhǎng)方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結(jié)

  師:剛才同學(xué)們用量、折、剪、拼、計(jì)算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號(hào))那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應(yīng)用,加深理解

  1、說一說每個(gè)三角形的內(nèi)角和是多少度

  師:(出示一個(gè)大三角形)這個(gè)大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個(gè)小三角形)這個(gè)小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個(gè)三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個(gè)三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個(gè)三角形拼成一個(gè)大三角形,兩個(gè)直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個(gè)大三角形分成兩個(gè)三角形,每個(gè)三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個(gè)三角形的兩個(gè)角的度數(shù),你能說出第三個(gè)角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個(gè)三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個(gè)三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個(gè)三角形中,用180-20-45,B=115。

  3、一個(gè)等腰三角形的風(fēng)箏,它的一個(gè)底角是70,它的頂角是多少度?

  生:等腰三角形的兩個(gè)底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋(gè)在建筑中應(yīng)用的例子。

  在設(shè)計(jì)這座大橋時(shí),如果設(shè)計(jì)師將斜拉的鋼索與橋柱形成的夾角設(shè)計(jì)成了56,建筑師在造橋時(shí)怎樣才能確定鋼索與橋柱是否形成了這個(gè)角度?

  生:用量角器量一量

  師:量哪個(gè)角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個(gè)直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個(gè)善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會(huì)成為一名優(yōu)秀的建筑師。

  四、回顧總結(jié),拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個(gè)大三角形分成兩個(gè)小三角形,每個(gè)三角形的內(nèi)角和還是180,把兩個(gè)小三角形拼成一個(gè)大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗(yàn)證三角形的內(nèi)角和是180。

  師:這個(gè)同學(xué)不僅學(xué)會(huì)了知識(shí),而且學(xué)會(huì)了方法,我們只有學(xué)會(huì)了方法,才能更好地去探究更多的知識(shí)。

  師:那你現(xiàn)在知道為什么一個(gè)三角形內(nèi)只能有一個(gè)直角或一個(gè)鈍角嗎?

  生:兩個(gè)直角的度數(shù)之和是180,再加上一個(gè)角,三個(gè)角的度數(shù)之和超過了180,所以一個(gè)三角形中最多只能有一個(gè)直角。

  生:兩個(gè)鈍角的度數(shù)之和就超過了180,再加上一個(gè)角,就更大了,所以一個(gè)三角形中最多只能有一個(gè)鈍角。

  師:我們學(xué)習(xí)知識(shí),必須知其然并知其所以然。

  師:三角形中還有許許多多的學(xué)問,讓我們?cè)谝院蟮膶W(xué)習(xí)中繼續(xù)去研究。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 6

  一、教學(xué)目標(biāo):

  1、理解掌握三角形內(nèi)角和是180°,并運(yùn)用這一性質(zhì)解決一些簡(jiǎn)單的問題。

  2、通過直觀操作的方法,引導(dǎo)學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實(shí)驗(yàn)活動(dòng)中,體驗(yàn)探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗(yàn)。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點(diǎn):運(yùn)用三角形內(nèi)角和等于180°的性質(zhì)解決一些實(shí)際問題。

  教具:課件、三角形若干。

  學(xué)具:量角器、直角三角形、銳角三角形和鈍角三角形各一個(gè)。

  三、教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導(dǎo)入新課

  我們已經(jīng)學(xué)過了三角形的知識(shí),我們來復(fù)習(xí)一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個(gè)角呢?這三個(gè)角都叫做三角形的內(nèi)角,而這三個(gè)內(nèi)角的和就是這個(gè)三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點(diǎn)和規(guī)律呢?我們來看一個(gè)小片段,仔細(xì)聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個(gè)大的直角三角形說:“我的個(gè)頭大,我的內(nèi)角和一定比你們大。”一個(gè)鈍角三角形說:“我有一個(gè)鈍角,我的內(nèi)角和才是最大的)一個(gè)小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們?cè)跔?zhēng)論什么嗎?(它們?cè)跔?zhēng)論誰的.內(nèi)角和大。)誰能說一說你的想法?(學(xué)生各抒己見,是不評(píng)價(jià))果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

 。ò鍟n題:三角形內(nèi)角和)

 。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點(diǎn)。

  (1)檢查作業(yè),并提出要求:

  昨天老師讓每位學(xué)生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個(gè)角的度數(shù),都完成了嗎?拿出來吧,一會(huì)我們要算出三角形的內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動(dòng)記錄表。

  小組活動(dòng)記錄表

  小組成員的姓名

  三角形的形狀

  每個(gè)內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗螅(qǐng)小組成員仔細(xì)觀察你發(fā)現(xiàn)了什么?)

 、谛〗M合作。

  會(huì)使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長(zhǎng)手中的表格內(nèi)。

  各組長(zhǎng)進(jìn)行匯報(bào)。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實(shí)際上,三角形三個(gè)內(nèi)角和就是180°,只是因?yàn)闇y(cè)量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗(yàn)證推測(cè)。

  那么同學(xué)們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學(xué)生可能會(huì)想到用折拼或剪拼的方法來看一看三角形的三個(gè)角和起來是不是180°,也就是說三角形的三個(gè)角能不能拼成一個(gè)平角。師生先演示撕下三個(gè)角拼在一起是否是平角,同學(xué)們?cè)谙旅娌僮鬟M(jìn)行體驗(yàn),再用課件演示把三個(gè)內(nèi)角折疊在一起(這時(shí)要注意平行折,把一個(gè)頂點(diǎn)放在邊上)學(xué)生也動(dòng)手試一試。

  通過我們的驗(yàn)證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個(gè)三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對(duì)這三個(gè)三角形說點(diǎn)什么嗎?(讓學(xué)生暢所欲言,對(duì)得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學(xué)們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個(gè)角,可以求出第三個(gè)角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個(gè)銳角等于30°,求另一個(gè)銳角。

  生獨(dú)立做,再訂正格式、以及強(qiáng)調(diào)不要忘記寫度。

  小結(jié):同學(xué)們有沒有不明白的地方?如果沒有我們來做練習(xí)。

 。ㄈ╈柟叹毩(xí),拓展應(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個(gè)銳角是75°,另一個(gè)銳角是28°,求第三個(gè)銳角?第二幅圖是直角三角形已知一個(gè)銳角是35°,求另一個(gè)銳角?第三幅圖是鈍角三角形已知一個(gè)銳角是20°,另一個(gè)銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個(gè)鈍角三角形說:我的兩個(gè)銳角之和大于90°。

  一個(gè)直角三角形說:我的兩個(gè)銳角之和正好等于90°。讓學(xué)生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運(yùn)用三角形內(nèi)角和是180°計(jì)算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學(xué)家帕斯卡12歲時(shí)發(fā)現(xiàn)的。我們同學(xué)還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

 。ㄋ模┱n堂總結(jié)

  讓學(xué)生說說在這節(jié)課上的收獲!

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 7

  教學(xué)目標(biāo)

  通過猜想、驗(yàn)證,了解三角形的內(nèi)角和是180度。在學(xué)習(xí)的過程中進(jìn)一步激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,初步感知計(jì)算多邊形內(nèi)角和的公式。

  教學(xué)重難點(diǎn)

  三角形的內(nèi)角和

  課前準(zhǔn)備

  電腦課件、學(xué)具卡片

  教學(xué)活動(dòng)

  一、計(jì)算三角尺三個(gè)內(nèi)角的和。

  出示三角尺中的一個(gè),提問:誰來說說三角尺上的三個(gè)角分別是多少度?

