《比例的意義》教案通用
作為一名教師,通常需要用到教案來輔助教學(xué),編寫教案有利于我們準(zhǔn)確把握教材的重點與難點,進而選擇恰當(dāng)?shù)慕虒W(xué)方法。寫教案需要注意哪些格式呢?下面是小編精心整理的《比例的意義》教案通用,供大家參考借鑒,希望可以幫助到有需要的朋友。
《比例的意義》教案通用1
教學(xué)內(nèi)容:
教材第99~102頁例1~例3。
教學(xué)要求:
1.使學(xué)生認(rèn)識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。
2.進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:
認(rèn)識反比例關(guān)系的意義。
教學(xué)難點:
掌握成反比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、鋪墊孕伏:
1.正比例關(guān)
系的意義是什么?怎樣用字母表示這種關(guān)系?
判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?
2.下面哪兩種量成正比例關(guān)系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)
二、自主探究:
1.教學(xué)例2。
出示例2某運輸公司要運一批300噸的貨物。讓學(xué)生計算并完成填表任務(wù)。
每天運的數(shù)量(噸)1020304050
所需的天數(shù)
在本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學(xué)生口答討論的結(jié)果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學(xué)例1
出示例1。
請同學(xué)們按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例1,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,小組討論:長方形的面積比變,當(dāng)長發(fā)生變化時,長方形的寬發(fā)生變化嗎?變化的規(guī)律是怎樣的?
3.概括反比例的意義。
(1)綜合例1、例2的共同點。
提問:請你比較一下例1和例2,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例1、例2里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請同學(xué)們看第101頁1~3自然段。說明:像例1、例2里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?(板書:xy=k(一定))指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用xy=k(一定)來表示。
4.具體認(rèn)識。
(1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,
例2里的兩種量成反比例關(guān)系嗎?為什么?
(2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?
(3)判斷。
現(xiàn)在回過來看開始寫的關(guān)系式:工作效率工作時間=工作總量,當(dāng)工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。
5.教學(xué)例3。
出示例3,看書自學(xué),小組討論,集體交流。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?
三、鞏固練習(xí)
用剛才我們說的判斷方法來做幾道題。
1.做練一練。
指名學(xué)生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)
2.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
3.做練習(xí)十二第1題。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?
五、課堂作業(yè)
練習(xí)十二第2~4題。
《比例的意義》教案通用2
教學(xué)內(nèi)容:
《反比例的意義》是六年制小學(xué)數(shù)學(xué)(北師版)第十二冊第二單元中的內(nèi)容。是在學(xué)過“正比例的意義”的基礎(chǔ)上,讓學(xué)生理解反比例的意義,并會判斷兩個量是否成反比例關(guān)系,加深對比例的理解。
學(xué)生分析:
在此之前,他們學(xué)習(xí)了正比例的意義,對“相關(guān)聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經(jīng)有了認(rèn)識,這為學(xué)習(xí)《反比例的意義》奠定了基礎(chǔ)。
教學(xué)目標(biāo):
1、知識與技能目標(biāo):使學(xué)生認(rèn)識成反比例的量,理解反比例的意義,并學(xué)會判斷兩種相關(guān)聯(lián)的量是否成反比例。進一步培養(yǎng)學(xué)生觀察、學(xué)析、綜合和概括等能力。初步滲透函數(shù)思想。
2、過程與方法:為學(xué)生營造一個經(jīng)歷知識產(chǎn)生過程的情境。
3、情感與態(tài)度目標(biāo):使學(xué)生在自主探索與合作交流中體驗成功的樂趣,進一步增強學(xué)好數(shù)學(xué)的信心。
教學(xué)重點:
理解反比例的意義。
教學(xué)難點:
兩種相關(guān)聯(lián)的量的變化規(guī)律。
教學(xué)準(zhǔn)備:
學(xué)生準(zhǔn)備:復(fù)習(xí)正比例關(guān)系,預(yù)習(xí)本節(jié)內(nèi)容。
教師準(zhǔn)備:
投影片3張,每張有例題一個。
教學(xué)過程設(shè)計:
一、談話引入,激發(fā)興趣。
1、談話:通過最近一段時間的觀察,我發(fā)現(xiàn)同學(xué)們越來越聰明了,會學(xué)數(shù)學(xué)了,這是因為同學(xué)們掌握了一定的數(shù)學(xué)學(xué)習(xí)的基本方法。下面請回想一下,我們是怎樣學(xué)習(xí)成正比例的量的?這節(jié)課我們用同樣的學(xué)習(xí)方法來研究比例的另外一個規(guī)律。
2、導(dǎo)入:在實際生活中,存在著許多相關(guān)聯(lián)的量,這些相關(guān)聯(lián)的量之間有的是成正比例關(guān)系,有的成其他形式的關(guān)系,讓我們一起來探究下面的問題。
二、創(chuàng)設(shè)情景引新:
。ǔ鍪荆菏䝼小方塊)
師:同學(xué)們,這十二個小方塊有幾種排法?
