中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

初中二次函數(shù)教學(xué)課件

時(shí)間:2021-03-30 15:25:56 教學(xué)課件 我要投稿

初中二次函數(shù)教學(xué)課件

  初中二次函數(shù)教學(xué)課件怎么寫?相信很多人都想知道吧?以下是小編為您整理的初中二次函數(shù)教學(xué)課件相關(guān)資料,歡迎閱讀!

初中二次函數(shù)教學(xué)課件

  初中二次函數(shù)教學(xué)課件

  教學(xué)目標(biāo)設(shè)計(jì)

  知識與技能:通過本節(jié)學(xué)習(xí),鞏固二次函數(shù)y=ax2+bx+c(a≠0)的圖象與性質(zhì),理解頂點(diǎn)與最值的關(guān)系,會用頂點(diǎn)的性質(zhì)求解最值問題。

  能力訓(xùn)練要求

  1、能夠分析實(shí)際問題中變量之間的二次函數(shù)關(guān)系,并運(yùn)用二次函數(shù)的知識求出實(shí)際問題的最大(。┲蛋l(fā)展學(xué)生解決問題的能力, 學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。

  2、通過觀察圖象,理解頂點(diǎn)的特殊性,會把實(shí)際問題中的最值轉(zhuǎn)化為二次函數(shù)的最值問題,通過動手動腦,提高分析解決問題的能力,并體會一般與特殊的關(guān)系,培養(yǎng)數(shù)形結(jié)合思想,函數(shù)思想。

  情感與價(jià)值觀要求

  1、在進(jìn)行探索的活動過程中發(fā)展學(xué)生的探究意識,逐步養(yǎng)成合作交流的習(xí)慣。

  2、培養(yǎng)學(xué)生學(xué)以致用的習(xí)慣,體會體會數(shù)學(xué)在生活中廣泛的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、增強(qiáng)自信心。

  教學(xué)方法設(shè)計(jì)

  由于本節(jié)課是應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動,解決問題以學(xué)生動手動腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會,而且使學(xué)生會學(xué)”的目的。為了提高課堂效率,展示學(xué)生的學(xué)習(xí)效果,適當(dāng)?shù)剌o以電腦多媒體技術(shù)。

  教學(xué)過程

  導(dǎo)學(xué)提綱

  設(shè)計(jì)思路:最值問題又是生活中利用二次函數(shù)知識解決最常見、最有實(shí)際應(yīng)用價(jià)值的問題之一,它生活背景豐富 ,學(xué)生比較感興趣,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認(rèn)識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受 ,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。目的在于讓學(xué)生通過掌握求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題,此部分內(nèi)容既是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的理論和思想方法基礎(chǔ)。

 。ㄒ唬┣扒榛仡櫍

  1.復(fù)習(xí)二次函數(shù)y=ax2+bx+c(a≠0)的圖象、頂點(diǎn)坐標(biāo)、對稱軸和最值

  2.(1)求函數(shù)y=x2+ 2x-3的最值。

 。2)求函數(shù)y=x2+2x-3的最值。(0≤x ≤ 3)

  3、拋物線在什么位置取最值?

 。ǘ┻m當(dāng)點(diǎn)撥,自主探究

  1.在創(chuàng)設(shè)情境中發(fā)現(xiàn)問題

 。赫埬惝嬕粋(gè)周長為40厘米的矩形,算算它的面積是多少?再和同學(xué)比比,發(fā)現(xiàn)了什么?誰的面積最大?

  2、在解決問題中找出方法

 。耗彻S為了存放材料,需要圍一個(gè)周長40米的矩形場地,問矩形的長和寬各取多少米,才能使存放場地的面積最大?

  (問題設(shè)計(jì)思路:把前面矩形的周長40厘米改為40米,變成一個(gè)實(shí)際問題, 目的在于讓學(xué)生體會其應(yīng)用價(jià)值——我們要學(xué)有用的數(shù)學(xué)知識。學(xué)生在前面探究問題時(shí),已經(jīng)發(fā)現(xiàn)了面積不唯一,并急于找出最大的,而且要有理 論依據(jù),這樣首先要建立函數(shù)模型,合作探究中在選取變量時(shí)學(xué)生可能會有困難,這時(shí)教師要引導(dǎo)學(xué)生關(guān)注哪兩個(gè)變量,就把其中的一個(gè)主要變量設(shè)為x,另一個(gè)設(shè)為y,其它變量用含x的代數(shù)式表示,找等量關(guān)系,建立函數(shù)模型,實(shí)際問題還要考慮定義域,畫圖象觀察最值點(diǎn),這樣一步步突破難點(diǎn),從而讓學(xué)生在不斷探究中悟出利用函數(shù)知識解決問題的一套思路和方法,而不是為了做題而做題,為以后的學(xué)習(xí)奠定思想方法基礎(chǔ)。)

  3、在鞏固與應(yīng)用中提高技能

  例1:小明的家門前有一塊空地,空地外有一面長10米的圍墻,為了美化生活環(huán)境,小明的爸爸準(zhǔn)備靠墻修建一個(gè)矩形花圃 ,他買回了32米長的不銹鋼管準(zhǔn)備作為花圃的圍欄(如圖所示),花圃的寬AD究竟應(yīng)為多少米才能使花圃的面積最大?

