中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

二次根式教案

時間:2023-02-27 16:20:12 教案 我要投稿

二次根式教案

  作為一名人民教師,時常需要用到教案,教案是教學活動的依據(jù),有著重要的地位。怎樣寫教案才更能起到其作用呢?下面是小編整理的二次根式教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次根式教案

二次根式教案1

  一、案例背景:

  本節(jié)是九年級上學期數(shù)學的起始課。二次根式的學習,是對代數(shù)式的進一步學習。本節(jié)主要經(jīng)歷二次根式的發(fā)生過程及對二次根式的理解。掌握求二次根式的值和二次根式根號內(nèi)字母的取值范圍。為以后的運用二次根式的運算解決實際問題打好基礎。

  二、案例描述:

  1、學習任務分析:

  通過對數(shù)和平方根、算術平方根的復習,鼓勵學生經(jīng)歷觀察、歸納、類比等方法理解二次根式的概念。在解決實際問題的時候,注意轉(zhuǎn)化思想的滲透。體會分析問題、解決問題的方法,積累數(shù)學活動經(jīng)驗。比如求二次根式根號內(nèi)的字母的取值范圍,就是將問題轉(zhuǎn)化為不等式來解決。注意學生數(shù)學書寫格式的規(guī)范,為以后的學習打好基礎。為了使學生更好地掌握這一部分內(nèi)容,遵循啟發(fā)式教學原則,用復習以前學過的知識導入新課。設計合作學習活動,引導學生操作、觀察、探索、交流、發(fā)現(xiàn)、思維,解決實際問題的過程,真正把學生放到主體位置。

  2、學生的認知起點分析:

  學生已掌握數(shù)的平方根和算術平方根。這為經(jīng)歷二次根式概念的發(fā)生過程做好準備。另外,學生對數(shù)的算術平方根的理解作為基礎,經(jīng)歷跟此根式概念的發(fā)生過程,引導學生對二次根式概念的.理解。

  案例反思:

  1、下列代數(shù)式若能作為二次根式的被開方數(shù),則求出字母的取值范圍?若不能,則說明理由。1-2a-2a2-1(2+a)2-(a-5)2

  以往對這類問題的回答都是全班回答,有些學生反面信息不能體現(xiàn)出來。采取的措施是全班舉手勢回答,可以做二次根式的被開方數(shù)舉“布”,若不能舉“拳頭”。使班級能夠全面參與,避免集體回答所體現(xiàn)不出的問題。

  2、合作活動:

  第一位同學——出題者:請你按表中的要求寫完后,按順時針方向交給下一位同學;

  第二位同學——解題者:請你按表中的要求解完后,按順時針方向交給下一位同學;

  第三位同學——批改者:請你用藍筆批改,若有錯誤,請與解題者商議并請其訂正,完成交給你信任的同學用紅筆復;

  第四位同學——復查者:請你一定要把好關哦!

  出題者姓名:

  解題者姓名:

  第一個二次根式:

  1、 要使式子的值為實數(shù),求x的取值范圍。

  2、 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。

  3、 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

  第二個二次根式:

  1、 要使式子的值為實數(shù),求x的取值范圍。

  2、 寫出x的一個值,使式子的值為有理數(shù),并求出這個有理數(shù)。

  3、 寫出x的一個值,使式子的值為無理數(shù),并求出這個無理數(shù)。

  批改者姓名:

  復查者姓名:

  《課程標準》突出了學生在學習中的地位 -- 學生是學習的主人,同時,教師的地位、角色發(fā)生了變化,從 “ 主導 ” 變成了 “學生學習活動的組織者、引導者和合作者 ”。合作活動的安排就是對這一課程標準的體現(xiàn)。

二次根式教案2

  教學目標

  1、根據(jù)了解二次根式的概念:

  2、知道被開方數(shù)必須是非負數(shù)的理由;

  3、能運用二次根式的性質(zhì)解決實際問題

  4新設計:我們知道,用字母表示數(shù),可以將字母和數(shù)一起運算。前面已經(jīng)學習了單項式、多項式和分式等概念和運算,可以發(fā)現(xiàn),式的運算本質(zhì)上就是對符號運用運算律所進行的形式運算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運算。前面我們學習的平方根和算術平方根的概念和性質(zhì)是學習二次根式的基礎,我們先來回憶一下平方根和算術平方根的有關知識。

