因數(shù)和倍數(shù)教學(xué)反思
作為一名到崗不久的人民教師,教學(xué)是重要的任務(wù)之一,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗(yàn),教學(xué)反思應(yīng)該怎么寫才好呢?以下是小編為大家收集的因數(shù)和倍數(shù)教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
因數(shù)和倍數(shù)教學(xué)反思1
一、單元主題圖體驗(yàn)數(shù)學(xué)化過程。單元主題圖是教材中的一個(gè)重要內(nèi)容,它是選擇某一個(gè)主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識(shí)出發(fā)來組織教學(xué)的,首先讓學(xué)生獨(dú)立觀察主題圖,通過獨(dú)立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗(yàn)獲取知識(shí)的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個(gè)凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗(yàn)“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實(shí)現(xiàn)有意義建構(gòu)。教材中對(duì)因數(shù)概念的認(rèn)識(shí),設(shè)計(jì)了“用小正方形拼長方形”的'操作活動(dòng),引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時(shí),借助“拼小正方形”的活動(dòng),使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對(duì)因數(shù)和理解不僅是數(shù)字上的認(rèn)識(shí),而且能與操作活動(dòng)與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個(gè)“先形后數(shù)”的過程,是一個(gè)知識(shí)抽象的過程。
三、探索活動(dòng)關(guān)注解決問題的策略。學(xué)生在探索活動(dòng)中,運(yùn)用做記號(hào)、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會(huì)觀察、分析、歸納、猜想、驗(yàn)證等過程,孩子們學(xué)會(huì)了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時(shí)給學(xué)生進(jìn)行課后輔導(dǎo)的時(shí)間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個(gè)一個(gè)單元只有一個(gè)練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個(gè)概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯(cuò)了,那不是因數(shù),是約數(shù)……”,讓人哭笑
因數(shù)和倍數(shù)教學(xué)反思2
教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些改動(dòng),讓學(xué)生用12個(gè)小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對(duì)乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識(shí)了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會(huì)到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。
如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的'思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不比老師給予的有效得多。
因數(shù)和倍數(shù)教學(xué)反思3
今天這堂課其實(shí)是有點(diǎn)匆忙的。課前的一個(gè)小游戲忘了,忘了讓學(xué)生體會(huì)因數(shù)和倍數(shù)之間的相互聯(lián)系和依存關(guān)系了。明天的課上補(bǔ)上。
滿意的一點(diǎn):模式的提練
在讓學(xué)生根據(jù)算式說了誰是誰的倍數(shù),誰是誰的因數(shù)之后,出示了想想做做的第一題,我加了一道:A×B=C,并且讓學(xué)生用一道算式提練出因數(shù)和倍數(shù)之間的關(guān)系。結(jié)果學(xué)生都不知道如何表達(dá)。我把算式板書上黑板上,是因數(shù)×因數(shù)=倍數(shù)。而后,我又轉(zhuǎn)過去用一道除法算式36÷9=4來讓學(xué)生找一找誰是誰的因數(shù),誰是誰的倍數(shù),學(xué)生的反應(yīng)都不錯(cuò),馬上就明白了因數(shù)和倍數(shù)之間的關(guān)系。
不滿意的地方在于:對(duì)于找出36所有因數(shù)的有序思考沒有強(qiáng)調(diào)。當(dāng)我讓學(xué)生們自主找出36的所有因數(shù)時(shí),許多學(xué)生就茫然不知所謂,但是他們并不是不懂,只是不知道如何去寫,所以我在黑板上挑選了一些學(xué)生的作業(yè)加以板書,讓學(xué)生進(jìn)行比較。
如:1、36、2、18、3、12、4、9、6
。、2、3、4、6、9、12、18、36
和36÷1=36,36÷2=18,36÷3=12
。常丁拢矗剑,36÷6=6
尤其是最后一種方法,我特別注意讓學(xué)生評(píng)價(jià)一下這種思考方法的正確性。得出結(jié)論是這樣思考是可行的。那么我接著告訴他們,這樣思考的確是可以,不過,缺少的因數(shù)的提取,由此過渡到評(píng)價(jià)第一種方案和第二種方案,在這兒,我特別示范了一下寫因數(shù)的方法,即從兩邊向中間包圍。學(xué)生們?cè)诒容^中找出了寫因數(shù)的方法,明白了寫出因數(shù)的格式。本來可以相機(jī)在這一步讓學(xué)生體會(huì)尋找因數(shù)的有序性,結(jié)果一急,只是帶過了一句。今天在補(bǔ)充習(xí)題上出現(xiàn)了問題,我抓了幾個(gè)學(xué)生問為什么強(qiáng)調(diào)有序性,學(xué)生告訴我:因?yàn)榭梢钥吹们宄,因(yàn)椴粫?huì)遺漏。看起來班上的學(xué)生有這方面的意識(shí),在做題目的時(shí)候還應(yīng)該再稍稍提點(diǎn)一下,應(yīng)該也就不成問題了。
《因數(shù)和倍數(shù)的練習(xí)》教學(xué)反思 4月14日
昨天新學(xué)了因數(shù)和倍數(shù),我覺得課上學(xué)生表現(xiàn)還可以,很會(huì)說,但到了家自己做家作時(shí),問題很多。今天進(jìn)行了練習(xí)后,效果截然不同。我在練習(xí)前,首先對(duì)昨天的內(nèi)容進(jìn)行了復(fù)習(xí)。讓學(xué)生進(jìn)一步明確:1、講因數(shù)和倍數(shù)時(shí)應(yīng)該講清誰是誰的倍數(shù)或因數(shù)。2、找一個(gè)數(shù)的倍數(shù)和因數(shù)時(shí),倍數(shù)最小的是它本身,其它都比它大,因數(shù)最大的是它本身,其它都比它小,最小是1。學(xué)生書上練習(xí)時(shí),提醒學(xué)生弄清每題的具體要求,有些題只要寫出一個(gè)數(shù)部分的倍數(shù),而有些題需要寫出全部的倍數(shù)。有些符合要求的數(shù)不止1個(gè),要盡可能把這些數(shù)都找出來。但學(xué)生有時(shí)找不全,我就教會(huì)學(xué)生這樣思考:找一個(gè)數(shù)的倍數(shù)時(shí)用乘法,找一個(gè)數(shù)的因數(shù)時(shí)用除法。效果還可以。
今天教學(xué)了因數(shù)和倍數(shù)一課,這節(jié)課的`內(nèi)容關(guān)鍵是讓學(xué)生在掌握因數(shù)、倍數(shù)的概念的基礎(chǔ)上學(xué)會(huì)找一個(gè)數(shù)的因數(shù)和倍數(shù)。就總體情況而言教學(xué)效果還可以,但多少還是存在遺憾。