  引導(dǎo)學(xué)生說出90度、60度、30度。

  出示另一個(gè)三角尺,引導(dǎo)學(xué)生分別說出三個(gè)角的度數(shù):90度、45度、45度。

  提問:請(qǐng)同學(xué)們?nèi)芜x一個(gè)三角尺,算出他們?nèi)齻(gè)角一共多少度?

  學(xué)生計(jì)算后指名回答。

  師:三角尺三個(gè)角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個(gè)三角形三個(gè)角的和都是180度呢?請(qǐng)同學(xué)們?cè)谧詡浔旧?/p>

  任畫一個(gè)三角形,量出它們?nèi)齻(gè)角分別是多少度,再求出它們的'和,然后小組內(nèi)交流。

  學(xué)生小組活動(dòng),教師了解學(xué)生情況,個(gè)別同學(xué)加以輔導(dǎo)。

  全班交流:讓學(xué)生分別說出三個(gè)角的度數(shù)以及它們的和。

  提問:你發(fā)現(xiàn)了什么?

  任何一個(gè)三角形三個(gè)角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

  三、試一試

  要求學(xué)生先計(jì)算,再用量角器量,最后比較結(jié)果是否相同?讓學(xué)生說說計(jì)算的方法。

  教師說明:即使結(jié)果不完全一樣,是因?yàn)闇y(cè)量的結(jié)果存在誤差,我們還是以

  計(jì)算的結(jié)果為準(zhǔn)。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  學(xué)生獨(dú)立計(jì)算,交流算法。要求學(xué)生用量角器量出結(jié)果,和計(jì)算的結(jié)果想比較。

  第2題

  指導(dǎo)學(xué)生看圖,弄清拼成的三角形的三個(gè)內(nèi)角指的是哪三個(gè)角。計(jì)算三角形三個(gè)角的內(nèi)角和,幫助學(xué)生進(jìn)一步理解:三角形三個(gè)內(nèi)角的和是180度。

  第3題

  通過操作、計(jì)算,使學(xué)生認(rèn)識(shí)到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會(huì)變化的。

  第4、5、6

  引導(dǎo)學(xué)生運(yùn)用三角形的分類及三角形內(nèi)角和的有關(guān)知識(shí)解決有關(guān)問題,重點(diǎn)培養(yǎng)學(xué)生靈活運(yùn)用知識(shí)解決問題的能力。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 8

  一、教材簡(jiǎn)介:

  本微課選自北京師范大學(xué)出版社初中數(shù)學(xué)七年級(jí)下冊(cè)第四章《三角形》的第一節(jié)《認(rèn)識(shí)三角形》的內(nèi)容,學(xué)生在學(xué)習(xí)了“三角形的概念”之后,自然要想到“三角形的內(nèi)角和”,因此本節(jié)微課起著承上啟下的作用。教學(xué)內(nèi)容是《三角形內(nèi)角和》。

  二、設(shè)計(jì)理念:

  我在設(shè)計(jì)這一堂微課時(shí),主要從七年級(jí)學(xué)生以形象思維為主,對(duì)新事物容易產(chǎn)生興趣的特點(diǎn)出發(fā),創(chuàng)設(shè)問題情景“在以前小學(xué)學(xué)習(xí)三角形的內(nèi)角和的結(jié)論時(shí),是通過撕、拼的方法直觀得到的,你知道其中的依據(jù)嗎?”來激發(fā)學(xué)生探究的欲望。然后通過老師借助Z+Z超級(jí)畫板展示“三角形的內(nèi)角和等于180°”的動(dòng)畫以及通過旋轉(zhuǎn)和平移三角形的兩個(gè)角到第三個(gè)角的方法,一方面讓學(xué)生去發(fā)現(xiàn)問題,另一方面使學(xué)生通過多角度思考、分析、說理、操作加深學(xué)生對(duì)三角形內(nèi)角和為180°的理解,從而突出和解決了本節(jié)課的重點(diǎn),同時(shí)在教學(xué)中注重在直觀操作的基礎(chǔ)上進(jìn)行簡(jiǎn)單的推理,使學(xué)生學(xué)會(huì)用一定的方式有條理地表達(dá)推理過程。在學(xué)生探究得出三角形的內(nèi)角和等于180°之后,教師通過借助Z+Z超級(jí)畫板拖動(dòng)三角形的任意一個(gè)點(diǎn),改變?nèi)切蔚男螤,?dòng)態(tài)顯示了“三角形的內(nèi)角和”始終等于180°的數(shù)據(jù)。加深對(duì)“三角形的內(nèi)角和“的理解。最后同過練習(xí),檢測(cè)學(xué)生對(duì)“三角形的內(nèi)角和”的應(yīng)用掌握程度,拓展學(xué)生視野,提高學(xué)生認(rèn)識(shí)水平。

  設(shè)計(jì)特色是力求通過Z+Z超級(jí)畫板動(dòng)畫等多媒體教學(xué)手段,使抽象知識(shí)動(dòng)態(tài)化,降低學(xué)生認(rèn)知難度。以問題為導(dǎo)向,引導(dǎo)學(xué)生推斷分析,鍛煉學(xué)生邏輯思維。教學(xué)過程充分體現(xiàn)出以學(xué)生為主體,教師為主導(dǎo)的特點(diǎn),啟發(fā)引導(dǎo)學(xué)生通過多角度思考、分析、說理、操作的過程中主動(dòng)地去獲取知識(shí),體驗(yàn)過程、感悟方法,以提高學(xué)生學(xué)習(xí)的有效性。

  三、學(xué)情分析:

  七年級(jí)的學(xué)生形象思維比較好,但空間思維比較差,注意力容易轉(zhuǎn)移,需要教師結(jié)運(yùn)用多媒體技術(shù)展示三角形內(nèi)角和,因此本節(jié)課我展示“三角形的內(nèi)角和”的動(dòng)畫給學(xué)生看,將思維的可視化展示給學(xué)生,使學(xué)生能保持較大的學(xué)習(xí)興趣,從而努力培養(yǎng)學(xué)生的發(fā)現(xiàn)問題的能力、推理能力、有條理的表達(dá)能力、發(fā)展空間觀念。

  四、教學(xué)目標(biāo)

  知識(shí)與技能:通過觀察、操作、想象、推理“三角形內(nèi)角和等于180°”的活動(dòng)過程,發(fā)展空間觀念,推理能力和有條理地表達(dá)能力。

  過程與方法:通過自主探究,結(jié)合具體實(shí)例,掌握三角形三個(gè)角和等于180°。

  情感、態(tài)度價(jià)值觀:在探究學(xué)習(xí)中體會(huì)數(shù)學(xué)的現(xiàn)實(shí)意義,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的信心,體驗(yàn)解決問題方法的多樣性。

  五、教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):三角形的內(nèi)角和。

  教學(xué)難點(diǎn):三角形的內(nèi)角和。

  六、教學(xué)用具

  “三角形的內(nèi)角和”動(dòng)畫、制作多媒體課件。

  七、教學(xué)過程:

  教學(xué)環(huán)節(jié)

  教學(xué)內(nèi)容

  教學(xué)活動(dòng)

  設(shè)計(jì)意圖

  教師的組織和引導(dǎo)

  學(xué)生活動(dòng)

  提出問題,自主探究

  一、三角形內(nèi)角和

  展示書本P81頁的做一做,提出問題:

  1、在小學(xué)通過撕、拼方法得到三角形內(nèi)角和等于180°,依據(jù)是什么?