  5、新設計:問題1平方根的概念,算術平方根的概念,平方根的性質(zhì)。

  6、學情分析:本班40名學生,成績參差不齊,程度差距很大,鑒于此,對于學生要分層教學。

  7、重點難點:1.重點:形如(a≥0)的式子叫做二次根式的概念;2.難點:運用二次根式的性質(zhì)解決實際問題。

  8、教學過程6.1第一學時教學活動

  活動1【講授】二次根式

  教學過程設計

  創(chuàng)設情境,提出問題

  引言

  我們知道,用字母表示數(shù),可以將字母和數(shù)一起運算。前面已經(jīng)學習了單項式、多項式和分式等概念和運算,可以發(fā)現(xiàn),式的運算本質(zhì)上就是對符號運用運算律所進行的形式運算。本節(jié)課主要討論如何對數(shù)和字母開平方而得到的特殊式子——二次根式的加、減、乘、除運算。前面我們學習的平方根和算術平方根的概念和性質(zhì)是學習二次根式的基礎,我們先來回憶一下平方根和算術平方根的有關知識。

  問題1平方根的概念,算術平方根的概念,平方根的性質(zhì)。

  師生活動:給學生充分思考和討論時間,讓他們回憶有關平方根和算術平方根的有關知識,才能在此基礎上再進一步研究二次根式概念。

  設計意圖:回顧已學的數(shù)和式的運算,叢數(shù)和式運算的完整性角度提出要研究的問題,讓學生了解本章將要學習的主要內(nèi)容,起到先行組織者的作用。

  問題2請思考下列問題

  面積為3的正方形的邊長為,面積為S的正方形邊長為。

  一個長方形圍欄,長是寬的2倍,面積為130㎡,則它的寬為m。

  一個物體從高處自由落下,落在地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關系h=5t2。如果用含有h的式子表示t,則t為。

  師生活動:學生思考并完成上述問題,用算術平方根表示結(jié)果,教師進行適當引導和評價。關鍵是幫助學生實現(xiàn)從數(shù)的算術平方根到用含有字母的式子表示算術平方根的抽象。

  設計意圖:為概括二次根式的概念提供具體例子,同時發(fā)展符號意識。

  抽象概括,形成概念

  問題3上面得到的式子有什么共同特征?

  師生活動:教師引導學生概括得出共同特征,并給出二次根式的定義。

  追問1中a的取值有要求嗎?為什么?

  師生活動:教師引導學生討論,分析共同特點,歸納得到二次根式的概念,并強調(diào)“被開方數(shù)非負”。

  追問2二次根式有什么樣的特點?

  師生活動:給學生充分的思考和討論時間,讓學生總結(jié)二次根式的特點,教師歸納總結(jié)。

  設計意圖:采用從具體到抽象的方式,通過歸納的出二次根式的概念。

  辨析概念,應用鞏固

  例1下列各式是二次根式嗎?

  師生活動:教師引導學生從二次根式的特征出發(fā)思考問題。

  例2求下列二次根式中字母的取值范圍:

  師生活動:教師可以通過問題“觀察各式被開方數(shù)是什么?你能根據(jù)二次根式的概念的帶答案嗎?”引導學生從概念出發(fā)思考問題。

  追問:求二次根式中字母的取值范圍的;疽罁(jù):

  師生活動:給學生充分的思考和討論時間,讓學生總結(jié)回答,教師歸納總結(jié)。

  問題4 x取何值時,下列二次根式有意義?

  師生活動:學生搶答加分,調(diào)動學大亨的積極性。

  設計意圖:讓學生獨立思考,再追問。

  問題5計算

  師生活動:通過簡單計算讓學生總結(jié)規(guī)律。

  例3計算

  師生活動:學生直接回答。

  設計意圖:通過加分制調(diào)動學生的積極性,提高學生的注意力,通過練習鞏固知識點。

  問題7計算

  師生活動:通過簡單計算讓學生總結(jié)規(guī)律。

  追問:

  師生活動:學生討論回答,教師歸納總結(jié)。

  設計意圖:通過簡單計算學生自己歸納總結(jié)二次根式的性質(zhì),加深學生的印象。

  綜合應用,深化提高

  練習1學生完成教科書第3頁的練習。

  練習2若1<x<4,則化簡

  設計意圖:辨別二次根式的概念,確定二次根式有意的條件。利用二次根式的性質(zhì)解題。

  小結(jié)

  教師與學生一起回顧本節(jié)課所學主要內(nèi)容,并請學生回答下列問題:

  什么叫二次根式?二次根式有意義的條件是什么?二次根式的值的范圍是什么?

  二次根式與算術平方根有什么聯(lián)系與區(qū)別?

  我們以前學過整式、分式都能像數(shù)一樣進行運算,你認為對于二次根式應該進一步研究哪些問題?

