倍數(shù)和因數(shù)教學(xué)反思(通用17篇)
在快速變化和不斷變革的新時代,課堂教學(xué)是我們的工作之一,所謂反思就是能夠迅速從一個場景和事態(tài)中抽身出來,看自己在前一個場景和事態(tài)中自己的表現(xiàn)。反思應(yīng)該怎么寫才好呢?以下是小編幫大家整理的倍數(shù)和因數(shù)教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。
倍數(shù)和因數(shù)教學(xué)反思 篇1
。1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說話,就是培養(yǎng)學(xué)生對語言的概括能力和對事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識倍數(shù)與因數(shù)的關(guān)系,
。2)改動呈現(xiàn)倍數(shù)和因數(shù)概念的方式。我改變了例題,用杯子翻動的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
。3)根據(jù)學(xué)生的實際情況,教學(xué)找一個數(shù)的因數(shù)的方法,雖然學(xué)生不能有序地找出來,但是基本能全部找到,再此基礎(chǔ)上讓體會有序找一個數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計由易到難,由淺入深,我覺得能起到鞏固新知,發(fā)展思維的效果。
。4)設(shè)計有趣游戲活動,擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。譬如“找朋友”游戲,答案不唯一,學(xué)生思考問題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學(xué)生的學(xué)號數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來。最后問能不能想個辦法讓所有的學(xué)生都站起來。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對問題積極思考,享受了數(shù)學(xué)思維的快樂。
倍數(shù)和因數(shù)教學(xué)反思 篇2
北師大版五年級數(shù)學(xué)上、第三單元第一節(jié)《倍數(shù)與因數(shù)》是一節(jié)概念課。關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式加以說明,進(jìn)而讓學(xué)生探究尋找一個數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個教學(xué)脈絡(luò):乘法算式——倍數(shù)和因數(shù)——乘法算式——找一個數(shù)的倍數(shù)。從教材本身來看,這部分知識對于五年級學(xué)生而言,沒有什么生活經(jīng)驗,也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動、探究中掌握相應(yīng)的知識,讓乏味變成有味呢?我從以下兩個方面談一點教學(xué)體會。
一、設(shè)疑遷移,點燃學(xué)習(xí)的火花。
良好的開頭是成功的一半。我采用一道腦筋急轉(zhuǎn)彎題作為談話引入課題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點:一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。
教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨立探究尋找2的倍數(shù)、5的倍數(shù),學(xué)生發(fā)現(xiàn)2的倍數(shù)、5的倍數(shù)寫不完時,通過討論,認(rèn)為用省略號表示比較恰當(dāng),用語文中的一個標(biāo)點符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。
二、滲透學(xué)法,形成學(xué)習(xí)的技能。
由于一個數(shù)倍數(shù)的個數(shù)是無限的,那么如何讓學(xué)生體會“無限”、又如何有序?qū)懗鰜砟兀课易寣W(xué)生嘗試說出3的倍數(shù)。學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。我組織學(xué)生展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,因為簡捷正確率高所以覺得好。如此的交流雖然花費了“寶貴”的學(xué)習(xí)時間,但是學(xué)生從中能體會到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。
三、學(xué)練結(jié)合,及時把握學(xué)生學(xué)情。
在學(xué)生通過具體例子初步認(rèn)識了倍數(shù)和因數(shù)以后,通過大量的練習(xí)讓學(xué)生在練習(xí)中感悟,練習(xí)中加深理解概念;在探究出找倍數(shù)的方法以后,及時讓學(xué)生寫出2的倍數(shù)、5的倍數(shù),從而引導(dǎo)學(xué)生發(fā)現(xiàn)一個數(shù)的倍數(shù)的特點,并適時進(jìn)行針對性練習(xí),鞏固新知。
課尾,我設(shè)計了四道達(dá)標(biāo)檢測練習(xí),將整堂課的內(nèi)容進(jìn)行整理和概括,對易混淆的概念加以比較,對本節(jié)課重要知識點進(jìn)行檢測,及時掌握了學(xué)生的學(xué)情。
縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的能力也會逐步得到提高。
倍數(shù)和因數(shù)教學(xué)反思 篇3
本單元的重點是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時,我注意做到以下幾點:
一、加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個概念,理解了因數(shù)和倍數(shù)的含義對于一個數(shù)的因數(shù)的個數(shù)是有限的、倍數(shù)的個數(shù)是無限的等結(jié)論自然也就掌握了。因此,教學(xué)時,我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說中體會、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時引出12的所有因數(shù),讓孩子感受到用乘法算式找一個數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個數(shù)的因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個數(shù)的因數(shù)時,讓孩子們動腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們在體驗中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動腦思考、觀察,讓學(xué)生在自主的探究學(xué)習(xí)中表達(dá)自己的想法,通過一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
倍數(shù)和因數(shù)教學(xué)反思 篇4
《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。
比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。
倍數(shù)和因數(shù)教學(xué)反思 篇5
《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:
1.在第一個環(huán)節(jié)認(rèn)識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。
針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。
2.第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?