  2、展示“三角形內(nèi)角和等于180°”動(dòng)畫。

  3、引導(dǎo)學(xué)生利用“平行線的判定與性質(zhì)”探究、推理、得出“三角形內(nèi)角和等于180°”的結(jié)論

  3、利用“三角形內(nèi)角和”的動(dòng)畫,拖動(dòng)三角形的任意點(diǎn),用數(shù)據(jù)顯示三角形的內(nèi)角和等于180°。

  閱讀課本p81頁,回憶小學(xué)通過撕、拼方法得到三角形內(nèi)角和等于180°。

  觀看“三角形內(nèi)角和等于180°”動(dòng)畫。

  探究、想象、推理、得出結(jié)論。

  觀看動(dòng)畫,加深理解三角形內(nèi)角和等于180°。

  根據(jù)做一做,激發(fā)學(xué)生的探究欲望。

  動(dòng)畫形象地呈現(xiàn)在學(xué)生眼前,直觀操作與說理結(jié)合起來。

  培養(yǎng)學(xué)生的推理能力和有條理地表達(dá)能力,發(fā)展空間觀念。

  效果檢測(cè),引領(lǐng)提升

  練習(xí)

  展示有梯度的.課堂練習(xí)。

  做練習(xí)

  對(duì)所學(xué)知識(shí)加以運(yùn)用和深化歸納總結(jié),深化認(rèn)知

  總結(jié)拓展

  總結(jié)本節(jié)知識(shí)點(diǎn)

  歸納知識(shí)點(diǎn)

  學(xué)會(huì)總結(jié)

  板書設(shè)計(jì)

  一、三角形三個(gè)內(nèi)角和等于180°

  教學(xué)反思:

  該微課針對(duì)我校生源不是很好的實(shí)際情況和“三角形內(nèi)角和”很難理解的特點(diǎn),面向?qū)W生,聚焦學(xué)習(xí)過程,關(guān)注個(gè)性差異,采用問題導(dǎo)學(xué)、自主探究模式,聚焦知識(shí)點(diǎn)講解,呈現(xiàn)教師如何用Z+Z超級(jí)畫板軟件引導(dǎo)學(xué)生學(xué)習(xí),學(xué)生如何在教師的引導(dǎo)下自主學(xué)習(xí)的過程,充分體現(xiàn)教師的主導(dǎo)作用和學(xué)生的主體作用;針對(duì)七年級(jí)學(xué)生以形象思維為主、好奇心強(qiáng)的特點(diǎn),充分發(fā)揮多媒體在學(xué)科中的運(yùn)用,教師展示“三角形內(nèi)角和”動(dòng)畫,讓學(xué)生根據(jù)“平行線的判定和性質(zhì)”獲得“三角形內(nèi)角和等于180°”的結(jié)論,體現(xiàn)思維過程。培養(yǎng)學(xué)生的推理能力和有條理地表達(dá)能力,發(fā)展空間觀念。符合新課標(biāo)倡導(dǎo)的探究性學(xué)習(xí)的理念。事實(shí)證明,符合學(xué)生的認(rèn)知心理,達(dá)到了很好的效果。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 9

  教學(xué)目標(biāo):

  1.掌握三角形內(nèi)角和定理及其推論;

  2.弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

  3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

  5.通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

  教學(xué)重點(diǎn):

  三角形內(nèi)角和定理及其推論。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和定理的證明

  教學(xué)用具:

  直尺、微機(jī)

  教學(xué)方法:

  互動(dòng)式,談話法

  教學(xué)過程:

  1、創(chuàng)設(shè)情境,自然引入

  把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

  問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

  問題2 你能用幾何推理來論證得到的關(guān)系嗎?

  對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

  2、設(shè)問質(zhì)疑,探究嘗試

  (1)求證:三角形三個(gè)內(nèi)角的和等于

  讓學(xué)生剪一個(gè)三角形,并把它的`三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

  問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)

  什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

  (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

  問題3 由圖中AB與CD的關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學(xué)生回答后,電腦顯示圖表。

  (3)三角形中三個(gè)內(nèi)角之和為定值,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

  問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

  問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

  其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

  這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

  3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

  引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 10

  一、說教材

  北師版八年級(jí)下冊(cè)第六章《證明一》,是在前面對(duì)幾何結(jié)論已經(jīng)有了一定的直觀認(rèn)識(shí)的基礎(chǔ)上編排的,而前幾冊(cè)對(duì)有關(guān)幾何結(jié)論都曾進(jìn)行過簡(jiǎn)單的說理,本章內(nèi)容則嚴(yán)格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達(dá)格式!度切蝺(nèi)角和定理的證明》則是對(duì)前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。

  二、說目標(biāo)

  1.知識(shí)目標(biāo):掌握“三角形內(nèi)角和定理的證明”及其簡(jiǎn)單的應(yīng)用。

  2.能力目標(biāo)培養(yǎng)學(xué)生的數(shù)學(xué)語言表達(dá)、邏輯推理、問題思考、組內(nèi)及組間交流、動(dòng)手實(shí)踐等能力。

  3.情感、態(tài)度、價(jià)值觀:

  在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會(huì)獲得知識(shí)的成就感及與他人合作的樂趣,以增強(qiáng)其數(shù)學(xué)學(xué)習(xí)的自信心。

  4.教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):三角形的內(nèi)角和定理的證明及其簡(jiǎn)單應(yīng)用。

  難點(diǎn):三角形的內(nèi)角和定理的證明方法的討論。

  三、說學(xué)校及學(xué)生現(xiàn)實(shí)情況

  我校是藍(lán)田縣一所普通初中,四面非山即嶺,距藍(lán)田縣城四十里之遙。但由于國(guó)家對(duì)西部教育的大力支持,學(xué)校有遠(yuǎn)程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級(jí)四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認(rèn)真踏實(shí),有強(qiáng)烈的求知欲;此外,善于鉆研是他們的特點(diǎn),并且,有較強(qiáng)的合作交流意識(shí)。

  四、說教法

  根據(jù)本節(jié)課教學(xué)內(nèi)容特點(diǎn),我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動(dòng)性、創(chuàng)造性。

  五、說教學(xué)設(shè)計(jì)

  〈一〉、創(chuàng)設(shè)情景,直入主題

  一堂新課的引入是教師與學(xué)生活動(dòng)的開始,而一個(gè)成功的引入,可使學(xué)生破除畏難心理,對(duì)知識(shí)在短時(shí)間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動(dòng)就變得順理成章。我的具體做法是:簡(jiǎn)單回憶舊知識(shí),“證明的'一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個(gè)熟悉的結(jié)論!是什么呢?請(qǐng)看大屏幕!”。盡量使問題簡(jiǎn)單化,這樣更利于學(xué)生投入新課。

