中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中數(shù)學中函數(shù)的教學設計

時間:2024-11-12 10:17:02 煒玲 教學設計 我要投稿
  • 相關推薦

關于初中數(shù)學中函數(shù)的教學設計

  作為一名老師,時常要開展教學設計的準備工作,借助教學設計可以讓教學工作更加有效地進行。寫教學設計需要注意哪些格式呢?下面是小編為大家收集的關于初中數(shù)學中函數(shù)的教學設計,僅供參考,大家一起來看看吧。

關于初中數(shù)學中函數(shù)的教學設計

  初中數(shù)學中函數(shù)的教學設計 1

  一、教學目標:

  1、知道一次函數(shù)與正比例函數(shù)的定義.

  2、理解掌握一次函數(shù)的圖象的特征和相關的性質;

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系.

  4、掌握直線的平移法則簡單應用.

  5、能應用本章的基礎知識熟練地解決數(shù)學問題。

  二、教學重、難點:

  重點:初步構建比較系統(tǒng)的函數(shù)知識體系。

  難點:對直線的平移法則的理解,體會數(shù)形結合思想。

  三、教學過程:

  1、一次函數(shù)與正比例函數(shù)的定義:

  一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)

  正比例函數(shù):對于 y=kx+b,當b=0, k≠0時,有y=kx,此時稱y是x的正比例函數(shù),k為正比例系數(shù)。

  2. 一次函數(shù)與正比例函數(shù)的'區(qū)別與聯(lián)系:

 。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

 。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

  平行的一條直線。

  基礎訓練:

  1. 寫出一個圖象經(jīng)過點(1,- 3)的函數(shù)解析式為: 。

  2.直線y = - 2X - 2 不經(jīng)過第 象限,y隨x的增大而。

  3.如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:。

  4.已知正比例函數(shù) y =(3k-1)x,若y隨

  x的增大而增大,則k是: 。

  5、過點(0,2)且與直線y=3x平行的直線是: 。

  6、若正比例函數(shù)y =(1-2m)x 的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是: 。

  7、若y-2與x-2成正比例,當x=-2時,y=4,則x= 時,y = -4。

  8、直線y=- 5x+b與直線y=x-3都交y軸上同一點,則b的值為 。

  9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。

 。1)求線段AB的長。

 。2)求直線AC的解析式。

  四、教學反思:

  教師認真?zhèn)湔n,查閱資料,搜集有針對性的訓練題,學生只要課堂上能按照教師的思路去做就很高效了。課堂訓練以競賽的形式進行,似乎有一定的刺激性,但缺少后續(xù)的刺激活動,學生沒有保持住持久的緊張狀態(tài)。

  課前先把所有的復習任務都交給學生完成,教師指導學生瀏覽教材、查閱資料歸納本章的基本概念、基本性質、基本方法,并收集與每個知識點相關的有針對性的問題,也可以自己編題,同時要把每一個問

  題的答案做出來,盡量要一題多解。再由小組長組織小組成員匯編,在匯編過程中要去粗取精。課堂就是以小組為單位學生展示自己的舞臺,在這個舞臺上學生是主角,在這個舞臺上學生可以成果共享,在這個舞臺上學生收獲著自己的收獲。臺上他們是主角,臺下他們也是主角。

  從另一個角度體會到了減輕學生負擔的深刻含義,不單指減少學生課后學習的時間,更重要的是提高學生學習的質量、效率,我的這節(jié)課失敗之處就是過分的注重了前者,而忽略了實效性。那么在今后的復習課教學中我要多思多想、多問多聽(問問老師、聽聽學生的想法),力求在真正減輕學生負擔的基礎上打造高效課堂。

  初中數(shù)學中函數(shù)的教學設計 2

  一、教材分析

  反比例函數(shù)是初中階段所要學習的三種函數(shù)中的一種,是一類比較簡單但很重要的函數(shù),現(xiàn)實生活中充滿了反比例函數(shù)的例子。因此反比例函數(shù)的概念與意義的教學是基礎。

  二、學情分析

  由于之前學習過函數(shù),學生對函數(shù)概念已經(jīng)有了一定的認識能力,另外在前一章我們學習過分式的知識,因此為本節(jié)課的教學奠定的一定的基礎。

  三、教學目標

  知識目標:理解反比例函數(shù)意義;能夠根據(jù)已知條件確定反比例函數(shù)的表達式.