針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么?梢詥枺簞偛耪伊2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。
3.第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。
我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。
在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。
4.第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機(jī)號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。
原本認(rèn)為簡單的課卻一點都不簡單,每個細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。
倍數(shù)和因數(shù)教學(xué)反思 篇6
反思教學(xué)效果總結(jié)了的原因有以下幾點:
。ㄒ唬┧財(shù)和合數(shù)的判斷不熟練。一些數(shù)如:49、51、91這些數(shù)看上去是素數(shù),但其實是合數(shù)。這些數(shù)經(jīng)常被學(xué)生誤認(rèn)為是素數(shù)而導(dǎo)致錯誤,原因是這些學(xué)生就簡單的看看,而不愿意用2、3、5等素數(shù)去嘗試,努力尋找是不是有第3個因數(shù)存在。
。ǘ┮馑枷嗤,但語句表述不同時,有的學(xué)生就不能正確理解。如:在上面的數(shù)只有兩個因數(shù)的數(shù)有哪些?其實這道題目就是問在上面的數(shù)中素數(shù)有哪些。
。ㄈ┯械膶W(xué)生缺少分析理解,研究和判斷的能力,判斷和選擇題的錯誤比較多。例如:1的倍數(shù)肯定是奇數(shù)。如果一個學(xué)生先找到1的倍數(shù),然后根據(jù)數(shù)的特點作出正確的判斷。但有的學(xué)生看到1是個奇數(shù),然后就簡單地做出它的倍數(shù)也是奇數(shù)想法。例如:一個數(shù)的倍數(shù)一定比它的因數(shù)大。如果學(xué)生找一個數(shù),看看它的最小倍數(shù)是哪個?找找它的最大因數(shù)是哪個?這樣不難找到正確的答案。但是有的倍數(shù)簡單地被題目的意思誤導(dǎo),加上平時的練習(xí)中還有倍數(shù)一般都是大的,因數(shù)一般都是小的概念,學(xué)生容易誤判。
教學(xué)中,我和學(xué)生有時太滿足于平時練習(xí)的結(jié)果,而缺少讓學(xué)生進(jìn)行數(shù)學(xué)思考和表達(dá)能力的過程訓(xùn)練?磥碓谝院蟮慕虒W(xué)中,我要繼續(xù)改變教學(xué)觀念,要高度尊重學(xué)生,依靠學(xué)生,把以往教學(xué)中主要依靠教師轉(zhuǎn)變?yōu)橐揽繉W(xué)生。
建議
1、在新知教學(xué)中,注重引導(dǎo)學(xué)生進(jìn)行探究。在本單元中找一個數(shù)的倍數(shù)和因數(shù),都有比較好的方法。如何通過學(xué)生的探究找到方法,成了教學(xué)的亮點。如“找36的因數(shù)” ,找一個數(shù)的因數(shù)是本課的難點。應(yīng)該說,找出36的幾個因數(shù)并不難,難就難在找出36的所有因數(shù)。教學(xué)中,建議教師不要把方法簡單地告訴學(xué)生,而是讓學(xué)生獨立去探究,獨立寫出36的所有因數(shù),在學(xué)生反饋的基礎(chǔ)上教師再引導(dǎo)學(xué)生對有序和無序作比較,學(xué)生才能在比較、交流中感悟有序思考的必要性和科學(xué)性。交流的過程正是學(xué)生相互補(bǔ)充、相互接納的過程,是對學(xué)習(xí)內(nèi)容進(jìn)行深加工和重組知識的過程,是學(xué)生的認(rèn)知不斷走向深入,思維水平不斷提升的過程。這是新知探究階段的思維交流。既是不斷深化理解因數(shù)與倍數(shù)知識的過程,又是培養(yǎng)學(xué)生良好思維品質(zhì)的過程。給學(xué)生獨立思考的空間,提出了各自的解法或見解,是思維獨創(chuàng)性的培養(yǎng);引導(dǎo)學(xué)生一對一對有序的找,或從1開始,用除法一個個去試,是思維條理性的培養(yǎng);既有遷移于擺方塊的形象思維,又有直接運用除法算式的抽象思維,或乘除法口訣的綜合運用等,在感受解法多樣性中,培養(yǎng)了學(xué)生思維的靈活性。
2、寓教于樂,游戲中進(jìn)行相應(yīng)的鞏固練習(xí)。本節(jié)課是一節(jié)概念課,內(nèi)容比較枯燥,課本上的練習(xí)形式也比較單一,所以在認(rèn)識倍數(shù)和因數(shù)后,應(yīng)安排有趣味的游戲,比如數(shù)字轉(zhuǎn)盤游戲,讓學(xué)生看轉(zhuǎn)盤說指針停止時,內(nèi)圈的數(shù)與外圈的數(shù)的關(guān)系,進(jìn)一步認(rèn)識倍數(shù)和因數(shù),又能從中發(fā)現(xiàn)倍數(shù)和因數(shù)的相互依存的關(guān)系。在學(xué)會找倍數(shù)和因數(shù)之后也可設(shè)計游戲,如:“猜猜一位老師的電話號碼”,在一個八位數(shù)的號碼中已知其中四位,根據(jù)有關(guān)倍因數(shù)關(guān)系的問題請學(xué)生找出未知的四位號碼,以提高學(xué)生學(xué)習(xí)的積極性,稍有難度的練習(xí)給學(xué)有余力的學(xué)生一個證明自己能力的機(jī)會,讓學(xué)生在數(shù)學(xué)活動中體驗到數(shù)學(xué)學(xué)習(xí)的趣味性和挑戰(zhàn)性,學(xué)生運用所學(xué)知識解決問題,體會到了學(xué)習(xí)新知識后的成就感。