  〈二〉、交流對(duì)話,引導(dǎo)探索

  1、巧妙提問,合理引導(dǎo)

  證明思想的引入時(shí),問:同學(xué)們,七年級(jí)時(shí)如何得到此結(jié)論?(留一定時(shí)間讓他們討論、交流、達(dá)成共識(shí))學(xué)生回答后,我及時(shí)肯定并鼓勵(lì)后拋出問題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個(gè)命題是個(gè)真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時(shí)讓一學(xué)生板演。

  2、恰當(dāng)示范,培養(yǎng)學(xué)生正確的書寫能力

  在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。

  3、一題多解,放手讓學(xué)生走進(jìn)自主學(xué)習(xí)空間

  正因?yàn)閷W(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時(shí),我拋出問題:再想想,還有其他方法嗎?將課堂時(shí)間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時(shí),我又走到學(xué)生中去,對(duì)有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個(gè),同時(shí),借此機(jī)會(huì)增進(jìn)教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請(qǐng)有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。

  4、展示歸納,合理演繹

  利用多媒體展示三角形內(nèi)角和定理的幾種表達(dá)形式,以促其學(xué)以致用。

  5、反饋練習(xí)

  用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進(jìn)一步提高學(xué)生的書寫能力。同時(shí),在他們作完之后,多媒體展示正確寫法,加強(qiáng)教學(xué)效果。

  〈三〉、課堂小結(jié)

  1、采用讓學(xué)生感性的談?wù)J識(shí),談收獲。設(shè)計(jì)問題:

  2、(1)、本節(jié)課我們學(xué)了什么知識(shí)?

  (2)、你有什么收獲?

  目的是發(fā)揮學(xué)生主體意識(shí),培養(yǎng)其語言概括能力。

  六、說教學(xué)反思

  本節(jié)課主要是以嚴(yán)謹(jǐn)?shù)倪壿嬜C明方法,驗(yàn)證三角形內(nèi)角和等于180度。讓學(xué)生充分體會(huì)有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點(diǎn)。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計(jì)意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 11

  一、學(xué)生知識(shí)狀況分析

  學(xué)生技能基礎(chǔ):學(xué)生在以前的幾何學(xué)習(xí)中,已經(jīng)學(xué)習(xí)過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴(yán)格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學(xué)生掌握了平行線的性質(zhì)及嚴(yán)格的證明等知識(shí)的基礎(chǔ)上展開的,因此,學(xué)生具有良好的基礎(chǔ)。

  活動(dòng)經(jīng)驗(yàn)基礎(chǔ): 本節(jié)課主要采取的 活動(dòng)形式是學(xué)生非常熟悉的自主探究與合作交流的學(xué)習(xí)方式,學(xué)生具有較熟悉的活動(dòng)經(jīng)驗(yàn).

  二、教學(xué)任務(wù)分析

  上一節(jié)課的學(xué)習(xí)中,學(xué)生對(duì)于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡(jiǎn)單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識(shí),形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識(shí)來推導(dǎo)出新的定理以及靈活運(yùn)用新的定理解決相關(guān)問題。為此,本節(jié)課的教學(xué)目標(biāo)是:

  知識(shí)與技能:

  (1)掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單應(yīng)用。

  (2)靈活運(yùn)用三角形內(nèi)角和定理解決相關(guān)問題。

  數(shù)學(xué)能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。

  情感與態(tài)度:對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化 的理性作用.

  三、教學(xué)過程分析

  本節(jié)課的'設(shè)計(jì)分為四個(gè)環(huán)節(jié):情境引入探索新知反饋練習(xí)課堂小結(jié)

  第一環(huán)節(jié):情境引入

  活動(dòng)內(nèi)容:

  (1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.

  實(shí)驗(yàn)1:先將紙片三角形一角折向其對(duì)邊,使頂點(diǎn)落在對(duì)邊上,折線與對(duì)邊平行(圖6-38(1))然后把另外兩角相向?qū)φ郏蛊漤旤c(diǎn)與已折角的頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

  (1) (2) (3) (4)

  試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

  (2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

  試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?

  活動(dòng)目的:

  對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。將自己的操作轉(zhuǎn)化為符號(hào)語言對(duì)于學(xué)生來說還存在一定困難,因此需要一個(gè)臺(tái)階,使學(xué)生逐步過渡到嚴(yán)格的證明.

  教學(xué)效果:

  說理過程是學(xué)生所熟悉的,因此,學(xué)生能比較熟練地說出用撕紙的方法可以驗(yàn)證三角形內(nèi)角和定理的原因。

  第二環(huán)節(jié):探索新知

  活動(dòng)內(nèi)容:

 、 用嚴(yán)謹(jǐn)?shù)淖C明來論證三角形內(nèi) 角和定理.

 、 看哪個(gè)同學(xué)想的方法最多?

  方法一:過A點(diǎn)作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(兩直線平行,內(nèi)錯(cuò)角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代換)

  方法二:作BC的延長(zhǎng)線CD,過點(diǎn)C作射線CE∥BA.

  ∵CE∥BA

  ECD(兩直線平行,同位角相等)

  ACE(兩直線平行,內(nèi)錯(cuò)角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代換)

  活動(dòng)目的:

  用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會(huì)幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng) 學(xué)生的邏輯推理能力。

  教學(xué)效果:

  添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個(gè)定義、公理、定理,但原圖形不具備直接使用它們的條件,這時(shí)就需要添輔助線創(chuàng)造條件,以達(dá)到 證明的目的.

  第三環(huán)節(jié):反饋練習(xí)

  活動(dòng)內(nèi)容:

  (1)△ABC中可以有3個(gè)銳角嗎? 3個(gè)直角呢? 2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,則△ABC中B=?

  (4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.

  (5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.

  (6)三角形中三角之比 為1∶2∶3,則三個(gè)角各為多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度數(shù);

  (b)若BD是AC邊上的高,求 DBC的度數(shù)?

  活動(dòng)目的:

  通過學(xué)生的 反饋練習(xí),使教師能全面了解學(xué)生對(duì)三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.

  教學(xué)效果:

  學(xué)生對(duì)于三角形內(nèi)角和定理的掌握是非常熟練,因此,學(xué)生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。

  第四環(huán)節(jié):課堂小結(jié)

  活動(dòng)內(nèi)容:

  ① 證明三角形內(nèi)角和定理有哪幾種方法?

 、 輔助線的作法技巧.

 、 三 角形內(nèi)角和定理的簡(jiǎn)單應(yīng)用.

  活動(dòng)目的:

  復(fù)習(xí)鞏固本課知識(shí),提高學(xué)生的掌握程度.

  教學(xué)效果:

  學(xué)生對(duì)于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運(yùn)用三角形內(nèi)角和定理進(jìn)行相關(guān)證明.