存在問題:在寫出了算式3*4=12后出示“3是12的因數(shù),4也是12的因數(shù);12是3的倍數(shù),12也是4的倍數(shù)!焙笞寣W(xué)生閱讀,復(fù)述后讓學(xué)生觀察尋找記憶的方法,學(xué)生總結(jié):像這樣的乘法算式我們可以說兩個(gè)乘數(shù)都是積的因數(shù),積是兩個(gè)乘數(shù)的倍數(shù)。再讓學(xué)生用因數(shù)、倍數(shù)同桌復(fù)述算式2*6=12,1*12=12中數(shù)與數(shù)的關(guān)系,全班交流復(fù)述,學(xué)生說的蠻好的,可是在分層練習(xí)時(shí)再讓學(xué)生描述其他算式中各數(shù)的關(guān)系時(shí),又部分學(xué)生混淆了因數(shù)、倍數(shù)的概念?磥黹_始的復(fù)述學(xué)生純粹是無意識(shí)的模仿,是為模仿而模仿,教師沒有在學(xué)生模仿復(fù)述后進(jìn)一步讓學(xué)生思考為什么可以這樣描述這些數(shù)之間的關(guān)系,例如:為什么12是3和4的倍數(shù),還能說12是2和6的倍數(shù)?……如果加了這層思考,學(xué)生就會(huì)理解只要是兩個(gè)整數(shù)相乘等于12,12就是這兩個(gè)整數(shù)的倍數(shù),這兩個(gè)整數(shù)就都是12的因數(shù)。這樣才能讓學(xué)生真正理解乘法算式中各整數(shù)之間的關(guān)系。
滿意之處:學(xué)生在找一個(gè)數(shù)的因數(shù)和倍數(shù)時(shí)花費(fèi)的時(shí)間不多,但在交流方法時(shí)我舍得花費(fèi)較多的時(shí)間讓學(xué)生比較各自的方法,在此基礎(chǔ)上選出不會(huì)重復(fù)、遺漏的簡便方便用學(xué)生的名字命名這些方法。再讓學(xué)生分別使用這些方法尋找,真實(shí)感受這些方法的好處。學(xué)生郵箱比較深刻,在后面的分層練習(xí)和檢測(cè)中沒有學(xué)生出現(xiàn)漏或重復(fù)的,而且速度也很快。學(xué)生的積極性很高,學(xué)生的積極性的大小與他獲得成功的概率的大小有直接關(guān)系的。
因數(shù)和倍數(shù)教學(xué)反思4
去年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),依照學(xué)生預(yù)習(xí)、閱讀課本進(jìn)行教學(xué),老師沒有作過多的講解,從學(xué)生的練習(xí)反饋中,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,反思教學(xué)后,覺得用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!{(diào)查詢問學(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“太麻煩了”。
今年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),我在去年教學(xué)《公倍數(shù)和公因數(shù)》的基礎(chǔ)上作了一些改進(jìn):
一、仍然是將預(yù)習(xí)前置。
二、動(dòng)手操作,想象延伸。
讓學(xué)生動(dòng)手操作,提高感知效果,幫助學(xué)生形成豐富的表象,是促進(jìn)形象思維發(fā)展的有利途徑。例題教學(xué)中讓學(xué)生動(dòng)手鋪,鋪后想,想后算,算后思。
用長3厘米、寬2厘米的長方形紙片分別鋪邊長6厘米、8厘米的正方形,能鋪滿哪個(gè)正方形?拿出手中的`圖形,動(dòng)手拼一拼。
學(xué)生分組操作,用除法算式把不同的擺法寫出來。
提問:通過剛才的活動(dòng),你們發(fā)現(xiàn)了什么?
以直觀的操作活動(dòng),在具體的問題情境中體會(huì)公倍數(shù)和公因數(shù)與生活的聯(lián)系,讓學(xué)生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程,加深對(duì)抽象概念的理解。
思考:根據(jù)剛才鋪正方形的過程,在頭腦里想一想,用3厘米、寬2厘米的長方形紙片正好鋪滿邊長多少厘米的正方形?在小組里交流。
三、在教學(xué)中嚴(yán)格要求學(xué)生先用“列舉法”教學(xué)“求兩數(shù)公倍數(shù)與公因數(shù)”;在學(xué)生相對(duì)較熟練的時(shí)候嘗試讓學(xué)生直接說出公倍數(shù)與公因數(shù);在此基礎(chǔ)上適當(dāng)介紹后面的閱讀知識(shí),但不要求學(xué)生使用。
四、在教學(xué)了用“列舉法”“求兩數(shù)公倍數(shù)與公因數(shù)”的知識(shí)之后,適當(dāng)提高訓(xùn)練難度,將求“最小公倍數(shù)”與“最大公因數(shù)”合并訓(xùn)練。通過聯(lián)系“最大公因數(shù)”、“最小公倍數(shù)”的知識(shí),引導(dǎo)學(xué)生發(fā)現(xiàn)求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的擴(kuò)倍法等其它的方法。要求學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡,掌握較好。通過練習(xí)引導(dǎo)學(xué)生感悟、概括出了一些特殊情況:(1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個(gè)概念學(xué)生沒有學(xué)到):①兩個(gè)不同的素?cái)?shù);②兩個(gè)連續(xù)的自然數(shù);③1和任何自然數(shù)。
課后反思:
一、預(yù)習(xí)后的課堂教學(xué),還要教,直接放手要出問題。
二、介紹一下短除法是有必要的。但不能直接按傳統(tǒng)的教學(xué)思路以短除法求最大公因數(shù)和最小公倍數(shù)簡單代替列舉法。
三、應(yīng)逐步鼓勵(lì)學(xué)生把求最大公因數(shù)和最小公倍數(shù)過程想在腦中,直接說出結(jié)果。引導(dǎo)感興趣的同學(xué)在課后探索其它的求最大公因數(shù)和最小公倍數(shù)的內(nèi)容,適當(dāng)提高學(xué)生的思維水平。
因數(shù)和倍數(shù)教學(xué)反思5
本節(jié)課的資料涉及的概念十分多,即抽象又容易混淆,如何使學(xué)生更加容易理解這些概念,理清概念之間的相互聯(lián)系,構(gòu)建知識(shí)之間的網(wǎng)絡(luò)體系是本節(jié)課教學(xué)的重難點(diǎn),同時(shí)學(xué)會(huì)整理知識(shí)的方法更是本節(jié)課教學(xué)的靈魂。
成功之處:
1、構(gòu)建知識(shí)網(wǎng)絡(luò)體系,理清知識(shí)之間的相互聯(lián)系。在教學(xué)中,我首先經(jīng)過一個(gè)聯(lián)想接龍的游戲調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生利用因數(shù)和倍數(shù)單元的知識(shí)來描述數(shù)字2,學(xué)生十分容易想到2是最小的質(zhì)數(shù)、2是偶數(shù)、2的因數(shù)是1和2、2的倍數(shù)有2,4,6…、2的倍數(shù)特征是個(gè)位是0、2、4、6、8的數(shù),經(jīng)過學(xué)生的回答教師及時(shí)抓住其中的關(guān)鍵詞引出本單元的所有概念:因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、公因數(shù)、最大公因數(shù)、公倍數(shù)、最小公倍數(shù)、2的`倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)的特征。如何整理使這些凌亂的概念變得更加簡潔、更加有序、更加能體現(xiàn)知識(shí)之間的聯(lián)系呢?經(jīng)過學(xué)生課前的整理發(fā)揮小組的合作交流作用,在相互交流中,學(xué)生相互學(xué)習(xí)、相互借鑒,逐漸對(duì)這些概念的聯(lián)系有了更進(jìn)一步的認(rèn)識(shí),然后經(jīng)過選取幾名同學(xué)的作品進(jìn)行展評(píng),最終教師和學(xué)生共同進(jìn)行整理和調(diào)整,最終來完善知識(shí)之間的網(wǎng)絡(luò)體系。