3、教師要注重評價的導(dǎo)向作用,讓學(xué)生在評價中成長。在第一課時學(xué)生交流12的因數(shù)時,教師展示了三位同學(xué)的作業(yè):第一種是無序的,第二種是從小到大有序的,第三種是一對一對有序的。接著老師讓第一種方法的學(xué)生說說自己的想法,并讓其他同學(xué)評論,此時大多數(shù)學(xué)生的評價都認(rèn)為不好,找得缺漏、無序,這時其實作為老師是否可以問問這種答案“有沒有值得肯定的地方?”,畢竟找到的這些答案都是正確地,然后再去尋找更好的方法。如果老師能經(jīng)常注意這樣引導(dǎo)評價,學(xué)生自然而然地意識到要先看別人的優(yōu)點,再看別人的缺點,也給了剛才那位學(xué)生一個心理上的安慰,使他能更積極地投入到學(xué)習(xí)當(dāng)中去。
倍數(shù)和因數(shù)教學(xué)反思 篇7
《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的教學(xué),我覺得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時在練習(xí)中我設(shè)計了其中一道題是猜我的電話號碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)和因數(shù)教學(xué)反思 篇8
在本節(jié)課中,我加強(qiáng)了操作,讓學(xué)生通過動手拼12個小正方形為長方形,經(jīng)歷操作活動可以喚醒學(xué)生相關(guān)的數(shù)學(xué)活動經(jīng)驗,幫助學(xué)生在操作的過程中有意識地感受1和12、2和6、3和4這幾組數(shù)和12之間的有機(jī)聯(lián)系,為隨后學(xué)生有意義學(xué)習(xí)倍數(shù)和因數(shù)的概念打下基礎(chǔ)。
找一個數(shù)的因數(shù)是本節(jié)課的一個難點,學(xué)生通過寫乘法算式和出發(fā)算式,感受到因數(shù)是成對出現(xiàn)的,同時要求學(xué)生在寫一個數(shù)的因數(shù)時,一前一后成對地寫出來,寫好以后是一串從小到大排列的數(shù),從而做到有序、不重復(fù)、不遺漏。而對于總結(jié)一個數(shù)倍數(shù)和因數(shù)的特征及其個數(shù)時,則引導(dǎo)學(xué)生自己通過觀察來感悟,學(xué)生學(xué)習(xí)的主動性和創(chuàng)造性得到了較好的體現(xiàn)。
我在課上對于認(rèn)識因數(shù)和倍數(shù)的教學(xué)所花的時間比較多,雖然也完成了教學(xué)任務(wù),但是“想想做做”沒來得及完成,十分遺憾。
倍數(shù)和因數(shù)教學(xué)反思 篇9
我在教學(xué)因數(shù)和倍數(shù)時,我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來人教版教材比有了很大的變化,人教版教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些下的改動,讓學(xué)生用24張小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算式就不僅限于乘法,有個別學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在我班也有個別學(xué)生在學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)的概念較多,因此有不少是由老師直接告知的,但這并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得4和24、6和24之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:24是4的倍數(shù),那反過來4和24是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到24是4的倍數(shù),反過來4就是24的因數(shù),接下來就是6和24的關(guān)系,同學(xué)們都爭者要回答。
如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:
、儆檬裁捶椒ㄕ36的因數(shù)。
、谌绾握也恢貜(fù)也不遺漏。
通過在小組交流的過程中,學(xué)生與學(xué)生之間對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這比老師給予有效得多。學(xué)生就這樣輕松、愉快的學(xué)習(xí)了因數(shù)、倍數(shù)的有關(guān)知識。
倍數(shù)和因數(shù)教學(xué)反思 篇10