  解決問題:能從實際問題中抽象出反比例函數(shù)并確定其表達式. 情感態(tài)度:讓學生經(jīng)歷從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際.

  四、教學重難點

  重點:理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.

  難點:反比例函數(shù)表達式的確立.

  五、教學過程

 。1)京滬線鐵路全程為1463km,某次列車的平均速度v(單位:km/h)隨此次列車的全程運行時間t(單位:h)的變化而變化;

  (2)某住宅小區(qū)要種植一個面積1000m2的矩形草坪,草坪的長y(單位:m)隨寬x(單位:m)的變化而變化。

  請同學們寫出上述函數(shù)的表達式

  14631000(2)y= tx

  k可知:形如y= (k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù),其中xx(1)v=

  是自變量,y是函數(shù)。

  此過程的目的在于讓學生從實際問題中抽象出反比例函數(shù)模型的過程,體會反比例函數(shù)來源于實際. 由于是分式,當x=0時,分式無意義,所以x≠0。

  當y= 中k=0時,y=0,函數(shù)y是一個常數(shù),通常我們把這樣的函數(shù)稱為常函數(shù)。此時y就不是反比例函數(shù)了。

  舉例:下列屬于反比例函數(shù)的是

 。1)y= (2)xy=10 (3)y=k-1x (4)y= -

  此過程的目的是通過分析與練習讓學生更加了解反比例函數(shù)的概念 問已知y與x成反比例,y與x-1成反比例,y+1與x成反比例,y+1與x-1成反比例,將如何設其解析式(函數(shù)關系式)

  已知y與x成反比例,則可設y與x的函數(shù)關系式為y=

  k x?1

  k已知y+1與x成反比例,則可設y與x的函數(shù)關系式為y+1= xkxkxkxkx2x已知y與x-1成反比例,則可設y與x的函數(shù)關系式為y=

  已知y+1與x-1成反比例,則可設y與x的函數(shù)關系式為y+1= k x?1此過程的目的是為了讓學生更深刻的.了解反比例函數(shù)的概念,為以后在求函數(shù)解析式做好鋪墊。

  例:已知y與x2反比例,并且當x=3時y=4

 。1)求出y和x之間的函數(shù)解析式

  (2)求當x=1.5時y的值

  解析:因為y與x2反比例,所以設y?k,只要將k求出即可得到y(tǒng)x2

  和x之間的函數(shù)解析式。之后引導學生書寫過程。能從實際問題中抽象出反比例函數(shù)并確定其表達式最后學生練習并布置作業(yè)

  通過此環(huán)節(jié),加深對本節(jié)課所內(nèi)容的認識,以達到鞏固的目的。

  六、評價與反思

  本節(jié)課是在學生現(xiàn)有的認識基礎上進行講解,便于學生理解反比例函數(shù)的概念。而本節(jié)課的重點在于理解反比例函數(shù)意義,確定反比例函數(shù)的表達式.應該對這一方面的內(nèi)容多練習鞏固。

【初中數(shù)學中函數(shù)的教學設計】相關文章:

初中數(shù)學函數(shù)教學設計08-13

數(shù)學函數(shù)教學設計(通用12篇)06-02

初中數(shù)學函數(shù)教案01-03

函數(shù)的圖象數(shù)學教學設計(精選5篇)06-13

變量與函數(shù)教學設計10-31

反函數(shù)的教學設計10-27

冪函數(shù)教學設計11-22

高二數(shù)學《導數(shù)與函數(shù)單調性》教學設計10-26

高中數(shù)學函數(shù)的單調性的教學設計02-27

初中數(shù)學教學設計10-02