2、教給學(xué)生整理知識(shí)的方法。在教學(xué)中,是授人以魚不如授人以漁,作為教師莫過于教給學(xué)生必備的學(xué)習(xí)方法。在這節(jié)課的整理復(fù)習(xí)中,課前我讓學(xué)生把第二單元的關(guān)于因數(shù)和倍數(shù)的概念進(jìn)行了匯總,涉及的概念有如下幾個(gè):因數(shù)、倍數(shù)、公因數(shù)、公倍數(shù)、最大公因數(shù)、最小公倍數(shù)、質(zhì)數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的倍數(shù)特征、3的倍數(shù)特征、5的倍數(shù)特征,并提出具體的要求:一是觀察分析這些概念,哪些概念之間有著密切的聯(lián)系;二是根據(jù)這些概念之間的緊密聯(lián)系能夠分為幾類;三是用你自我喜歡的方法表示出來,能夠以數(shù)學(xué)手抄報(bào)的形式來呈現(xiàn)。經(jīng)過課前的設(shè)計(jì),我事先搜集了一些有代表性的作品放在課件中,讓同學(xué)們進(jìn)行欣賞,相互取長補(bǔ)短,共同學(xué)習(xí),共同提高。課堂中在小組討論交流的過程后,教師與學(xué)生共同對(duì)本單元的概念進(jìn)行了整理和總結(jié),并得出知識(shí)網(wǎng)絡(luò)圖。
縱觀本節(jié)課的設(shè)計(jì),就是經(jīng)過學(xué)生的聯(lián)想,回憶前面學(xué)過的知識(shí),并在頭腦中構(gòu)建知識(shí)之間的相互聯(lián)系,從而揭示出這個(gè)知識(shí)網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握了這種方法,就能夠把數(shù)學(xué)中的每一個(gè)單元進(jìn)行整理,也能夠把每一冊(cè)知識(shí)進(jìn)行整理,還能夠把小學(xué)數(shù)學(xué)的知識(shí)進(jìn)行系統(tǒng)的整理,從而讓學(xué)生體會(huì)到思維導(dǎo)圖方法的強(qiáng)大之處,學(xué)生在感嘆這種方法的魅力同時(shí),并把這種方法推廣到其它學(xué)科,讓學(xué)生真正掌握知識(shí)整理的方法,并在以后的單元知識(shí)整理中加以運(yùn)用。
3、在練習(xí)中進(jìn)一步對(duì)概念進(jìn)行有針對(duì)性的復(fù)習(xí)。在練習(xí)環(huán)節(jié)中,我根據(jù)這些概念設(shè)計(jì)了一些相應(yīng)的練習(xí)。目的是以練習(xí)促復(fù)習(xí),在練習(xí)中更好的體會(huì)這些概念的具體含義,加深學(xué)生對(duì)概念的理解和掌握,學(xué)生在練習(xí)的過程中不僅僅掌握了知識(shí)整理的方法,還深刻地理解了知識(shí)的來龍去脈,對(duì)每個(gè)知識(shí)點(diǎn)的概念理解也更加清晰了,起到了復(fù)習(xí)回顧舊知識(shí)的作用。
不足之處:
1、個(gè)別學(xué)生在展評(píng)中不會(huì)去評(píng)價(jià),只是從設(shè)計(jì)的美觀上去思考,而沒有從體現(xiàn)知識(shí)之間的聯(lián)系上去進(jìn)行說明,在這一點(diǎn)上教師還要加以引導(dǎo)。
2、出現(xiàn)個(gè)別學(xué)生由于第二單元的知識(shí)是在開學(xué)初學(xué)習(xí)的,有些知識(shí)點(diǎn)已經(jīng)遺忘,導(dǎo)致出現(xiàn)連最小的偶數(shù)是幾都不明白了,所以在學(xué)完每個(gè)單元后要不間斷的進(jìn)行知識(shí)的鞏固和練習(xí)。
3、由于本節(jié)課的知識(shí)點(diǎn)過于多,練習(xí)的時(shí)間有些不足,導(dǎo)致基本的練習(xí)時(shí)間能夠保障,可是需要拓展的知識(shí)沒有更好的呈現(xiàn)出來。
再教設(shè)計(jì):
1、抓住數(shù)學(xué)知識(shí)的本質(zhì),美觀的整理形式只是一些外在的,并不是重點(diǎn),注意引導(dǎo)學(xué)生從數(shù)學(xué)的本質(zhì)去思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,去引發(fā)思考,從而構(gòu)成良好的數(shù)學(xué)思維品質(zhì)。
2、還要繼續(xù)深入挖掘數(shù)學(xué)的思想、靈魂和方法,用以指導(dǎo)課堂教學(xué),讓學(xué)生掌握以后學(xué)習(xí)知識(shí)的鑰匙,學(xué)會(huì)開啟知識(shí)的大門。
因數(shù)和倍數(shù)教學(xué)反思6
《倍數(shù)和因數(shù)》這一資料與原先教材比有了很大的不一樣,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而此刻是在未認(rèn)識(shí)整除的狀況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分資料學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個(gè)長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):
。ㄒ唬┎僮鲗(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的`數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不一樣的長方形,再讓學(xué)生寫出不一樣的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的好處。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而構(gòu)成因數(shù)與倍數(shù)的好處。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
(二)自主探究,好處建構(gòu),找倍數(shù)和因數(shù)
整個(gè)教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的好處,探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識(shí),發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)潛力,初步構(gòu)成合作與競爭的意識(shí)。
找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)光,最后就沒有很多的時(shí)光去練習(xí),我認(rèn)為雖然時(shí)光用的過多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有必須困難,那里能夠充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自我獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按必須的次序進(jìn)行。之后讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對(duì)自我剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
(三)變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動(dòng),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)地理解。教學(xué)之前我明白這節(jié)課時(shí)光會(huì)很緊,所以在備課的時(shí)候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時(shí)光安排的能夠少一些,所以我在第一部分認(rèn)識(shí)因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時(shí)光,直接出示,,實(shí)際效果我認(rèn)為是比較理想的。課上還就應(yīng)及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自我的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師就應(yīng)及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