《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時,為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒。那次研究之后我們工作室的每一位成員都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計,下面我來具體的說一說。
1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個例子對于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動。
2、倍數(shù)和因數(shù)的意義。本課是想通過用12個完全相同的正方形拼成長方形的活動來讓學(xué)生在活動中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動,試著擺一擺,看看有沒有不同的擺法,在交流的時候讓學(xué)生說說自己的擺法,每排擺了幾個,擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時候讓學(xué)生自己寫一個算式,并說一說。
3、找一個數(shù)的倍數(shù)。這應(yīng)該時本節(jié)課的重難點內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時候把這一個重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點該如何突破?是不是應(yīng)讓學(xué)生先獨立想一想辦法,多說一說,給學(xué)生足夠多的時間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對方法進(jìn)行優(yōu)化,選擇快速簡單的找法。在教學(xué)的時候,同時注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識,可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時候也會選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。
4、找倍數(shù)的特征。在完成找一個數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,可能會限制一些學(xué)生的思考。如果學(xué)生在觀察時沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對學(xué)生進(jìn)行適當(dāng)?shù)奶崾,讓學(xué)生觀察一個數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個數(shù)等。先給學(xué)生足夠的時間讓學(xué)生自己去找,我們要相信他們藕能力做到。
5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動中找不到合作的對象,如果上課之前具體的`分好了,小組討論的效率會高很多。在上課時,我要少說,把更多說的機(jī)會留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時還要相信學(xué)生,不要怕學(xué)生不會,而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。
倍數(shù)和因數(shù)教學(xué)反思 篇11
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。我覺得這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)和是一對相互依存的概念,不能單獨存在,不是很好理解。我通過捕捉生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意和孩子們玩了一個小游戲。用“我和誰是好朋友”這句話來理解相互依存的意思。即“我是誰的好朋友”,“誰是我的好朋友”,而不能說“我是好朋友”。學(xué)生對相互依存理解了,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。
一是教材雖然不是從過去的整除定義出發(fā),而是通過一個乘法算式來引出因數(shù)和倍數(shù)的概念,但本質(zhì)上任是以“整除”為基礎(chǔ)。所以我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。我舉了一些反例加以說明。
二是要學(xué)生注意區(qū)分乘法算式中的“因數(shù)”和本單元中的“因數(shù)”的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對于“積”而言的,與“乘數(shù)”同義,可以是小數(shù),而后者是相對于“倍數(shù)”而言的,兩者都只能是整數(shù)。三是要注意區(qū)分“倍數(shù)”與前面學(xué)過的“倍”的聯(lián)系與區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣?梢哉f“15是3的5倍”,也可以說“1.5是0.3的5倍”,但我們只能說“15是3的倍數(shù)”,卻不能說“1.5是0.3的倍數(shù)”。我在課堂上反復(fù)強(qiáng)調(diào),幫助孩子們認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,不會模糊了。