  課后練習(xí):課本第239頁隨堂練習(xí);第241頁習(xí)題6.6第1,2,3題

  四、教學(xué)反思

  三角形的有關(guān)知識(shí)是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識(shí),也是學(xué)生最為熟悉且能與小學(xué)、中學(xué)知識(shí)相關(guān)聯(lián)的知識(shí),看似簡(jiǎn)單,但如果處理不好,會(huì)導(dǎo)致學(xué)生有厭煩心理,為此,本節(jié)課的設(shè)計(jì)力圖實(shí)現(xiàn)以下特點(diǎn):

  (1) 通過折紙與剪紙等操作讓學(xué)生獲得直接經(jīng)驗(yàn),然后從學(xué)生的直接經(jīng)驗(yàn)出發(fā),逐步轉(zhuǎn)到符號(hào)化處理,最后達(dá)到推理論證的要求。

  (2) 充分展示學(xué)生的個(gè)性,體現(xiàn)學(xué)生是學(xué)習(xí)的主人這一主題。

  (3) 添加輔助線是教學(xué)中的一個(gè)難點(diǎn), 如何添加輔助線則應(yīng)允許學(xué)生展開思考并爭(zhēng)論,展示學(xué)生的思維過程,然后在老師的引導(dǎo)下達(dá)成共識(shí)。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 12

  一、教材與學(xué)生知識(shí)現(xiàn)狀分析:

  三角形的內(nèi)角和定理是從“數(shù)量關(guān)系”來揭示三角形內(nèi)角之間的關(guān)系的,這個(gè)定理是任意三角形的一個(gè)重要性質(zhì),它是學(xué)習(xí)以后知識(shí)的基礎(chǔ),并且是計(jì)算角的度數(shù)的方法之一。三角形內(nèi)角和定理的內(nèi)容,學(xué)生在小學(xué)已經(jīng)熟悉,小學(xué)時(shí)學(xué)生通過觀察、實(shí)驗(yàn)得到了結(jié)論,七年級(jí)時(shí)學(xué)生又通過“拼”“折”“畫”等感知了三角形內(nèi)角和為180°的結(jié)論,完成了第一、二學(xué)段的學(xué)習(xí)。而到了第三學(xué)段,八年級(jí)學(xué)生需要運(yùn)用演繹推理的方式加以證明。同時(shí)說明今后在幾何里,常常用這種方法得到新知識(shí),而定理的證明需要添輔助線,讓學(xué)生明白添加輔助線是解決數(shù)學(xué)問題(尤其是幾何問題)的重要思想方法。學(xué)生在小學(xué)里已知三角形的內(nèi)角和是180°,前面又學(xué)習(xí)了三角形的有關(guān)概念,平角定義和平行線的性質(zhì),用輔助線將三角形的三個(gè)內(nèi)角巧妙地轉(zhuǎn)化為一個(gè)平角或兩平行線間的同旁內(nèi)角,為定理的證明提供了必備條件。盡管前面學(xué)生接觸過推理論證的知識(shí),但并末真正去論證過,特別是在論證的格式上,沒有經(jīng)過很好的鍛煉。因此定理的證明應(yīng)是本節(jié)引導(dǎo)和探索的重點(diǎn)。

  從本節(jié)開始訓(xùn)練學(xué)生將命題翻譯為幾何符號(hào)語言,寫出已知、求證,學(xué)會(huì)分析命題的證明思路,對(duì)培養(yǎng)學(xué)生的思維能力和推理能力將起到重要的作用。

  二、教學(xué)目標(biāo):

  知識(shí)與技能:三角形內(nèi)角和定理的證明。

  能力訓(xùn)練要求:掌握三角形內(nèi)角和定理,并初步學(xué)會(huì)利用輔助線證題,同時(shí)培養(yǎng)學(xué)生觀察、猜想和論證能力。

  情感與價(jià)值觀要求:通過新穎、有趣的實(shí)際問題,來激發(fā)學(xué)生的求知欲。

  三、教學(xué)重點(diǎn):探索證明三角形內(nèi)角和定理的不同方法。

  教學(xué)難點(diǎn):三角形的內(nèi)角和定理的證明方法的討論。

  四、教法、學(xué)法和數(shù)學(xué)手段:

  采用“問題情景——建立模型——解釋、應(yīng)用與拓展”的模式展開教學(xué)。

  采用多媒體教學(xué)。

  五、教學(xué)過程

  第一環(huán)節(jié):

  情境引入:學(xué)校教務(wù)處有一個(gè)折疊長(zhǎng)梯(電腦顯示圖像),當(dāng)打開時(shí)頂端的角是多少度?一名學(xué)生測(cè)出了兩個(gè)梯腿

  活動(dòng)內(nèi)容:為了回答這個(gè)問題,先觀察如下的實(shí)驗(yàn):

  用橡皮筋構(gòu)成△ABC,其中頂點(diǎn)B、C為定點(diǎn),A為動(dòng)點(diǎn)(如下圖),放松橡皮筋后,點(diǎn)A自動(dòng)收縮于BC上,請(qǐng)同學(xué)們考察點(diǎn)A變化時(shí)所形成的一系列的三角形:△A1BC、△A2BC、△A3BC其內(nèi)角會(huì)產(chǎn)生怎樣的變化呢?

  請(qǐng)同學(xué)們猜一猜:三角形的內(nèi)角和可能是多少?

 。1)用折紙的方法驗(yàn)證三角形內(nèi)角和定理.

  實(shí)驗(yàn)1:先將紙片三角形一角折向其對(duì)邊,使頂點(diǎn)落在對(duì)邊上,折線與對(duì)邊平行(如下圖(1))然后把另外兩角相向?qū)φ,使其頂點(diǎn)與已折角的.頂點(diǎn)相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

  試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

 。2)實(shí)驗(yàn)2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

  試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個(gè)角呢?

  活動(dòng)目的:

  對(duì)比過去撕紙等探索過程,體會(huì)思維實(shí)驗(yàn)和符號(hào)化的理性作用。將自己的操作轉(zhuǎn)化為符號(hào)語言對(duì)于學(xué)生來說還存在一定困難,因此需要一個(gè)臺(tái)階,使學(xué)生逐步過渡到嚴(yán)格的證明.

  第二環(huán)節(jié):探索新知

  但觀察與實(shí)驗(yàn)得到的結(jié)論,并不一定正確、可靠,這樣就需要通過數(shù)學(xué)證明。那么怎樣證明呢?請(qǐng)同學(xué)們?cè)賮砜磳?shí)驗(yàn)。

  這里有兩個(gè)全等的三角形,我把它們重疊固定在黑板上,然后把△ABC的上層∠B剝下來,沿BC的方向平移到∠ECD處固定,再剝下上層的∠A,把它倒置于∠C與∠ECD之間的空隙∠ACE的上方。

  這時(shí),∠A與∠ACE能重合嗎?

  因?yàn)橥唤恰螮CD=∠B。所以CE∥BA,所以能重合。

  這樣我們就可以證明了:三角形的內(nèi)角和等于180°。接下來來證明:三角形的內(nèi)角和等于180°這個(gè)真命題。

  活動(dòng)內(nèi)容:

  由實(shí)驗(yàn)可知,我們猜對(duì)了!三角形的內(nèi)角和正好為一個(gè)平角。

  這是一個(gè)文字命題,證明時(shí)需要先干什么呢?