  設計意圖:共同回顧本節(jié)課學習的概念,再次練習算術平方根理解二次根式的概念,提出二次根式應該研究的'問題。

  布置作業(yè)

  教科書習題16.1第1、2題。

  教學反思:

  1、在實際授課中,通過以下步驟讓學生認識、理解、并掌握本節(jié)知識:

 。1)讓學生回顧了算術平方根與平方根的概念,并且通過一個思考欄目的兩道題,得出二次根式的定義后又復習了算術平方根具有雙重非負性;

  (2)通過練習掌握如何判斷一個式子是否是二次根式的條件,并經(jīng)過例1掌握二次根式在實數(shù)范圍內(nèi)有意義的條件;

 。3)通過練習讓學生得出二次根式的兩個性質(zhì),體會從特殊到一般的思維過程,進而掌握公式的一般推導方法;……,本節(jié)課大部分時間都是引導學生邊學邊做,讓學生經(jīng)歷了整個學習過程。

  2、在學習過程中,突出了引導學生自己得出結(jié)論,特別是二次根式的兩個性質(zhì),在做完思考題之后,學生自己就初步得出了結(jié)論,而且通過其他學生的補充越來越完善。

  3、讓學生自己找出性質(zhì)1和性質(zhì)2的區(qū)別與聯(lián)系,雖然不夠系統(tǒng)和完整,但通過這樣的訓練,培養(yǎng)了學生總結(jié)規(guī)律的能力。

  4、在實際教學中,仍然存在著對課堂時間把握不精確的問題,出現(xiàn)了前松后緊的現(xiàn)象,以致有深度的練習沒時間完成,結(jié)束的也比較倉促。在今后教學中,應注意時間的掌控。

  5、在引導學生探索求知和互動學習方面還有欠缺。新的教學理念要求教師在課堂教學中注意引導學生探究學習,在我的課堂教學中,對學生探索求知進行了引導,并且鼓勵大家自己得出結(jié)論,但在互動方面做的還不夠,大部分學生都是獨立思考,很少與同學合作交流,今后的教學中應多培養(yǎng)學生合作交流的意識,這樣有助于他們今后的生活和學習。

二次根式教案3

  一、素質(zhì)教育目標

 。ㄒ唬┲R教學點

  1.使學生了解最簡二次根式的概念和同類二次根式的概念.

  2.能判斷二次根式中的同類二次根式.

  3.會用同類二次根式進行二次根式的加減.

 。ǘ┠芰τ柧汓c

  通過本節(jié)的學習,培養(yǎng)學生的思維能力并提高學生的運算能力.

 。ㄈ┑掠凉B透點

  從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學生體會轉(zhuǎn)化的思維,滲透辯證唯物主義思想.

 。ㄋ模┟烙凉B透點

  通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.

  二、學法引導

  1.教師教法引導法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法.

  2.學生學法通過不斷的練習,從中體會、比較、二次根式加減法中,正確的`方法使用,并注重小結(jié)出二次根式加減法的法則.

  三、重點·難點·疑點及解決辦法

  1.教學重點二次根式的加減法運算.

  2.教學難點二次根式的化簡.

  3.疑點及解決辦法二次根式的加減法的關鍵在于二次根式的化簡,在適當復習二次根的化簡后進行一步引入幾個整式加減法的,以引起學生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進行階梯式教學,由淺到深、由簡單到復雜的教學方法,以利于學生的理解、掌握和運用,通過具體例題的計算,可由教師引導,由學生總結(jié)出計算的步驟和注意的問題,還可以通過反例,讓學生去偽存真,這種比較法的教學可使學生對概念的理解、法則的運用更加準確和熟練,并能提高學生的學習興趣,以達到更好的學習效果.

  四、課時安排

  2課時

  五、教具學具準備

  投影片

  六、師生互動活動設計

  1.復習最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學生回答問題.

  2.教師通過例題的示范讓學生了解什么是二次根式的加減法,并引入同類的二次根式的定義.

  3.再通過較復雜的二次根式的加減法計算,引導學生小結(jié)歸納出二次根式的加減法的法則.

  4.通過學生的反復訓練,發(fā)現(xiàn)問題及時糾正,并引導學生從解題過程中體會理解二次根式加減法的實質(zhì)及解決的方法.

  七、教學步驟

 。ㄒ唬┟鞔_目標

  學習二次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達到化繁為簡的目的,本節(jié)課就是研究二次根式的加減法.

  (二)整體感知

  同類二次根式的概念應分二層含義去理解(1)化簡后(2)被開方數(shù)還相同.通過正確理解二次根式加減法的法則來準確地實施二次根式加減法的運算,應特別注意合并同類二次根式時僅將它們的系數(shù)相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強綜合運算的能力.

【二次根式教案】相關文章:

二次根式的教案10-19

二次根式教案02-15

《二次根式的運算》的教案06-20

關于二次根式教案08-27

《二次根式的運算》的教案09-07

【精選】二次根式教案3篇08-13

數(shù)學二次根式教案02-15

【精選】二次根式教案4篇07-02

二次根式教案九篇02-06