中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中數(shù)學(xué)《從梯子的傾斜程度談起》優(yōu)秀教學(xué)設(shè)計

時間:2021-06-16 11:08:37 教學(xué)設(shè)計 我要投稿

初中數(shù)學(xué)《從梯子的傾斜程度談起》優(yōu)秀教學(xué)設(shè)計

  教學(xué)目標(biāo)

初中數(shù)學(xué)《從梯子的傾斜程度談起》優(yōu)秀教學(xué)設(shè)計

  (一)教學(xué)知識點

  1.經(jīng)歷探索直角三角形中邊角關(guān)系的過程,理解正弦和余弦的意義.

  2.能夠運用sinA、cosA表示直角三角形兩邊的比. 3.能根據(jù)直角三角形中的邊角關(guān)系,進(jìn)行簡單的計算.

  4.理解銳角三角函數(shù)的意義.

  (二)能力訓(xùn)練要求

  1.經(jīng)歷類比、猜想等過程.發(fā)展合情推理能力,能有條理地、清晰地闡述自己的觀點.

  2.體會數(shù)形結(jié)合的思想,并利用它分析、解決問題,提高解決問題的能力.

  (三)情感與價值觀要求

  1.積極參與數(shù)學(xué)活動,對數(shù)學(xué)產(chǎn)生好奇心和求知欲.

  2.形成合作交流的意識以及獨立思考的習(xí)慣

  教學(xué)重點

  1.理解銳角三角函數(shù)正弦、余弦的意義,并能舉例說明.

  2.能用sinA、cosA表示直角三角形兩邊的比.

  3.能根據(jù)直角三角形的邊角關(guān)系,進(jìn)行簡單的計算.

  教學(xué)難點

  用函數(shù)的觀點理解正弦、余弦和正切.

  教學(xué)方法

  探索——交流法.

  教具準(zhǔn)備

  多媒體演示.

  教學(xué)過程

  Ⅰ.創(chuàng)設(shè)情境,提出問題,引入新課

  [師]我們在上一節(jié)課曾討論過用傾斜角的對邊與鄰邊之比來刻畫梯子的傾斜程度,并且得出了當(dāng)傾斜角確定時,其對邊與斜邊之比隨之確定.也就是說這一比值只與傾斜角有關(guān),與直角三角形的大小無關(guān).并在此基礎(chǔ)上用直角三角形中銳角的對邊與鄰邊之比定義了正切.

  現(xiàn)在我們提出兩個問題:

  [問題1]當(dāng)直角三角形中的銳角確定之后,其他邊之間的比也確定嗎?

  [問題2]梯子的傾斜程度與這些比有關(guān)嗎?如果有,是怎樣的關(guān)系?

 、.講授新課

  1.正弦、余弦及三角函數(shù)的定義

  多媒體演示如下內(nèi)容:

  想一想:如圖

  (1)直角三角形AB1C1

  和直角三角形AB2C2有

  什么關(guān)系?

  (2) 有什么

  關(guān)系? 呢?

  (3)如果改變A2在梯子A1B上的位置呢?你由此可得出什么結(jié)論?

  (4)如果改變梯子A1B的傾斜角的大小呢?你由此又可得出什么結(jié)論?

  請同學(xué)們討論后回答.

  [生]∵A1C1⊥BC1,A2C2⊥BC2,

  ∴A1C1//A2C2.

  ∴Rt△BA1C1∽Rt△BA2C2.

  (相似三角形對應(yīng)邊成比例).

  由于A2是梯子A1B上的任意—點,所以,如果改變A2在梯子A1B上的位置,上述結(jié)論仍成立.

  由此我們可得出結(jié)論:只要梯子的傾斜角確定,傾斜角的對邊.與斜邊的比值,傾斜角

  的鄰邊與斜邊的比值隨之確定.也就是說,這一比值只與傾斜角有關(guān),而與直角三角形大小無關(guān).

  [生]如果改變梯子A1B的傾斜角的大小,如虛線的位置,傾斜角的對邊與斜邊的比值,鄰邊與斜邊的比值隨之改變.

  [師]我們會發(fā)現(xiàn)這是一個變化的過程.對邊與斜邊的比值、鄰邊與斜邊的比值都隨著傾斜角的改變而改變,同時,如果給定一個傾斜角的值,它的對邊與斜邊的'比值,鄰邊與斜邊的比值是唯一確定的.這是一種什么關(guān)系呢?