 。ㄔO(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長10米來限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會在頂點(diǎn)處找最值,導(dǎo)致錯(cuò)解,此時(shí)教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會頂點(diǎn)與端點(diǎn)的不同作用,加深對知識的理解,做到數(shù)與形的完美結(jié)合,通過此題的有意訓(xùn)練,學(xué)生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識解決問題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

  解:設(shè)垂直于墻的邊AD=x米,則AB=(32-2x) 米,設(shè)矩形面積為y米2,得到:

  Y=x(32-2x)= -2x2+32x

  [錯(cuò)解]由頂點(diǎn)公式得:

  x=8米時(shí),y最大=128米2

  而實(shí)際上定義域?yàn)?1≤x ﹤16,由圖象或增減性可知x=11米時(shí), y最大=110米2

  (設(shè)計(jì)思路:例1的設(shè)計(jì)也是尋找了學(xué)生熟悉的家門口的生活背景,從知識的角度來看,求矩形面積也較容易,我在此設(shè)計(jì)了一個(gè)條件墻長10米來限制定義域,目的在于告訴學(xué)生一個(gè)道理,數(shù)學(xué)不能脫離生活實(shí)際,估計(jì)大部分學(xué)生在求解時(shí)還會在頂點(diǎn)處找最值,導(dǎo)致錯(cuò) 解,此時(shí)教師再提醒學(xué)生通過畫函數(shù)的圖象輔助觀察、理解最值的實(shí)際意義,體會頂點(diǎn)與端點(diǎn)的不同作用,加深對知識的理解,做到數(shù)與 形的完美結(jié)合,通過此題的`有意訓(xùn)練,學(xué)生必然會對定義域的意義有更加深刻的理解,這樣既培養(yǎng)了學(xué)生思維的嚴(yán)密性,又為今后能靈活地運(yùn)用知識解決問題奠定了堅(jiān)實(shí)的基礎(chǔ)。)

 。ㄈ┛偨Y(jié)交流:

  (1) 同學(xué)們經(jīng)歷剛才的探究過程,想想解決此類問題的思路是什么?.

  引導(dǎo)學(xué)生分析解題循環(huán)圖:

 。2)在探究發(fā)現(xiàn)這些判定方法的過程中運(yùn)用了什么樣的數(shù)學(xué)方法?

 。ㄋ模┱莆諔(yīng)用:圖中窗戶邊框的 上半部分是由四個(gè)全等扇形組成的半圓,下部分是矩形。如果制作一個(gè)窗戶邊框的材料總長為15米,那么如何設(shè)計(jì)這個(gè)窗戶邊框的尺寸,使透光面積最大(結(jié)果精確到0.01m2)?(設(shè)計(jì)思路:先出示如圖圖形,然后引伸到課本中的圖形,讓學(xué)生有一個(gè)思考遞進(jìn)的空間。)

 。ㄎ澹┪襾碓囈辉嚕

  如圖在Rt△ABC中,點(diǎn)P在斜邊AB上移動,PM⊥BC,PN⊥AC,M,N分別為垂足,已知AC=1,AB=2,求:

 。1)何時(shí)矩形PMCN的面積最大,把最大面積是多少?

 。2)當(dāng)AM平分∠CAB時(shí),矩形PMCN的面積.

 。┲橇﹃J關(guān):

  如圖,用長20cm的籬笆,一面靠墻圍成一個(gè)長方形的園子,怎樣圍才能使園子的面積最大?最 大面積是多少?

  作業(yè):課本隨堂練習(xí) 、習(xí)題1,2,3

  板書設(shè)計(jì)

  二次函數(shù)的應(yīng)用——面積最大問題

  課后反思

  二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識解決實(shí)際問題能力的一個(gè)綜合考查。新課標(biāo)中要求學(xué)生能通過對實(shí)際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會其意義,能根據(jù)圖象的性質(zhì)解決簡單的實(shí)際問題。 本節(jié)課充分運(yùn)用導(dǎo)學(xué)提綱,教師提前通過一系列問題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過對一系列問題串的解決與交流, 讓學(xué)生通過掌握 求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。

  教材中設(shè)計(jì)先探索最大利潤問題,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認(rèn)識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個(gè)的實(shí)際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進(jìn)一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實(shí)際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。所以在例題的處理中適當(dāng)?shù)慕档土颂荻,讓學(xué)生思維有一個(gè)拓展的空間,也有收獲快樂 和成就感。在訓(xùn)練的過程中,通過學(xué)生的獨(dú)立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達(dá)能力及思維能力都得到訓(xùn)練和提高。同時(shí)也注重對解題方法與解題 模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。

  就整節(jié)課看,學(xué)生的積極性得以充分調(diào)動,特別是學(xué)困生,在獨(dú)立思考和小組合作中改變以往的配角地位,也能積極參與到課堂學(xué)習(xí)活動中,今后繼續(xù)發(fā)揚(yáng)從學(xué)生出發(fā),從學(xué)生的需要出發(fā),把問題梯度降低,設(shè)計(jì)讓學(xué)生在能力范圍內(nèi)掌握新知識,有了足夠的熱身運(yùn)動之后再去拓展延伸。

【初中二次函數(shù)教學(xué)課件】相關(guān)文章:

二次函數(shù)超級經(jīng)典課件教案05-13

二次函數(shù)說課稿02-17

《集合與函數(shù)》課件設(shè)計(jì)05-08

《對數(shù)函數(shù)》課件設(shè)計(jì)05-08

一次函數(shù)的教學(xué)設(shè)計(jì)課件02-17

二次函數(shù)的圖像說課稿11-04

二次函數(shù)說課稿(11篇)02-17

二次函數(shù)說課稿11篇11-15

二次函數(shù)的說課稿(精選5篇)05-12

二次函數(shù)測試題的整理08-20