。ㄉ鸷螅蠋煱鍟卤淼呐帕羞^程)
每行個數(shù)1234612
行數(shù)1264321
師:請你觀察上表中每行個數(shù)與行數(shù)成正比例關(guān)系嗎?為什么?
生:……
師:這兩種量這間有關(guān)系嗎?有什么關(guān)系?這就是我們今天要研究的內(nèi)容。
。ǔ鍪菊n題:反比例的意義)
三、合作自學(xué)探知
1、學(xué)習(xí)例4。
(1)出示例4。
師:請同學(xué)們在小組內(nèi)互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。
A、表中有哪兩種量?
B、怎樣隨著每小時加工的數(shù)量變化?
c、每兩個相對應(yīng)的數(shù)的乘積各是多少?
學(xué)生討論……
生反饋:……
師:能不能舉出三個例子
生:1020=6002030=6003020=600……
師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關(guān)系式嗎?
生:……
。郯鍟鍪荆好啃r加工數(shù)加工時間=零件總數(shù)(一定)]
2、自學(xué)例5:
(1)出示例5:
師:先請同學(xué)們按要求在書上填空,并說說是怎樣算的?根據(jù)什么?
生:……
師:模仿例4的方法,提出三個問題自己學(xué)習(xí)例5(出示三個問題)
生:……
3、討論準(zhǔn)備題:
。1)請你根據(jù)例4的方法,四人小組內(nèi)說一說。
。2)請你舉例說明表中每行個數(shù)與行數(shù)是什么關(guān)系?為什么?
四、比較感知特征
綜合例4、例5、準(zhǔn)備題的共同點師:比較一下例4、例5和準(zhǔn)備題,請同學(xué)們在小組中討論一下,互相說說這三個題目有什么共同的特征?
生:……
五、引導(dǎo)概括意義
1、概括反比例意義。
學(xué)生在說相同點時老師邊引導(dǎo)邊說明。當(dāng)學(xué)生說出三個特征后,教師板書這三個特征。
師:請同學(xué)們根據(jù)我們上節(jié)課學(xué)的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關(guān)系?
生:……
師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關(guān)系。
學(xué)生互相練習(xí)……
師:哪位同學(xué)來告訴大家,兩種量如果成反比例必須符合哪三個條件?
生:……
師:例4、例5和準(zhǔn)備題中的兩種量成不成反比例?為什么?
生:……(學(xué)生回答后,老師及時糾正)
師:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?
生:……[板書出示y=k(一定)]
2、教學(xué)例6。
。1)課件出示例6。
。▽W(xué)生讀題、思考)
師:怎樣判斷兩種量成不成反比例?
師:哪位同學(xué)說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?
生:因為每天播種的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。
六、小結(jié):這節(jié)課同學(xué)們學(xué)到了哪些知識?運用了哪些學(xué)習(xí)方法?還有哪些不懂的問題?