因數(shù)和倍數(shù)教學(xué)反思7
《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)的知識(shí)點(diǎn),主要教學(xué)因數(shù)和倍數(shù)的認(rèn)識(shí),以及找一個(gè)數(shù)的因數(shù)和倍數(shù)的方法!兑驍(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。
。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
。2)“約數(shù)”一詞被“因數(shù)”所取代。這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:鑒于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識(shí)基礎(chǔ),對(duì)整除的含義已經(jīng)有了比較清楚的認(rèn)識(shí),不出現(xiàn)整除的定義并不會(huì)對(duì)學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式ab=c直接引出因數(shù)和倍數(shù)的概念。
數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長期的消化理解的過程。這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
一、教學(xué)過程的反思
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對(duì)語言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的因數(shù)和倍數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)因數(shù)和倍數(shù)的關(guān)系。層層推進(jìn),引入教學(xué),留下懸念,充分調(diào)動(dòng)了學(xué)生的積極性和求知欲。在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大。
在教學(xué)時(shí),先讓學(xué)生“用12個(gè)同樣大小的正方形,擺成一個(gè)長方形,并用乘法算式把自己的擺法表示出來”,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出因數(shù)和倍數(shù)的概念。這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作能力,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的.良好學(xué)習(xí)態(tài)度。
對(duì)于找一個(gè)數(shù)的倍數(shù)比找一個(gè)數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個(gè)數(shù)的倍數(shù),在學(xué)生學(xué)會(huì)了找一個(gè)數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個(gè)數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個(gè)數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。
在處理本節(jié)課的難點(diǎn)“找36的因數(shù)”時(shí),我原來是放手讓學(xué)生自己去找的。結(jié)果試時(shí)很多學(xué)生沒有頭緒,無從下手。時(shí)間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個(gè)的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個(gè)數(shù)的因數(shù)比找一個(gè)數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時(shí),如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對(duì)學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個(gè)數(shù)的倍數(shù)的方法有效的遷移到找一個(gè)數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
二、教法的運(yùn)用實(shí)踐
1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運(yùn)用講述法。對(duì)與本知識(shí)點(diǎn)的概念是人為規(guī)定的一個(gè)范圍,因此,對(duì)于學(xué)生和第一
接觸的印象是沒有什么可以探究和探索的要求,而且給學(xué)生一個(gè)直觀的感受。“因數(shù)與倍數(shù)”的運(yùn)用范圍就是在非0自然數(shù)的范疇之內(nèi),與小數(shù)無關(guān),與分?jǐn)?shù)無關(guān),與負(fù)數(shù)無關(guān)(雖沒學(xué),但有小部分學(xué)生了解)。同時(shí)強(qiáng)調(diào)——非0——因?yàn)?乘任何數(shù)得0,0除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗(yàn)就是對(duì)于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法,讓學(xué)生清晰明確。因此,用直接導(dǎo)入法,先復(fù)習(xí)自然數(shù)的概念,再寫出乘法算式3×4=12,說明在這個(gè)算式中,3和4是12的因數(shù),12是3和4的倍數(shù)。
2、在進(jìn)行延續(xù)性教學(xué)中,可以讓學(xué)生探究怎么樣找一個(gè)數(shù)的因數(shù)和倍數(shù),在板書要講究一個(gè)格式與對(duì)稱性,這樣在對(duì)學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個(gè)數(shù)的有限與無限的對(duì)比,再就是發(fā)現(xiàn)一個(gè)數(shù)的因數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。一個(gè)數(shù)的倍數(shù)的最小的倍數(shù)是它本身,而沒有最大的倍數(shù)。這些都是上課時(shí)應(yīng)該要注意的細(xì)節(jié),這對(duì)于學(xué)生良好的學(xué)習(xí)慣的培養(yǎng)也是很重要的
新課標(biāo)實(shí)施的過程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過程,在這個(gè)過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對(duì)話,在實(shí)踐和探索中不斷前進(jìn)。
因數(shù)和倍數(shù)教學(xué)反思8
新教材在引入倍數(shù)和因數(shù)概念時(shí)與以往的老教材有所不同,比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我從以下三個(gè)方面談一點(diǎn)教學(xué)體會(huì)。
一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花