倍數(shù)和因數(shù)教學(xué)反思 篇12
一、單元主題圖體驗數(shù)學(xué)化過程。單元主題圖是教材中的一個重要內(nèi)容,它是選擇某一個主題構(gòu)建的一幅情境圖,本單元就出現(xiàn)了“數(shù)的世界”單元主題圖。在教學(xué)中,我是從培養(yǎng)學(xué)生的問題意識出發(fā)來組織教學(xué)的,首先讓學(xué)生獨立觀察主題圖,通過獨立思考提出問題;然后讓孩子們通過小組合作,共享學(xué)習(xí)的成果;最后通過解決問題,體驗獲取知識的過程。教學(xué)中學(xué)生不僅很快找到了整數(shù)、小數(shù)、負(fù)數(shù),而且也找到了橙子賣完了用“0”表示,圖中有一個凳子、一張桌子用“1”表示,更多的是學(xué)生提出了很多的數(shù)學(xué)問題,如我有50元可以買多少千克蘋果?學(xué)生真正是在自主學(xué)習(xí)的過程中提出問題、解決問題,體驗“數(shù)學(xué)化”的過程。
二、數(shù)形結(jié)合實現(xiàn)有意義建構(gòu)。教材中對因數(shù)概念的認(rèn)識,設(shè)計了“用小正方形拼長方形”的操作活動,引導(dǎo)學(xué)生在方格紙上畫一畫,寫出乘法算式,再與同學(xué)進(jìn)行交流。在思考“哪幾種拼法”時,借助“拼小正方形”的活動,使數(shù)與形有機(jī)地結(jié)合,防止學(xué)生進(jìn)行“機(jī)械地學(xué)習(xí)”;學(xué)生對因數(shù)和理解不僅是數(shù)字上的認(rèn)識,而且能與操作活動與圖形描述聯(lián)系起來,促進(jìn)了學(xué)生的有意義建構(gòu),這是一個“先形后數(shù)”的過程,是一個知識抽象的過程。
三、探索活動關(guān)注解決問題的策略。學(xué)生在探索活動中,運用做記號、列表格、畫示意圖等解決問題的策略來發(fā)現(xiàn)規(guī)律和特征,在探究的過程中,體會觀察、分析、歸納、猜想、驗證等過程,孩子們學(xué)會了思考,初步形成了解決問題的一些基本策略。
四、困惑:
1、第一次真正開始教北師大教材,最大的感覺是教學(xué)的空間真的擴(kuò)大了,課堂活躍了,但是同時給學(xué)生進(jìn)行課后輔導(dǎo)的時間也增加了,每節(jié)課從學(xué)生的反饋看來,卻有相當(dāng)一部分的學(xué)生存在各種問題,教材中太缺乏那些能讓他們成功的“基礎(chǔ)性”題目,整個一個單元只有一個練習(xí)一,那六道題目真的能解決問題嗎?能否多給孩子們一些選擇。
2、不太明白為什么一定要使用“因數(shù)”這個概念,比較“因數(shù)——公因數(shù)——最大公因數(shù)——約分”和“約數(shù)——公約數(shù)——最大公約數(shù)——約分”,總覺得后者容易接受吧。這一改好像我們還得教學(xué)生家長,就真的有學(xué)生家長投訴說“老師啊,你教錯了,那不是因數(shù),是約數(shù)……”,讓人哭笑
倍數(shù)和因數(shù)教學(xué)反思 篇13
本節(jié)課是第二單元的第一課時,第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。加強(qiáng)對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點去掌握這些知識,而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。
今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。同時,我還出示了一個除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
找出一個數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對學(xué)困生的輔導(dǎo)。
倍數(shù)和因數(shù)教學(xué)反思 篇14
《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。
。1)新課標(biāo)教材不再提“整除”的概念,也不再是從除法算式的觀察中引入本單元的學(xué)習(xí),而是反其道而行之,通過乘法算式來導(dǎo)入新知。
(2)“約數(shù)”一詞被“因數(shù)”所取代。
這樣的變化原因何在?我認(rèn)真研讀教材,通過學(xué)習(xí)了解到以下信息:簽于學(xué)生在前面已經(jīng)具備了大量的區(qū)分整除與有余數(shù)除法的知識基礎(chǔ),對整除的含義已經(jīng)有了比較清楚的認(rèn)識,不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
雖然學(xué)生已接觸過整除與有余數(shù)的除法,但我班學(xué)生對“整除”與“除盡”的內(nèi)涵與外延并不清晰。因此在教學(xué)時,補(bǔ)充了兩道判斷題請學(xué)生辨析:
11÷2=5……1。問:11是2的倍數(shù)嗎?為什么?因為5×0.8=4,所以5和0.8是4的因數(shù),4是5和0.8的倍數(shù),對嗎?為什么?