[案例分析]:
通過聯(lián)系生活實際,學(xué)習(xí)成反比例的量,體會數(shù)學(xué)與生活的緊密聯(lián)系。不對研究的過程做詳細(xì)的引導(dǎo)和說明,只提供研究的素材和數(shù)據(jù),出示關(guān)鍵性的結(jié)論,充分發(fā)揮學(xué)生的主動性,以體現(xiàn)自主探究、合作交流的學(xué)習(xí)過程,獲得學(xué)習(xí)成功的體驗。通過引導(dǎo)學(xué)生觀察、分析、比較、歸納,形成良好的思維習(xí)慣和思維品質(zhì)。同時加深學(xué)生對數(shù)量關(guān)系的認(rèn)識,滲透函數(shù)思想,為中學(xué)的數(shù)學(xué)學(xué)習(xí)做好知識準(zhǔn)備。學(xué)習(xí)方式的轉(zhuǎn)變是新課改的顯著特征,就是把學(xué)習(xí)過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認(rèn)識活動凸顯出來。在設(shè)計《反比例的意義》時,根據(jù)學(xué)生的知識水平,對教學(xué)內(nèi)容進行處理,克服教材的局限性,最大限度地拓寬探究學(xué)習(xí)的空間,提供自主學(xué)習(xí)的機會。
《比例的意義》教案通用3
教學(xué)目標(biāo):
1、 理解比例的意義,認(rèn)識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質(zhì)。
2、 能根據(jù)比例的意義和基本性質(zhì),正確判斷兩個比能否組成比例。
3、 在自主探究、觀察比較中,培養(yǎng)學(xué)生分析、概括能力和勇于探索的精神。
4、 通過自主學(xué)習(xí),讓學(xué)生經(jīng)經(jīng)歷探究的過程,體驗成功的快樂。
教學(xué)重、難點:
重點:理解比例的意義和基本性質(zhì),能正確判斷兩個比能否組成比例。
難點:自主探究比例的基本性質(zhì)。
教學(xué)準(zhǔn)備:
CAI課件
教學(xué)過程:
一、復(fù)習(xí)、導(dǎo)入
1、 談話:同學(xué)們,我們已經(jīng)學(xué)過了比的有關(guān)知識,說說你對比已經(jīng)有了哪些了解?(生答:比的意義、各部分名稱、基本性質(zhì)等。)
還記得怎樣求比值嗎?
2、 課件顯示:算出下面每組中兩個比的比值
⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
、 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[評析:從學(xué)生已有的知識經(jīng)驗入手,方便快捷,為新課做好準(zhǔn)備。]
二、認(rèn)識比例的意義
。ㄒ唬┱J(rèn)識意義
1、 指名口答上題每組中兩個比的比值,課件依次顯示答案。
師問:口算完了,你們有什么發(fā)現(xiàn)嗎?(3組比值相等,1組不等)
2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30 。
。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)
最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數(shù)據(jù)隱去)
數(shù)學(xué)中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)
[評析:通過口算求比值,發(fā)現(xiàn)有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學(xué),就需要像這樣做好已有經(jīng)驗與新知識的銜接。]
3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內(nèi)容呢?
。ㄉ穑合胙芯勘壤囊饬x,學(xué)比例有什么用?比例有什么特點……)
5、 那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?
。ǜ鶕(jù)學(xué)生的回答,教師抓住關(guān)鍵點板書:兩個比 比值相等)
同學(xué)們說的比例的意義都正確,不過數(shù)學(xué)中還可以說得更簡潔些。
課件顯示:表示兩個比相等的式子叫做比例。
學(xué)生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
[評析:比例的意義其實是一種規(guī)定,學(xué)生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學(xué)生先觀察,再用自己的話說說什么是比例,學(xué)生都能說出比例意義的關(guān)鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學(xué)生語言概括能力的培養(yǎng)。在總結(jié)得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導(dǎo)學(xué)生讀一讀,從正反兩方面進一步認(rèn)識比例,加深了學(xué)生對比例的內(nèi)涵的理解。]
(二)練習(xí)
1、 出示例1 根據(jù)下表,先分別寫出兩次買練習(xí)本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。
第一次
第二次
買練習(xí)本的錢數(shù)(元)
1.2
2
買的本數(shù)
3
5
。1)學(xué)生獨立完成。
。2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。
2、完成練習(xí)紙第一題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
、欧謩e寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
⑵分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習(xí)題既幫助學(xué)生鞏固了比例的意義,學(xué)會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學(xué)生進一步體驗到比例在生活中的應(yīng)用。練習(xí)1其實是對例題的巧妙補充。]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑(dǎo)學(xué)生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))
4、教學(xué)比例各部分的名稱
(1) 課件出示: 3 : 5
前項 后項
。2) 課件出示:3 : 5 = 18 : 30
內(nèi)項
外項
。3) 如果把比例寫成分?jǐn)?shù)的形式,你能指出它的內(nèi)、外項嗎?
課件出示:3/5=18/30
[評析:由練習(xí)題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結(jié)、過渡:
剛才我們已經(jīng)研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應(yīng)用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質(zhì),有興趣嗎?
三、探究比例的基本性質(zhì)
1、課件先出示一組數(shù):3、5、10、6
再出示:運用這四個數(shù),你能組成幾個等式?(等號兩邊各兩個數(shù))
2、 獨立思考,并在作業(yè)本上寫一寫。
學(xué)生組成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據(jù)學(xué)生回答板書: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引導(dǎo)發(fā)現(xiàn)規(guī)律
(1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)
(2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細(xì)觀察,你能發(fā)現(xiàn)比例的性質(zhì)或規(guī)律嗎?