良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動(dòng)學(xué)生的.學(xué)習(xí)興趣,一一對(duì)應(yīng)、相互依存。對(duì)感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計(jì)了嘗試練——引出沖突——討論探究這么一個(gè)學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對(duì)又好”的要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評(píng)價(jià),有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個(gè)倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時(shí)都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號(hào)表示比較恰當(dāng)。用語文中的一個(gè)標(biāo)點(diǎn)符號(hào)解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。
二、操作實(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)
學(xué)生在找一個(gè)數(shù)的因數(shù)時(shí)最常犯的錯(cuò)誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。
這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對(duì)板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢(shì)必會(huì)感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個(gè)相鄰的自然數(shù)時(shí),他們自然就不會(huì)再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)地接受。教學(xué)之前我知道這節(jié)課時(shí)間會(huì)很緊,所以在備課的時(shí)候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時(shí)間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時(shí)間,直接以3個(gè)小問題出示,,實(shí)際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。
因數(shù)和倍數(shù)教學(xué)反思9
一、結(jié)合實(shí)例,認(rèn)識(shí)理論知識(shí)
教學(xué)的起點(diǎn)是對(duì)定義進(jìn)行介紹、分析與闡述。例如,對(duì)于倍數(shù)與因數(shù)的相關(guān)介紹,應(yīng)該從數(shù)學(xué)等式出發(fā),運(yùn)用“35=5×7,36=4×9=2×2×3×3”等式子,引導(dǎo)學(xué)生掌握基礎(chǔ)理論知識(shí)。如,我們只在自然數(shù)(0除外)內(nèi)研究倍數(shù)與因數(shù),倍數(shù)可以分成幾個(gè)因數(shù)的乘積,也就是說倍數(shù)是等式一邊較大的數(shù)。由此引申出質(zhì)數(shù)與合數(shù),質(zhì)數(shù)是除了1和它本身之外,不能被其他數(shù)整除的正整數(shù),又稱素?cái)?shù)。質(zhì)數(shù)只有1和它本身兩個(gè)因子,而合數(shù)有超過2個(gè)因子。0與1既不是質(zhì)數(shù)也不是合數(shù)。倍數(shù)、因數(shù)是相互的概念,質(zhì)數(shù)與合數(shù)共同構(gòu)成了除1以外的正整數(shù)。
在了解了倍數(shù)、因數(shù)相關(guān)理論知識(shí)以后,借助練習(xí)題,引導(dǎo)學(xué)生深入鞏固和加深對(duì)倍數(shù)、因數(shù)相關(guān)知識(shí)的理解,并進(jìn)一步引導(dǎo)學(xué)生找出一個(gè)數(shù)的所有因子。如,歸納猜想“是6的倍數(shù)一定是2和3的倍數(shù)嗎?是14的倍數(shù)一定是哪幾個(gè)數(shù)的倍數(shù)?”通過逐步深入,鼓勵(lì)學(xué)生發(fā)散思維,找出規(guī)律。
二、點(diǎn)出特征,發(fā)現(xiàn)特殊規(guī)律
有了扎實(shí)的理論知識(shí),進(jìn)一步需要強(qiáng)化學(xué)生思維,鼓勵(lì)學(xué)生運(yùn)用數(shù)學(xué)的思維與方法找出相關(guān)問題的規(guī)律,以此強(qiáng)化學(xué)生數(shù)學(xué)科學(xué)素養(yǎng)。小學(xué)生由于年齡小,對(duì)于一些未知的事物具有很大興趣,教學(xué)需要結(jié)合學(xué)生思維特點(diǎn),運(yùn)用科學(xué)的'引導(dǎo)方法,鼓勵(lì)學(xué)生自主實(shí)踐,探索分析,找出規(guī)律。通過點(diǎn)出特征,鼓勵(lì)學(xué)生發(fā)現(xiàn)特殊規(guī)律,強(qiáng)化學(xué)生學(xué)習(xí)積極性與主動(dòng)性,由此促進(jìn)學(xué)生創(chuàng)新思考,增加對(duì)數(shù)學(xué)學(xué)習(xí)的熱愛和興趣。
例如,以探索活動(dòng)“2、5倍數(shù)的特征”、“3倍數(shù)的特征”為例,展開興趣小組合作交流活動(dòng)。教師設(shè)計(jì)百數(shù)版,或者借助多媒體展開教學(xué),結(jié)合提問教學(xué),引導(dǎo)學(xué)生思考,指導(dǎo)學(xué)生思考方向。在從左到右,從上到下依次排列的1~100個(gè)數(shù)中,找出5的倍數(shù),用紅色彩筆圈出來,在這100個(gè)數(shù)中,將2的倍數(shù)用綠色彩筆點(diǎn)出來,將3的倍數(shù)用白色彩筆勾起來。學(xué)生分為幾個(gè)小組,每3位同學(xué)一組,在活動(dòng)中發(fā)現(xiàn),5的倍數(shù)末尾都是0或5,2的倍數(shù)末尾是0、2、4、6、8,3的倍數(shù)各個(gè)位數(shù)加起來的和也是3的倍數(shù)。通過點(diǎn)出特征,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,掌握數(shù)學(xué)知識(shí)與學(xué)習(xí)方法。
三、實(shí)施探索,有效強(qiáng)化思維
為加深學(xué)生對(duì)倍數(shù)與因數(shù)相關(guān)知識(shí)的印象,教師組織展開小組合作趣味活動(dòng)。例如,將學(xué)生分為幾個(gè)小組,每個(gè)小組5人,1號(hào)同學(xué)任意寫一位三位數(shù)交給2號(hào)同學(xué),2號(hào)將這個(gè)數(shù)按同樣的順序再寫一遍成為6位數(shù),交給3號(hào)同學(xué),3號(hào)同學(xué)除以11交給4號(hào)同學(xué),4號(hào)同學(xué)將得到的數(shù)除以13交給5號(hào)同學(xué),5號(hào)同學(xué)除以7公布答案。根據(jù)這個(gè)游戲活動(dòng),學(xué)生發(fā)現(xiàn)答案和1號(hào)同學(xué)寫出的數(shù)字一樣。之后,教學(xué)引導(dǎo)學(xué)生思考、猜想與歸納,得出11×13×7=1001,所以2號(hào)先將數(shù)擴(kuò)大1001倍,再經(jīng)過三位同學(xué)縮小1001倍,得到原來的數(shù)字。又如展開探索活動(dòng),將從左到右,從上到下排列的1-100,通過先劃掉1,再劃掉除2外2的倍數(shù),再劃掉除3外3的倍數(shù)和除5外5的倍數(shù),以此下去,得出1-100內(nèi)所有質(zhì)數(shù)。通過實(shí)施游戲探索活動(dòng),有效強(qiáng)化學(xué)生思維,探索數(shù)學(xué)科學(xué)素養(yǎng)。
四、總結(jié)歸納,促進(jìn)自主實(shí)踐
知識(shí)的起源、發(fā)生與發(fā)展是循序漸進(jìn)的過程,在了解了基礎(chǔ)理論以后,學(xué)生對(duì)知識(shí)的了解會(huì)不斷深入,遵循理論認(rèn)識(shí)、實(shí)踐探索、總結(jié)歸納、分析思考、構(gòu)建知識(shí)網(wǎng)絡(luò)等一系列的思維運(yùn)行過程。