  需要先畫出圖形,根據(jù)命題的條件和結(jié)論,結(jié)合圖形寫出已知、求證。

  已知,如圖,△ABC,求證:∠A+∠B+∠C=180°

  方法一:證明:作BC的延長(zhǎng)線CD,過點(diǎn)C作射線CE∥AB。

  ∵CE∥BA(已作)

  ∴∠ACE=∠A(兩直線平行,內(nèi)錯(cuò)角相等)

  ∠ECD=∠B(兩直線平行,同位角相等)

  ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)

  ∴∠A+∠B+∠ACB=180°(等量代換)

  即:∠A+∠B+∠C=180°。

  方法二:證明:過A點(diǎn)作DE∥BC

  ∵DE∥BC(已作)

  ∴∠DAB=∠B,∠EAC=∠C(兩直線平行,內(nèi)錯(cuò)角相等)

  ∵∠DAB+∠BAC+∠EAC=180°(1平角=180°)

  ∴∠BAC+∠B+∠C=180°(等量代換)

  活動(dòng)目的:

  用平行線的判定定理及性質(zhì)定理來推導(dǎo)出新的定理,讓學(xué)生再次體會(huì)幾何證明的嚴(yán)密性和數(shù)學(xué)的嚴(yán)謹(jǐn),培養(yǎng)學(xué)生的邏輯推理能力。

  第三環(huán)節(jié):反饋練習(xí)

  活動(dòng)內(nèi)容:

 。1)△ABC中可以有3個(gè)銳角嗎?3個(gè)直角呢?2個(gè)直角呢?若有1個(gè)直角另外兩角有什么特點(diǎn)?

  (2)△ABC中,∠C=90°,∠A=30°,∠B=?

 。3)∠A=50°,∠B=∠C,則△ABC中∠B=?

 。4)三角形的三個(gè)內(nèi)角中,只能有____個(gè)直角或____個(gè)鈍角.

 。5)任何一個(gè)三角形中,至少有____個(gè)銳角;至多有____個(gè)銳角.

  (6)三角形中三角之比為1∶2∶3,則三個(gè)角各為多少度?

  C D A E C D

  (7)已知:△ABC中,∠C=∠B=2∠A。

 。╝)求∠B的度數(shù);

 。╞)若BD是AC邊上的高,求∠DBC的度數(shù)?

  活動(dòng)目的:

  通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對(duì)三角形內(nèi)角和定理的概念是否清楚,能否靈活運(yùn)用三角形內(nèi)角和定理,以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.

  第四環(huán)節(jié):課堂小結(jié)

  活動(dòng)內(nèi)容:

  我們證明了一個(gè)很有用的三角形內(nèi)角和定理,證明思想是,運(yùn)用輔助線將原三角形中處于不同位置的三個(gè)內(nèi)角集中在一起,拼成一個(gè)平角。輔助線是聯(lián)系命題的條件和結(jié)論的橋梁,今后我們還要學(xué)習(xí)它;顒(dòng)目的:

  復(fù)習(xí)鞏固本課知識(shí),提高學(xué)生的掌握程度.

  六、課后作業(yè):課本第241頁習(xí)題6.6第1,2,3題

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 13

  教學(xué)內(nèi)容:

  義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書xx版小學(xué)數(shù)學(xué)四年級(jí)下冊(cè)第42~46頁

  教學(xué)目標(biāo):

  1、通過量、剪、拼、折等數(shù)學(xué)活動(dòng),讓學(xué)生親自實(shí)踐操作,發(fā)現(xiàn)規(guī)律,主動(dòng)推導(dǎo)并得出三角形內(nèi)角和是180的結(jié)論,會(huì)應(yīng)用這一規(guī)律進(jìn)行計(jì)算。

  2、在操作、驗(yàn)證三角形內(nèi)角和的過程中,體驗(yàn)解決問題方法的多樣性,發(fā)展空間觀念,提高初步的邏輯思維能力。

  教學(xué)過程:

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  1、談話:我們已經(jīng)認(rèn)識(shí)了三角形,你知道哪些關(guān)于三角形的知識(shí)?

  2、我們?cè)谟懻撊切沃R(shí)的時(shí)候,三角形中的三個(gè)好朋友卻吵了起來,想知道是怎么回事嗎?我們一起去看看吧!

  播放課件

  詳細(xì)內(nèi)容說明:一個(gè)大的直角三角形說:我的個(gè)頭大,我的內(nèi)角和一定比你們大。一個(gè)鈍角三角形說:我有一個(gè)鈍角,我的內(nèi)角和才是最大的。一個(gè)小的銳角三角形很委屈的樣子說:是這樣嗎?(它們?cè)跔?zhēng)論誰的內(nèi)角和大。)

  你知道什么是三角形的內(nèi)角和嗎?

  通過學(xué)生討論,得出三角形的內(nèi)角和就是三角形三個(gè)內(nèi)角的度數(shù)和。

  3、故事中到底誰說得對(duì)呢?今天我們就來研究三角形的內(nèi)角和。

  【設(shè)計(jì)意圖】從學(xué)生的心理、興趣和意愿為出發(fā)點(diǎn),利用故事的形式提出疑問,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生探索的積極性。

  二、自主探究、發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點(diǎn)

  (1)量一量

  師:你認(rèn)為怎樣能知道三角形的內(nèi)角和?

  生:把三角形的三個(gè)內(nèi)角分別量出來,再用加法算出三角形的內(nèi)角和。

  學(xué)生活動(dòng)(小組合作———每組準(zhǔn)備三種不同的'三角形)量角,求和,完成第43頁的表格。

  學(xué)生交流匯報(bào)測(cè)量結(jié)果。

  師:從剛才的交流中,你發(fā)現(xiàn)了什么?

  生:不管是銳角三角形、直角三角形還是鈍角三角形,內(nèi)角和都是180。

 。ㄔ诹康倪^程中,由于誤差,有的學(xué)生可能算出內(nèi)角和在180左右,這時(shí)教師要相機(jī)誘導(dǎo):在測(cè)量的過程中出現(xiàn)一些誤差是正常的,因?yàn)橥瑢W(xué)們畫的角不夠標(biāo)準(zhǔn),量角器的不同,還有本身測(cè)量的原因都可能導(dǎo)致誤差。)

  師:看來量一量會(huì)出現(xiàn)誤差,那么你還有其它的更科學(xué)的辦法進(jìn)行驗(yàn)證嗎?

 。2)拼一拼

  學(xué)生分小組活動(dòng),教師參與學(xué)生的活動(dòng),并給予必要的指導(dǎo)。

  學(xué)生展示交流,師:從大家的交流中,我們發(fā)現(xiàn)都可以把三角形的三個(gè)內(nèi)角拼成一個(gè)平角,證明三角形內(nèi)角和是180 。

 。3)折一折

  小組活動(dòng),學(xué)生交流

  生1:將正方形(或長(zhǎng)方形)紙沿對(duì)角線對(duì)折,這樣,就折成了兩個(gè)大小一樣的三角形。因?yàn)檎叫危ɑ蜷L(zhǎng)方形)的四個(gè)直角的和是360,所以三角形的內(nèi)角和就是它的一半,是180。

  生2:直角三角形的兩個(gè)銳角可以折成一個(gè)直角,也就是說,在直角三角形中,兩個(gè)銳角的和是90,因此三角形內(nèi)角和就是180。

  2、歸納

  師:通過剛才的活動(dòng),我們得出了什么結(jié)論?