  [生]函數(shù)關(guān)系.

  [師]很好!上面我們有了和定義正切相同的基礎(chǔ),接著我們類比正切還可以有如下定義:(用多媒體演示)

  在Rt△ABC中,如果銳角A確定,那么∠A的對邊與斜邊的比、鄰邊與斜邊的比也隨之確定.如圖,∠A的對邊與鄰邊的比叫做∠A的正弦(sine),記作sinA,即

  sinA=

  ∠A的鄰邊與斜邊的比叫做∠A的余弦(cosine),記作cosA,即

  cosA=

  銳角A的正弦、余弦和正切都是∠A的三角函數(shù)(trigonometricfunction).

  [師]你能用自己的語言解釋一下你是如何理解“sinA、cosA、tanA都是之A的三角函數(shù)”呢?

  [生]我們在前面已討論過,當(dāng)直角三角形中的銳角A確定時.∠A的對邊與斜邊的比值,∠A的鄰邊與斜邊的比值,∠A的對邊與鄰邊的比值也都唯一確定.在“∠A的三角函數(shù)”概念中,∠A是自變量,其取值范圍是0°<A<90°;三個比值是因變量.當(dāng)∠A變化時,三個比值也分別有唯一確定的值與之對應(yīng).

  2.梯子的傾斜程度與sinA和cosA的關(guān)系

  [師]我們上一節(jié)知道了梯子的傾斜程度與tanA有關(guān)系:tanA的值越大,梯子越陡.由此我們想到梯子的傾斜程度是否也和sinA、cosA有關(guān)系呢?如果有關(guān)系,是怎樣的關(guān)系?

  [生]如圖所示,AB=A1B1,

  在Rt△ABC中,sinA= ,在

  Rt△A1B1C中,sinA1= .

  ∵ < ,

  即sinA<sinA1,而梯子A1B1比梯子AB陡,

  所以梯子的傾斜程度與sinA有關(guān)系.sinA的值越大,梯子越陡.正弦值也能反映梯子的傾斜程度.

  [生]同樣道理cosA= cosA1= ,

  ∵AB=A1B1 > 即cosA>cosA1,

  所以梯子的傾斜程度與cosA也有關(guān)系.cosA的值越小,梯子越陡.

  [師]同學(xué)們分析得很棒,能夠結(jié)合圖形分析就更為妙哉!從理論上講正弦和余弦都可以刻畫梯子的傾斜程度,但實際中通常使用正切.

  3.例題講解

  多媒體演示.

  [例1]如圖,在Rt△ABC

  中,∠B=90°,AC=

  200.sinA=0.6,求BC

  的長.

  分析:sinA不是“sin”與“A”的乘積,sinA表示∠A所在直角三角形它的對邊與斜邊的比值,已知sinA=0.6, =0.6.

  解:在Rt△ABC中,∠B=90°,AC=200.

  sinA=0.6,即= 0.6,BC=AC×0.6=200×0.6=120.

  思考:(1)cosA=?

  (2)sinC=? cosC=?

  (3)由上面計算,你能猜想出什么結(jié)論?

  解:根據(jù)勾股定理,得

  AB= =160.

  在Rt△ABC中,CB=90°.

  cosA= =0.8,

  sinC= =0.8,

  cosC= =0.6,

  由上面的計算可知

  sinA=cosC=O.6,

  cosA=sinC=0.8.

  因為∠A+∠C=90°,所以,結(jié)論為“一個銳角的正弦等于它余角的余弦”“一個銳角的余弦等于它余角的正弦”.

  [例2]做一做:

  如圖,在Rt△ABC中,∠C=90°,cosA= ,AC=10,AB等于多少?sinB呢?cosB、sinA呢?你還能得出類似例1的結(jié)論嗎?請用一般式表達(dá).

  分析:這是正弦、余弦定義的進(jìn)一步應(yīng)用,同時進(jìn)一步滲透sin(90°-A)=cosA,cos

  (90°-A)=sinA.

  解:在Rt△ABC中,∠C=90°,AC=10,cosA= ,cosA= ,

  ∴AB= ,

  sinB=

  根據(jù)勾股定理,得

  BC2=AB2-AC2=( )2-102=

  ∴BC= .