例如,在課后“讀一讀,做一做”中,有關(guān)于“哥德巴赫猜想”的一個(gè)探索習(xí)題。可以將該習(xí)題改成為學(xué)生自主探索實(shí)踐的課外活動(dòng)內(nèi)容。借助哥德巴赫猜想的偶數(shù)情形“任何不小于4的偶數(shù)都可以寫成兩個(gè)質(zhì)數(shù)相加的形式”,如4=2+2,6=3+3,8=3+5,以及奇數(shù)情形“任何不小于7的奇數(shù)都可以寫成三個(gè)質(zhì)數(shù)的和”,如7=2+2+3,9=2+2+5,以及我國數(shù)學(xué)就陳景潤的“1+2”定理,通過引導(dǎo)學(xué)生觀察、分析、猜想與驗(yàn)證,鼓勵(lì)學(xué)生分小組探索、互助交流與實(shí)踐探究,廣泛查閱相關(guān)資料,深入探索數(shù)學(xué)知識(shí)的規(guī)律和奧秘。
因數(shù)和倍數(shù)教學(xué)反思10
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是經(jīng)過除法算式來引出整除的概念,而此刻的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個(gè)簡單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,經(jīng)過這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。對(duì)于學(xué)生來說是比較難掌握的資料。尤其對(duì)因數(shù)和倍數(shù)是一對(duì)相互依存的概念,不能單獨(dú)存在,不是很好理解。我經(jīng)過生活與數(shù)學(xué)之間的聯(lián)系,幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實(shí)例來幫忙學(xué)生對(duì)相互依存的.理解,在描述因數(shù)和倍數(shù)的概念時(shí)就不會(huì)說錯(cuò)了。對(duì)于這節(jié)課的教學(xué),我特別注意下頭幾個(gè)細(xì)節(jié)來幫忙學(xué)生理解因數(shù)和倍數(shù)的概念。
1、是我上課時(shí)特別注意讓學(xué)生明白什么情景下才能討論因數(shù)和倍數(shù)的概念。
2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個(gè)乘法算式中,兩者都是指乘號(hào)兩邊的整數(shù),但前者是相對(duì)"積"而言的,與"乘數(shù)"同義,能夠是小數(shù),而后者是相對(duì)于"倍數(shù)"而言的,兩者都只能是整數(shù)。
3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。能夠說"15是3的倍數(shù)",也能夠說"1。5是0。3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1。5是0的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫忙學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對(duì)這組概念就理解透徹了,就不會(huì)模糊了。
因數(shù)和倍數(shù)教學(xué)反思11
體會(huì):
一、動(dòng)手實(shí)踐、合作交流是學(xué)生有效學(xué)習(xí)的重要方式
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:有效的數(shù)學(xué)學(xué)習(xí)活動(dòng),不能單純地依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本片斷一開始,以“用12個(gè)同樣大小的正方形,擺成一個(gè)長方形”為例,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?這里牛老師充分挖掘了教材,根據(jù)教材中的3種長方形的擺法,教師預(yù)想到學(xué)生可能出現(xiàn)的6種操作方法,事先用課件預(yù)設(shè)好。同時(shí),教師在學(xué)生小組交流、操作后,又請(qǐng)各小組代表到黑板上演示自己的一種擺法,得到大家的認(rèn)可后,再用課件逐一呈現(xiàn)。這樣的安排,首先體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,同時(shí)知識(shí)的得到是從實(shí)際問題的解決,抽象為具體討論的數(shù)學(xué)問題。其次,這樣的安排體現(xiàn)了兩方面好處:一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者,另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。這里的設(shè)計(jì),有效的解決了知識(shí)的傳授與理解。
二、能挖掘教材,精心設(shè)計(jì)練習(xí),達(dá)到有效的訓(xùn)練
本片斷的兩個(gè)練習(xí)。第一個(gè)練習(xí)是“請(qǐng)你做裁判”。這一組的3題突出了說倍數(shù)和因數(shù)時(shí),強(qiáng)調(diào)誰是誰的因數(shù),誰是誰的倍數(shù),同時(shí)也讓學(xué)生理解了兩個(gè)數(shù)的倍數(shù)和因數(shù)的關(guān)系。第二個(gè)練習(xí)是“請(qǐng)你說一說”。教師選擇了2,3,5,6,9,20這6個(gè)數(shù),讓學(xué)生選擇性的分析以上信息,運(yùn)用所學(xué)知識(shí)說說哪兩個(gè)數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計(jì),培養(yǎng)了學(xué)生觀察、分析問題、口頭表達(dá)的能力,也進(jìn)一步鞏固了倍數(shù)和因數(shù)的概念理解,接著教師又增加了“1”,讓學(xué)生再次用“1”與其它數(shù)比較,小組交流發(fā)現(xiàn)1與其它自然數(shù)的關(guān)系,學(xué)生很快總結(jié)出1是其它自然數(shù)的因數(shù),其它自然數(shù)是1的倍數(shù)。這樣的練習(xí)形式,很好的解決了本節(jié)課對(duì)于因數(shù)和倍數(shù)的概念理解,同時(shí),形式上也較多的鼓勵(lì)學(xué)生參與學(xué)習(xí)、發(fā)表自己的見解、小組交流等,充分調(diào)動(dòng)學(xué)生、相信學(xué)生、培養(yǎng)學(xué)生的`學(xué)習(xí)能力,我覺得處理的較好。
反思:
一、教師的語言準(zhǔn)確性和科學(xué)性
這里需要說明一點(diǎn),四年級(jí)國標(biāo)版教材的倍數(shù)和因數(shù),和蘇教版五年級(jí)第十冊(cè)教學(xué)的約數(shù)和倍數(shù)單元內(nèi)容相近,這里的概念也是建立在數(shù)的整除的基礎(chǔ)上,不同的是國標(biāo)版第八冊(cè)教材是用乘法的方式引入新知的學(xué)習(xí)。
牛琴老師在教學(xué)練習(xí)二時(shí),有一個(gè)學(xué)生說出3是2的倍數(shù),2是3的因數(shù),該同學(xué)剛說完,就有很多同學(xué)指出這種說法的錯(cuò)誤,老師追問錯(cuò)誤原因,有一個(gè)學(xué)生說因?yàn)?除以2不能整除,教師也及時(shí)給出結(jié)論:因?yàn)?除以2不能除盡。這個(gè)結(jié)論顯然不準(zhǔn)確,或者說犯了科學(xué)性的錯(cuò)誤,3除以2能除盡,但是3除以2得不到整數(shù)的商,所以3不可能被2整除,在這樣的前提下,3不是2的倍數(shù),2也不是3的因數(shù)。我覺得教師如果不自己下結(jié)論,而是讓學(xué)生結(jié)合這一問題展開討論、交流、對(duì)比,可能會(huì)使課堂增添一個(gè)意外的驚喜。
二、練習(xí)的設(shè)計(jì)與挖掘
1、練習(xí)一第3題:54是9的倍數(shù)。在學(xué)生判斷后,能否再展開拓展,54還是哪些數(shù)的倍數(shù),鼓勵(lì)學(xué)生發(fā)現(xiàn)54與其它自然數(shù)的倍數(shù)關(guān)系,也為后面教學(xué)找一個(gè)數(shù)的所有因數(shù)做鋪墊。
2、練習(xí)二中,老師選擇了6個(gè)數(shù)字讓學(xué)生選擇其中的兩個(gè)數(shù)判斷倍數(shù)和因數(shù)關(guān)系,從實(shí)際情況看完成的較好,不過是否顯多了,能否去調(diào)2個(gè),這樣課的結(jié)構(gòu)會(huì)不會(huì)更緊密,課堂效果會(huì)更好呢?