特別是第2小題極具價值。價值不僅體現(xiàn)在它幫助學(xué)生通過辨析明確了在研究因數(shù)和倍數(shù)時,我們所說的數(shù)都是指整數(shù)(一般不包括0),及時彌補(bǔ)了未進(jìn)行整除概念教學(xué)的知識缺陷,還通過此題對“因數(shù)”與乘法算式名稱中的“因數(shù)”,倍數(shù)與倍進(jìn)行了對比。
倍數(shù)和因數(shù)教學(xué)反思 篇15
不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。
1、以往認(rèn)識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù)。現(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。
2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。
3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。
可見,編者為體現(xiàn)新課標(biāo)精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強(qiáng)。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。
倍數(shù)和因數(shù)教學(xué)反思 篇16
簡單的內(nèi)容中蘊(yùn)藏著復(fù)雜的關(guān)系,由于新教材把“整除”的概念去掉,再也不提誰被誰整除,而改成借助整除模式na=b,直接引出因數(shù)和倍數(shù)的概念,這部分內(nèi)容顯得比較容易了,學(xué)生在學(xué)因數(shù)時,對于求一個數(shù)的因數(shù),及理解一個數(shù)的因數(shù)最小是1,最大因數(shù)是它本身,及一個數(shù)的因數(shù)的個數(shù)是有限的,感覺很清楚,明白。在學(xué)倍數(shù)時,對求一個數(shù)的倍數(shù)及理解一個數(shù)的倍數(shù)中最小的是它本身,沒有最大的倍數(shù)也認(rèn)為容易簡單,但有關(guān)因數(shù)、倍數(shù)的綜合練習(xí)不少學(xué)生開始猶豫、混淆。如判斷一個數(shù)的因數(shù)的個數(shù)是無限的,不少學(xué)生判斷為對。練習(xí)中:18是的倍數(shù),個別學(xué)生選擇了18、36、54……。針對這種情況,我調(diào)整了練習(xí),組織學(xué)生研究了以下幾個問題:
1、寫出12的因數(shù)和倍數(shù),寫出16的因數(shù)和倍數(shù)。
2、觀察比較,會打消列問題:一個數(shù)的因數(shù)和它本身的關(guān)系,
3、為什么一個數(shù)的因數(shù)的個數(shù)是有限的?最小是1,最大是它本身,也就是1和它本身之間的整數(shù)。為什么一個數(shù)的倍數(shù)的個數(shù)是無限的?最小是它本身,沒有最大的。
通過對這幾個問題的討論,多數(shù)學(xué)生較好的區(qū)分了一個數(shù)的因數(shù)和倍數(shù)
倍數(shù)和因數(shù)教學(xué)反思 篇17
教學(xué)《倍數(shù)與因數(shù)》,這是一個非常枯燥的課題,但我巧妙地運用課文中的情景圖與學(xué)生的生活實際聯(lián)系,通過水果店各種水果的單價所顯示的數(shù)進(jìn)行分類,得出自然數(shù)、整數(shù)、小數(shù)、分?jǐn)?shù)和負(fù)數(shù),使學(xué)生體會生活中各種不同的數(shù)。為了讓學(xué)生理解倍數(shù)與因數(shù)的含意,教學(xué)過程中,我立足體現(xiàn)一個“實”字,讓學(xué)生從算式中找出能整除的算式,揭示整除、倍數(shù)、因數(shù)之間的關(guān)系,再通過舉例去驗證倍數(shù)與因數(shù)之間的聯(lián)系,在推理中“悟”出知識的規(guī)律。學(xué)生在學(xué)習(xí)中實實在在經(jīng)歷了一個探究的過程!皠幽X筋出教室”這一游戲的設(shè)計,學(xué)生在積極參與探討、質(zhì)疑、創(chuàng)造的教學(xué)活動,既鞏固了知識,又享受了數(shù)學(xué)思維的快樂。
在授課時,我體驗到了學(xué)生的快樂。當(dāng)學(xué)生用自己的學(xué)號說整除、因數(shù)、倍數(shù)之間的關(guān)系時,由于像順口溜,很有趣。每個學(xué)生都很感興趣,說得很努力。原來,數(shù)學(xué)也很有趣……
【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:
《因數(shù)和倍數(shù)》的教學(xué)反思11-29
《因數(shù)和倍數(shù)》教學(xué)反思08-19
《倍數(shù)和因數(shù)》的教學(xué)反思06-20
《倍數(shù)和因數(shù)》教學(xué)反思06-01