  ∴cosB= ,[

  sinA=

  可以得出同例1一樣的結(jié)論.

  ∵∠A+∠B=90°,

  ∴sinA:cosB=cos(90-A),即sinA=cos(90°-A);

  cosA=sinB=sin(90°-A),即cosA=sin(90°-A).

 、.隨堂練習(xí)

  多媒體演示

  1.在等腰三角形ABC中,AB=AC=5,BC=6,求sinB,cosB,tanB.

  分析:要求sinB,cosB,tanB,先要構(gòu)造∠B所在的直角三角形.根據(jù)等腰三角形“三

  線合一”的性質(zhì),可過A作AD⊥BC,D為垂足.

  解:過A作AD⊥BC,D為垂足.

  ∴AB=AC,∴BD=DC= BC=3.

  在Rt△ABD中,AB=5,BD=3,

  ∴AD=4.

  sinB= cosB= ,

  tanB= .

  2.在△ABC中,∠ C=90°,sinA= ,BC=20,求△ABC的周長和面積.

  解:sinA= ,∵sinA= ,BC=20,

  ∴AB= ==25.

  在Rt△BC中,AC= =15,

  ∴ABC的周長=AB+AC+BC=25+15+20=60,

  △ABC的面積: AC×BC= ×15×20=150

  3.(2003年陜西)(補充練習(xí))

  在△ABC中.∠C=90°,若tanA= ,

  則sinA= .

  解:如圖,tanA= = .

  設(shè)BC=x,AC=2x,根據(jù)勾股定理,得

  AB= .

  ∴sinA= .

 、.課時小結(jié)

  本節(jié)課我們類比正切得出了正弦和余弦的概念,用函數(shù)的觀念認(rèn)識了三種三角函數(shù),即在銳角A的三角函數(shù)概念中,∠A是自變量,其取值范圍是0°<∠A<90°;三個比值是因變量.當(dāng)∠A確定時,三個比值分別唯一確定;當(dāng)∠A變化時,三個比值也分別有唯一確定的值與之對應(yīng).類比前一節(jié)課的內(nèi)容,我們又進(jìn)一步思考了正弦和余弦的值與梯子傾斜程度之間的關(guān)系以及用正弦和余弦的定義來解決實際問題.

 、.課后作業(yè)

  習(xí)題1、2第1、2、3、4題

 、.活動與探究

  已知:如圖,CD是Rt△ABC的斜邊AB上的高,求證:BC2=ABBD.(用正弦、余弦函數(shù)的定義證明)

  [過程]根據(jù)正弦和余弦的定義,在不同的直角三角形中,只要角度相同,其正弦值(或余弦值)就相等,不必只局限于某一個直角三角形中,在Rt△ABC中,CD⊥AB.所以圖中含有三個直角三角形.例如∠B既在Rt△BDC中,又在Rt△ABC中,涉及線段BC、BD、AB,由正弦、余弦的定義得cosB= ,cosB= .

  [結(jié)果]在Rt△ABC中,cosB=

  又∵CD⊥AB.

  ∴在Rt△CDB中,cosB=

  ∴ = BC2=ABBD.

  板書設(shè)計

  §1.1.2 從梯子傾斜程度談起(二)

  1.正弦、余弦的定義在Kt△ABC中,如果銳角A確定.

  sinA= [

  cosA=

  2.梯子的傾斜程度與sinA和cosA有關(guān)嗎?

  sinA的值越大,梯子越陡

  cosA的值越小,梯子越陡

  3.例題講解

  4.隨堂練習(xí)

【初中數(shù)學(xué)《從梯子的傾斜程度談起》優(yōu)秀教學(xué)設(shè)計】相關(guān)文章:

《從梯子的傾斜程度談起》評課稿范文11-09

關(guān)于九年級數(shù)學(xué)從梯子的傾斜程度談起的說課稿06-18

傾斜的傘優(yōu)秀教學(xué)設(shè)計范文03-29

斜率大小與傾斜程度的關(guān)系08-27

傾斜的傘教學(xué)設(shè)計05-03

《傾斜的傘》教學(xué)設(shè)計02-02

《傾斜的傘》教學(xué)設(shè)計10-26

《從永磁體談起》教學(xué)設(shè)計12-18

《傾斜的傘》優(yōu)秀教學(xué)反思07-16