當(dāng)然,我們的研究正如我們學(xué)校出版的教學(xué)片斷的書序中所說:燃一根火柴,會(huì)閃亮一點(diǎn),倘若用一根火柴點(diǎn)燃一堆篝火,定會(huì)帶來無限的精彩。希望我們的研究能給兄弟學(xué)校一定的思索,同時(shí)也希望兄弟學(xué)校能反饋給我們寶貴的建議,讓我們?cè)谡n程改革中,更加堅(jiān)定,更加執(zhí)著。
因數(shù)和倍數(shù)教學(xué)反思12
一、懸念激趣,觸發(fā)思維
小學(xué)生好奇心強(qiáng),對(duì)未知的事物充滿求知欲,這既是引發(fā)認(rèn)知沖突的有利因素,又是觸發(fā)思維的契機(jī)所在。教學(xué)中教師要善于挖掘教材,并結(jié)合教材特點(diǎn)、教學(xué)目標(biāo)創(chuàng)設(shè)故事情境,設(shè)置認(rèn)知懸念,激發(fā)學(xué)生興趣,觸發(fā)數(shù)學(xué)思維。
如教學(xué)蘇教版二年級(jí)教材“認(rèn)識(shí)厘米”時(shí),為了讓學(xué)生對(duì)“厘米”這一長度單位建立初步的應(yīng)用意識(shí),我特意在課始播放動(dòng)畫視頻,創(chuàng)設(shè)“黑貓警長”的故事情境:黑貓警長抓住了盜竊珠寶的老鼠“一只耳”,據(jù)它交代,贓物就藏在大樹正北方向7個(gè)腳長的地方?墒呛谪埦L趕到那里,從大樹開始向正北方向走了7個(gè)腳長,卻始終都沒有找到贓物所在。大家猜一猜,到底是一只耳在說謊還是警長的問題?學(xué)生經(jīng)過討論后認(rèn)為,黑貓警長的7個(gè)腳長和一只耳的7個(gè)腳長距離并不相等,這是導(dǎo)致問題的直接原因。此時(shí)我創(chuàng)設(shè)認(rèn)知沖突:如果生活中人人都用自己的長度標(biāo)準(zhǔn)來測(cè)量距離,將會(huì)制造很多麻煩。應(yīng)該怎么辦呢?學(xué)生認(rèn)為,要用一個(gè)統(tǒng)一的長度來作為測(cè)量標(biāo)準(zhǔn)。此時(shí)我引入厘米這一長度概念,使課堂教學(xué)顯得自然而然,水到渠成。
二、新舊結(jié)合,啟發(fā)思維
新知猶如樹的新枝,新枝必從舊枝生發(fā)而來,教學(xué)亦然。教師要善加挖掘,分析學(xué)生已有知識(shí)結(jié)構(gòu)、經(jīng)驗(yàn),并與教材內(nèi)容緊密結(jié)合,根據(jù)新舊知識(shí)的差異,在新知的生長處制造認(rèn)知沖突,啟發(fā)學(xué)生的思維。
如在教學(xué)蘇教版二年級(jí)“確定位置”時(shí),我采用“喜羊羊與灰太狼”的情境創(chuàng)設(shè),出示橫排豎排的.一群羊兒,并做了這樣的問題預(yù)設(shè):“灰太狼偽裝成羊兒,就隱藏在羊群中的第二個(gè)。你能找出來嗎?”學(xué)生認(rèn)為有兩種情況,一種是從左往右數(shù)第二只,一種是從右往左數(shù)第二只,那么到底怎么才能找出來呢?由此學(xué)生得到認(rèn)知,要想找到灰太狼,就必須要知道兩個(gè)要素,一個(gè)是“第幾個(gè)”,一個(gè)是數(shù)的順序,從而學(xué)生得到確定位置的相關(guān)經(jīng)驗(yàn)。那么是否確定了這兩個(gè)要素就萬無一失了呢?接下來我改變了問題的條件,出示小動(dòng)物的做操方陣,讓學(xué)生思考:現(xiàn)在灰太狼又偽裝成小動(dòng)物混在隊(duì)伍中,知道它站在第三個(gè),哪個(gè)才是它呢?這樣一來,光知道“第幾個(gè)”和“數(shù)的順序”顯然是不行的,經(jīng)過思考和自主探究,學(xué)生發(fā)現(xiàn)除了確定第幾個(gè)之外,還要確定第幾排,但這個(gè)第幾排的確定也需要一個(gè)條件,那就是數(shù)的順序,到底是從前往后數(shù)還是從后往前數(shù)。
以上教學(xué)中,我根據(jù)教材內(nèi)容進(jìn)行整合設(shè)計(jì),從學(xué)生已有經(jīng)驗(yàn)出發(fā),運(yùn)用兩個(gè)情境突破學(xué)生的舊知,先明確了“第幾個(gè)”和“怎么數(shù)”,但在第二個(gè)情境中產(chǎn)生了矛盾,光知道第幾個(gè)是不行的,還需要知道第幾排。由此,學(xué)生通過新舊知識(shí)的嫁接,主動(dòng)思考,認(rèn)識(shí)到要知道“兩個(gè)第幾”才能解決問題,思維獲得了啟迪。
三、對(duì)比辨析,深化思維
在數(shù)學(xué)雙基教學(xué)中,教師常常利用變式對(duì)比和反例進(jìn)行概念教學(xué)。所謂變式,就是指針對(duì)知識(shí)的本質(zhì)通過實(shí)例的不斷變換,讓學(xué)生明確屬性,獲得更深入的感知。而反例則是變換本質(zhì)屬性,讓學(xué)生辨析對(duì)比,在認(rèn)知沖突中鞏固和深化認(rèn)知,有效提升數(shù)學(xué)思維。
如在教學(xué)蘇教版二年級(jí)“倍的認(rèn)識(shí)”一課時(shí),我創(chuàng)設(shè)這樣的情境:小貓采到了6朵紅色花和3朵黃色花,想一想,紅色花和黃色花的數(shù)量有什么關(guān)系?學(xué)生認(rèn)為紅色花是黃色花的2倍。為什么這樣呢?我讓學(xué)生上臺(tái)擺一擺、分一分,看看為何是2倍的關(guān)系。緊接著設(shè)置了變式:如果小貓采到8朵紅花和4朵黃花,那么紅花和黃花有什么數(shù)量關(guān)系呢?如果小兔采到4朵紅花和2朵黃花,那么黃花和紅花又是什么數(shù)量關(guān)系呢?學(xué)生由此對(duì)倍數(shù)關(guān)系有了較為直觀的表象積累。
為了鞏固“倍的認(rèn)識(shí)”,我啟發(fā)學(xué)生思考:為什么花的數(shù)量不同,但都是2倍關(guān)系呢?學(xué)生討論后認(rèn)為,上面的花是兩份,下面的花是一份,由此得到2倍的關(guān)系。此時(shí)我呈現(xiàn)反例:如下圖所示。
圖1圖2
圖中的橢圓形和三角形的數(shù)量關(guān)系也是2倍關(guān)系嗎?為什么?學(xué)生從2倍關(guān)系的本質(zhì)入手,認(rèn)為兩者的關(guān)系不是2倍關(guān)系。在圖1中,是把2個(gè)三角形看做一份,一個(gè)橢圓形看做一份,另外2個(gè)橢圓形看做一份;在圖2中,是將2個(gè)三角形看做一份,3個(gè)橢圓形看做一份。
以上教學(xué)中,通過反例和對(duì)比辨析,學(xué)生在認(rèn)知沖突中學(xué)會(huì)主動(dòng)比較共同點(diǎn),對(duì)倍的意義有了深入理解,能夠自主建構(gòu)倍的概念,深化數(shù)學(xué)思維。
因數(shù)和倍數(shù)教學(xué)反思13
一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。
“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實(shí)都是表示同一類數(shù)。(即因數(shù)也是約數(shù))
二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時(shí)候不提整除。
