初三上冊數(shù)學解一元二次方程教學計劃
教學目標
(1)會用公式法解一元二次方程;
(2)經(jīng)歷求根公式的發(fā)現(xiàn)和探究過程,提高學生觀察能力、分析能力以及邏輯思維能力;
(3)滲透化歸思想,領(lǐng)悟配方法,感受數(shù)學的內(nèi)在美.
教學重點
知識層面:公式的推導和用公式法解一元二次方程;
能力層面:以求根公式的發(fā)現(xiàn)和探究為載體,滲透化歸的數(shù)學思想方法.
教學難點:求根公式的推導.
總體設計思路:
以舊知識為起點,問題為主線,以教師指導下學生自主探究為基本方式,突出數(shù)學知識的內(nèi)在聯(lián)系與探究知識的方法,發(fā)展學生的理性思維.
教學過程
(一)以舊引新,提出問題
解下列一元二次方程:(學生選兩題做)
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
(3)4x2-16x+17=0 ; (4)3x2+4x+7=0.
然后讓學生仔細觀察四題的解答過程,由此發(fā)現(xiàn)有什么相同之處,有什么不同之處?
接著再改變上面每題的其中的一個系數(shù),得到新的四個方程:(學生不做,思考其解題過程)
(1)3x2+4x+2=0; (2)3x2-2x+1=0;
(3)4x2-16x-3=0 ; (4)3x2+x+7=0.
思考:新的四題與原題的解題過程會發(fā)生什么變化?
設計意圖: 1.復習鞏固舊知識,為本節(jié)課的學習掃除障礙;
2.讓學生充分感受到用配方法解題既存在著共性,也存在著不同的現(xiàn)象,由此激發(fā)學生的求知欲望.
3、學生根據(jù)自己的情況選兩題,這樣做能保證運算的正確和繼續(xù)學習數(shù)學的信心。
(二)分析問題,探究本質(zhì)
由學生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根.
進而提出下面的問題:
既然過程是相同的,為什么會出現(xiàn)根的不同?方程的根與什么有關(guān)?有怎樣的關(guān)系?如何進一步探究?
讓學生討論得出:從一元二次方程的一般形式去探究根與系數(shù)的關(guān)系.
ax2+bx+c=0(a≠0) 注:根據(jù)學生學習程度的不同,可
ax2+bx=-c 以采用學生獨立嘗試配方, 合
x2+ x=- 作嘗試配方或教師引導下進行
x2+ x+ =- + 配方等各種教學形式.
(x+ )2=
然后再議開方過程(讓學生結(jié)合前面四題方程來加以討論),使學生充分認識到“b2 -4ac”的重要性.
當b2-4ac≥0時,
(x+ )2= 注:這樣變形可以避免對a正、負的討論,
x+ = 便于學生的理解.
x=- 即x=
x1= , x2=
當b2-4ac<0時,
方程無實數(shù)根.
設計意圖:讓學生通過經(jīng)歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發(fā)展了理性思維.
。ㄈ┑贸鼋Y(jié)論,解決問題
由上面的探究過程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c確定. 當b2-4ac≥0時,
x=;
當b2-4ac<0時,方程無實數(shù)根.
這個式子對解題有什么幫助?通過討論加深對式子的.理解,同時讓學生進一步感受到數(shù)學的簡潔美、和諧美.
進而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.
設計意圖: 理解是記憶的基礎(chǔ)。只有理解了公式才能爛熟于心,才能在題目中熟練應用,不會因記不清公式造成運算的錯誤。
運用公式法解一元二次方程.(前兩道教師示范,后兩道學生練習)
(1)2x2-x-1=0; (2)4x2-3x+2=0 ;
(3)x2+15x=-3x; (4)x2- x+ =0.
注:( 教師在示范時多強調(diào)注意點、易錯點,會減少學生做題的錯誤,讓學生在做題中獲得成功感。)
設計意圖:進一步闡述求根公式,歸納總結(jié)用公式法解一元二次方程的一般步驟,及時總結(jié)簡化運算,節(jié)約時間又提高做題的準確性。
用公式法解一元二次方程:(比一比,看誰做得又快又對)
(1)x2+x-6=0; (2)x2- x- =0;
(3)3x2-6x-2=0;(4)4x2-6x=0;
設計意圖:能夠熟練運用公式法解一元二次方程,讓每位學生都有所收獲,通過大量練習,熟悉公式法的步驟,訓練快速準確的計算能力。
(四)拓展運用,升華提高
[想一想]
清清和楚楚剛學了用公式法解一元二次方程,看到一個關(guān)于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說:“此方程有兩個不相等的實數(shù)根”,
而楚楚反駁說:“不一定,根的情況跟m的值有關(guān)”.那你們認為呢?并說明理由.
設計意圖:基于學生基礎(chǔ)較好,因此對求根公式作進一步深化,并綜合運用了配方法,使不同層次的學生都有不同提高.比較配方法在不同題型中的用法,
避免以后出現(xiàn)運算錯誤。
歸納小結(jié), 結(jié)合上面想一想,讓學生嘗試對本節(jié)課的知識進行梳理,對方法進行提煉,從而使學生的知識和方法更具系統(tǒng)化和網(wǎng)絡化,同時也是情感的升華過程.
。ㄎ澹 布置作業(yè)
、灞刈鲱}
、孢x做題:P46第12題。
設計意圖:結(jié)合學生的實際情況,可以分層布置。 適合的練習既鞏固了所學提高了計算的速度又保養(yǎng)了學生學習數(shù)學的興趣和信心。
【初三上冊數(shù)學解一元二次方程教學計劃】相關(guān)文章:
解一元二次方程課件03-19
《降次-解一元二次方程》教學計劃06-01
九年級數(shù)學上冊《公式法解一元二次方程》教學反思01-24
新人教版九年級數(shù)學上冊《解一元二次方程》教學反思06-20
關(guān)于人教版初三數(shù)學上冊《一元二次方程的解法》教學反思11-23
降次《解一元二次方程》的教學設計10-16