  生:三角形的內(nèi)角和等于180。

  3、師談話:三個(gè)三角形爭(zhēng)論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對(duì)這三個(gè)三角形說點(diǎn)什么?

  學(xué)生暢所欲言,對(duì)得出的規(guī)律做系統(tǒng)的整理。

  【設(shè)計(jì)意圖】動(dòng)手實(shí)踐,自主探索,親身體驗(yàn),是學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生分組合作,量一量、拼一拼、折一折,通過多種感官參與比較、分析從而自主探索得出結(jié)論,得到的不僅是三角形內(nèi)角和的知識(shí),也使學(xué)生學(xué)到了怎樣由已知探索未知的思維方式與方法,培養(yǎng)了他們主動(dòng)探索的精神。

  三、靈活運(yùn)用,鞏固練習(xí)

  師:好,大家已經(jīng)發(fā)現(xiàn)了三角形內(nèi)角和是180這一規(guī)律,你能應(yīng)用這個(gè)規(guī)律解決一些實(shí)際的問題嗎?

  1、判斷

  鈍角三角形比銳角三角形的內(nèi)角和大。 ( )

  銳角三角形的兩個(gè)內(nèi)角和小于90。 ( )

  一個(gè)三角形最少有兩個(gè)銳角。 ( )

  一個(gè)鈍角三角形最少有一個(gè)鈍角。 ( )

  學(xué)生判斷并說出理由。

  2、自主練習(xí)第6題

  練習(xí)時(shí),先讓學(xué)生獨(dú)立填空,再說說自己是怎么想的,然后用量角器驗(yàn)證計(jì)算的結(jié)果。

  小結(jié):以后如果遇到求一個(gè)三角形內(nèi)未知角的度數(shù)時(shí),我們可以用計(jì)算的方法算一算,簡(jiǎn)單又精確。

  3、游戲: 選度數(shù),組三角形

 。ㄕn件顯示如下)

  請(qǐng)選出三個(gè)角的度數(shù)來組成一個(gè)三角形

  10 18 15 150 130 72

  20 50 70 35 75

  52 56 54 58 60

  學(xué)生回答的同時(shí),教師操作課件,把學(xué)生選擇的度數(shù)拖入方框內(nèi),通過電腦計(jì)算相加是否等于180,來驗(yàn)證學(xué)生的選擇是否正確。驗(yàn)證學(xué)生選的對(duì)了以后,再讓學(xué)生判斷選擇的度數(shù)所組成的三角形按角的大小分類,并說出理由。

  [設(shè)計(jì)意圖]用已學(xué)到的新知解決實(shí)際數(shù)學(xué)問題,認(rèn)識(shí)學(xué)數(shù)學(xué)的價(jià)值,再次體驗(yàn)成功,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。尤其是第三個(gè)練習(xí),依據(jù)學(xué)生的年齡特征和認(rèn)知水平,設(shè)計(jì)探索性和開放性的問題,注重拓寬學(xué)生的思維活動(dòng)空間。

  四、課堂總結(jié)、深化認(rèn)識(shí)

  談話:這節(jié)課你學(xué)會(huì)了什么?解決了什么問題?是怎樣解決的?

  【設(shè)計(jì)意圖】不僅從知識(shí)方面進(jìn)行總結(jié),還引導(dǎo)學(xué)生回顧發(fā)現(xiàn)問題、提出問題、解決問題的過程,關(guān)注學(xué)生學(xué)習(xí)過程中的情感體驗(yàn)。既讓學(xué)生習(xí)得一種學(xué)習(xí)方法,又培養(yǎng)了學(xué)習(xí)興趣。

  課后反思:

  本節(jié)課學(xué)生以小組為單位進(jìn)行合作學(xué)習(xí),從自己的已有經(jīng)驗(yàn)出發(fā),積極地進(jìn)行操作、測(cè)量、計(jì)算,并對(duì)自己的結(jié)論進(jìn)行思考、分析。在充分發(fā)揮學(xué)生主體作用,放手讓學(xué)生開展探究的同時(shí),教師也恰到好處的發(fā)揮了引導(dǎo)作用。整個(gè)探究過程學(xué)生是自主的、有積極性的,在獲得數(shù)學(xué)結(jié)論的同時(shí)學(xué)習(xí)了科學(xué)探究的方法,為今后的學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。

  初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì) 14

  設(shè)計(jì)思路

  本節(jié)課我先引導(dǎo)學(xué)生任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測(cè)量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個(gè)內(nèi)角都可以拼成一個(gè)平角。再引導(dǎo)學(xué)生通過折角的方法也發(fā)現(xiàn)這個(gè)結(jié)論,由此獲得三角形的內(nèi)角和是180°的結(jié)論。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼、折等活動(dòng),讓學(xué)生探索、實(shí)驗(yàn)、發(fā)現(xiàn)、推理歸納出三角形的內(nèi)角和是180°。

  最后讓學(xué)生運(yùn)用結(jié)論解決實(shí)際問題,練習(xí)的安排上,注意練習(xí)層次性和趣味性,還設(shè)計(jì)了開放性的練習(xí),由一個(gè)同學(xué)出題,其它同學(xué)回答。先給出三角形兩個(gè)內(nèi)角的度數(shù),說出另外一個(gè)內(nèi)角,有唯一的答案。給出三角形一個(gè)內(nèi)角,說出其它兩個(gè)內(nèi)角,答案不唯一,可以得出無數(shù)個(gè)答案。讓學(xué)生在游戲中拓展學(xué)生思維。

  教學(xué)目標(biāo)

  1、讓學(xué)生親自動(dòng)手,通過量、剪、拼等活動(dòng)發(fā)現(xiàn)、證實(shí)三角形內(nèi)角和是180°,并會(huì)應(yīng)用這一知識(shí)解決生活中簡(jiǎn)單的實(shí)際問題。

  2、讓學(xué)生在動(dòng)手獲取知識(shí)的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、探索精神和實(shí)踐能力。并通過動(dòng)手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動(dòng),向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。

  3、使學(xué)生體驗(yàn)成功的喜悅,激發(fā)學(xué)生主動(dòng)學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn)

  讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識(shí)的形成、發(fā)展和應(yīng)用的全過程。

  教學(xué)準(zhǔn)備

  教具:多媒體課件、用彩色卡紙剪的相同的兩個(gè)直角三角形、一個(gè)鈍角三角形、一個(gè)銳角三角形。

  學(xué)具:三角形

  教學(xué)過程

  一、引入

 。ㄒ唬┱J(rèn)識(shí)三角形的內(nèi)角及三角形的內(nèi)角和

  師:我們已經(jīng)學(xué)習(xí)了三角形的分類,誰能說說老師手上的是什么三角形?

  師:今天我們來學(xué)習(xí)新的知識(shí)《三角形內(nèi)角和》,誰能說說哪些角是三角形的內(nèi)角?(讓學(xué)生邊說邊指出來)

  師:那三角形的內(nèi)角和又是什么意思?(把三角形三個(gè)內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。)

 。ǘ┰O(shè)疑,激發(fā)學(xué)生探究新知的心理

  師:請(qǐng)同學(xué)們幫老師畫一個(gè)三角形,能做到嗎?(激發(fā)學(xué)生主動(dòng)學(xué)習(xí)的心理)

  生:能。

  師:請(qǐng)聽要求,畫一個(gè)有兩個(gè)內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)

  師:有誰畫出來啦?