也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因?yàn)檎茄芯俊耙驍?shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會(huì)很快誤入小數(shù)也有因數(shù);但是我在實(shí)際的教學(xué)過程中,也體會(huì)到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個(gè)新的疑問,S版教材到底在什么時(shí)候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個(gè)概念呢?會(huì)不會(huì)在六年級(jí)課改才出現(xiàn)呢?我期待著。
三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。
1、 在教學(xué)2和5的倍數(shù)時(shí),是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時(shí),教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時(shí)是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時(shí)是2和5的倍數(shù)的特征,因此,讓學(xué)生的`知識(shí)面進(jìn)一步加大。
2、教學(xué)3的倍數(shù)的特征時(shí),教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時(shí),教師應(yīng)該引導(dǎo)學(xué)生對(duì)寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運(yùn)用這一特點(diǎn),教師可以有意識(shí)地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對(duì)3的倍數(shù)的特征進(jìn)一步得到鞏固;當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時(shí),教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運(yùn)用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會(huì)輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識(shí)面擴(kuò)大,達(dá)到知識(shí)的鞏固和遷移的目的。
3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時(shí),教師這時(shí)應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個(gè)特征綜合,從而得出同時(shí)是2、3和5的倍數(shù)的特征。
通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識(shí)面向縱橫方向發(fā)展。
因數(shù)和倍數(shù)教學(xué)反思14
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時(shí)我首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長方形,再讓學(xué)生用乘法算式表示出所擺的長方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,我緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因?yàn)?5的因數(shù)只有兩對(duì),無論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的.方法,學(xué)生就能夠很好地接受并掌握。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對(duì)學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
最后引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語言評(píng)價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
因數(shù)和倍數(shù)教學(xué)反思15
教學(xué)片斷:
1、出示12個(gè)小正方形。
師:數(shù)一數(shù),一共有幾個(gè)小正方形?如果老師請(qǐng)你把這12個(gè)同樣的小正方形拼成一個(gè)長方形,會(huì)拼嗎?能不能用一條簡單的乘法算式表達(dá)出來?
2、指名學(xué)生列式,提問其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說出每排擺幾個(gè),擺了幾排。
3、根據(jù)學(xué)生的回答,適時(shí)貼出各種不同擺法:
12×1=12
6×2=12
4×3=12
4、12個(gè)同樣大小的正方形拼成長方形,能列出三道不同的乘法算式,千萬別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書課題)
5、根據(jù)另外兩道乘法算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)。
6、剛才在聽的時(shí)候發(fā)現(xiàn)12×1=12說因數(shù)和倍數(shù)時(shí)有兩句特別拗口,是哪兩句?
說明:雖然是拗口了點(diǎn),不過數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實(shí)是12的倍數(shù)。為了方便,我們?cè)谘芯勘稊?shù)和因數(shù)時(shí)所說的數(shù)一般指不是0的自然數(shù)。
7、說一說
。1)根據(jù)72÷8=9,說一說哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
。2)從下面的數(shù)中任選兩個(gè)數(shù),說一說哪一個(gè)數(shù)是哪一個(gè)數(shù)的.倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
3、5、18、20、36
反思:
陶老師從擺小正方形入手,提出“每排擺了幾個(gè)?”“擺了幾排?”這兩個(gè)問題,引導(dǎo)學(xué)生用乘法算式把擺法表示出來,再讓學(xué)生猜一猜“可能是怎么擺的”,學(xué)生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。接著結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù),并讓學(xué)生根據(jù)另外兩道乘法算式說說誰是誰的倍數(shù),誰是誰的因數(shù)。再通過除法算式讓學(xué)生說說誰是誰的倍數(shù),誰是誰的因數(shù)。最后讓學(xué)生從五個(gè)數(shù)中任選兩個(gè)數(shù)說說誰是誰的倍數(shù),誰是誰的因數(shù),這樣層層深入,學(xué)生對(duì)倍數(shù)和因數(shù)的感受更加深刻。<
【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:
倍數(shù)和因數(shù)的教學(xué)反思03-06
《倍數(shù)和因數(shù)》教學(xué)反思04-11
《因數(shù)和倍數(shù)》教學(xué)反思01-31
《因數(shù)和倍數(shù)》教學(xué)反思10-19
因數(shù)和倍數(shù)的教學(xué)反思02-14