  生1:不能畫。

  生2:只能畫兩個(gè)直角。

  生3:……

  師:?jiǎn)栴}出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?那就讓我們一起來研究吧!

  (揭示矛盾,巧妙引入新知的探究)

  二、動(dòng)手操作,探究三角形內(nèi)角和

 。ㄒ唬┎乱徊。

  師:猜一猜三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。

  生1:180°。

  生2:不一定。

  ……

 。ǘ┎僮、驗(yàn)證三角形內(nèi)角和是180°。

  1、量一量三角形的內(nèi)角

  動(dòng)手量一量自己手中的三角形的內(nèi)角度數(shù)。

  師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?

  生:可以先量出每個(gè)內(nèi)角的度數(shù),再加起來。

  師:哦,也就是測(cè)量計(jì)算,是嗎?

  學(xué)生匯報(bào)結(jié)果。

  師:請(qǐng)匯報(bào)自己測(cè)量的結(jié)果。

  生1:180°。

  生2:175°。

  生3:182°。

  ……

  2、拼一拼三角形的內(nèi)角

  學(xué)生操作

  師:沒有得到統(tǒng)一的結(jié)果。這個(gè)辦法不能使人很信服,怎么辦?還有其它辦法嗎?

  生1:有。

  生2:用拼合的`辦法,就是把三角形的三個(gè)內(nèi)角放在一起,可以拼成一個(gè)平角。

  師:怎樣才能把三個(gè)內(nèi)角放在一起呢?(學(xué)生操作)

  生:把它們剪下來放在一起。

  師:很好。

  匯報(bào)驗(yàn)證結(jié)果。

  師:通過拼合我們得出什么結(jié)論?

  生1:銳角三角形的內(nèi)角拼在一起是一個(gè)平角,所以銳角三角形的內(nèi)角和是180°。

  生2:直角三角形的內(nèi)角和也是180°。

  生3:鈍角三角形的內(nèi)角和還是180°。

  課件演示驗(yàn)證結(jié)果。

  師:請(qǐng)看屏幕,老師也來驗(yàn)證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)

  師:我們可以得出一個(gè)怎樣的結(jié)論?

  生:三角形的內(nèi)角和是180°。

  (教師板書:三角形的內(nèi)角和是180°學(xué)生齊讀一遍。)

  師:為什么用測(cè)量計(jì)算的方法不能得到統(tǒng)一的結(jié)果呢?

  生1:量的不準(zhǔn)。

  生2:有的量角器有誤差。

  師:對(duì),這就是測(cè)量的誤差。

  3、折一折三角形的內(nèi)角

  師:除了量、拼的方法,還有沒有別的方法可以驗(yàn)證三角形的內(nèi)角和是180°。

  如果學(xué)生說不出來,教師便提示或示范。

  學(xué)生操作

  4、小結(jié):三角形的內(nèi)角和是180°。

  三、解決疑問。

  師:現(xiàn)在誰能說說不能畫出有兩個(gè)直角的一個(gè)三角形的原因?(讓學(xué)生體驗(yàn)成功的喜悅)

  生:因?yàn)槿切蔚膬?nèi)角和是180°,在一個(gè)三角形中如果有兩個(gè)直角,它的內(nèi)角和就大于180°。

  師:在一個(gè)三角形中,有沒有可能有兩個(gè)鈍角呢?

  生:不可能。

  師:為什么?

  生:因?yàn)閮蓚(gè)銳角和已經(jīng)超過了180°。

  師:那有沒有可能有兩個(gè)銳角呢?

  生:有,在一個(gè)三角形中最少有兩個(gè)內(nèi)角是銳角。

  四、應(yīng)用三角形的內(nèi)角和解決問題。

  1、下面說法是否正確。

  鈍角三角形的內(nèi)角和一定大于銳角三角形的內(nèi)角和。()

  在直角三角形中,兩個(gè)銳角的和等于90度。()

  在鈍角三角形中兩個(gè)銳角的和大于90度。()

 、芤粋(gè)三角形中不可能有兩個(gè)鈍角。()

 、萑切沃杏幸粋(gè)銳角是60度,那么這個(gè)三角形一定是個(gè)銳角三角形。()

  2、看圖求出未知角的度數(shù)。(知識(shí)的直接運(yùn)用,數(shù)學(xué)信息很淺顯)

  3、游戲鞏固。

  由一個(gè)同學(xué)出題,其它同學(xué)回答。

 。1)給出三角形兩個(gè)內(nèi)角,說出另外一個(gè)內(nèi)角(有唯一的答案)。

 。2)給出三角形一個(gè)內(nèi)角,說出其它兩個(gè)內(nèi)角(答案不唯一,可以得出無數(shù)個(gè)答案)。

  4、根據(jù)所學(xué)的知識(shí)算出四邊形、正五邊形、正六邊形的內(nèi)角和。

  五、全課總結(jié)。

  今天你學(xué)到了哪些知識(shí)?是怎樣獲取這些知識(shí)的?你感覺學(xué)得怎么樣?

  反思:

  在本節(jié)課的學(xué)習(xí)活動(dòng)過程中,先讓學(xué)生進(jìn)行測(cè)量、計(jì)算,但得不到統(tǒng)一的結(jié)果,再引導(dǎo)學(xué)生用把三個(gè)角拼在一起得到一個(gè)平角進(jìn)行驗(yàn)證。這時(shí),有部分學(xué)生在拼湊的過程中出現(xiàn)了困難,花費(fèi)的時(shí)間較長(zhǎng),在這里用課件再演示一遍正好解決了這個(gè)問題。再引導(dǎo)學(xué)生用折三角形的方法也能驗(yàn)證三角形的內(nèi)角和是180°。練習(xí)設(shè)計(jì)也具有許多優(yōu)點(diǎn),注意到練習(xí)的梯度,并由淺入深,照顧到不同層次學(xué)生的需求,也很有趣味性。在整個(gè)教學(xué)設(shè)計(jì)中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實(shí)驗(yàn)、去發(fā)現(xiàn)新知識(shí)的奧妙,從而讓學(xué)生在動(dòng)手操作、積極探索的活動(dòng)中掌握知識(shí),積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展空間觀念和推理能力。

  但因?yàn)槭墙璋嗌险n,對(duì)學(xué)生了解不多,學(xué)生前面的內(nèi)容(三角形的特性和分類)還沒學(xué)好,所以有些練習(xí)學(xué)生就沒有預(yù)想的那么得心應(yīng)手,如:知道等腰三角形的頂角求底角的題,學(xué)生掌握比較困難。

【初中三角形內(nèi)角和定理教學(xué)設(shè)計(jì)】相關(guān)文章:

三角形內(nèi)角和定理的證明教學(xué)設(shè)計(jì)范文05-31

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)04-07

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)05-08

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)03-08

《三角形的內(nèi)角和》教學(xué)設(shè)計(jì)03-14

三角形內(nèi)角和教學(xué)設(shè)計(jì)03-09

三角形內(nèi)角和教學(xué)設(shè)計(jì)02-13

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)06-08

《三角形內(nèi)角和》教學(xué)設(shè)計(jì)范文02-23