。3)學(xué)生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的積等于兩個內(nèi)項的積。)
[評析:“運用這四個數(shù),你能組成幾個等式”,不同的學(xué)生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學(xué)生的思考都變成有用的教學(xué)資源。考慮到直接探究比例的基本性質(zhì)學(xué)生會有困難,教師作了適當(dāng)?shù)囊龑?dǎo),通過乘法算式和比例式的橫向聯(lián)系,讓學(xué)生在變中尋不變,從而探究出性質(zhì)。]
4、驗證:是不是任意一個比例都有這樣的規(guī)律?
、耪n件顯示復(fù)習(xí)題(4組),學(xué)生驗證。
、茖W(xué)生任意寫一個比例并驗證。
、峭暾鍟涸诒壤,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。
[評析:給學(xué)生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學(xué)生學(xué)會科學(xué)地、實事求是地研究問題。]
5、思考3/5=18/30是那些數(shù)的乘積相等。課件顯示:交叉相乘。
6、小結(jié):剛才我們是怎樣發(fā)現(xiàn)比例的基本性質(zhì)的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)
四、 綜合練習(xí)
完成練習(xí)紙2、3、4
附練習(xí)紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判斷下面哪一個比能與 1/5:4組成比例。
、5:4 ② 20:1
、1:20 ④5:1/4
4、在( )里填上合適的數(shù)。
1.5:3=( ):4
=
12:( )=( ):5
[評析:習(xí)題的安排旨在對比例的意義和基本性質(zhì)進行進一步的鞏固和應(yīng)用,最后一道開放題答案不唯一,意在進一步讓學(xué)生體驗和感悟數(shù)學(xué)的“變”與“不變”的美妙與統(tǒng)一。]
五、全課總結(jié)(略)
《比例的意義》教案通用4
教學(xué)目標(biāo)
知識目標(biāo):理解比例的意義。
技能目標(biāo):能正確判斷兩個比是否能組成比例,培養(yǎng)學(xué)生抽象概括能力。
情感目標(biāo):使學(xué)生初步感知事物間是相互聯(lián)系、變化發(fā)展的。
教學(xué)重難點
重點:理解比例的意義。
難點:判斷兩個比能否組成比例。
教學(xué)工具
多媒體課件
教學(xué)過程
一、新課導(dǎo)入
請同學(xué)們回憶一下比的知識,比的前項、后項和比值。
二、教學(xué)過程
1.比例的意義
(1)出示P40例1
操場上和教室里兩面國旗的長和寬的比值有什么關(guān)系?
2.4∶1.6=3∶2
60∶40=3∶2
2.4∶1.6=60∶40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成:=
做一做
1、下面那組中的兩個比可以組成比例?把組成的比例寫出來。
(1)6∶10和9∶15 (2)20∶5和1∶4
(3) ∶和6∶4 (4)0.6∶0.2和∶
答:(1)6∶10=3∶5 9∶15=3∶5 (2)20∶5=4∶1 (3)6∶4=3∶2
(4)0.6∶0.2=3∶2 ∶ =3∶1
所以,只有第一組可以組成比例為6∶10=9∶15
2、用圖中4個數(shù)據(jù)可以組成多少比例?
答:2∶4=1.5∶3 4∶2=3∶1.5 3∶4=1.5∶2 4∶3=2∶1.5
全課小結(jié)
通過這節(jié)課,我們學(xué)到了什么知識?什么是比例?
拓展延伸
用8、12四個數(shù)分別作為比例的項,你能組成幾個比例?
課后小結(jié)
通過這節(jié)課,我們學(xué)到了什么知識?什么是比例?
課后習(xí)題
一、填空
1、( )叫做比例。
2、兩個比的( )相等,這兩個比就相等。
3、把6×8=24×2改寫成四個比例。
4、把7m=8n改寫成四個比例。
5、根據(jù)8×9=3×24,寫出比例( )
6、如果7a=6b,那么a:b=( ):( )。
7、如果9a=5b,那么b:a=( ):( )。
二、選擇
1、下面的比中能與3∶8組成比例的是( )。
A.3.5∶6 B.1.5∶4 C.6∶1.5
2、甲數(shù)除乙數(shù)的商是1.8,那么甲數(shù)與乙數(shù)的比是( )。
A.9:5 B.5:9 C.1:8
3、下面的數(shù)中,能與6、9、10組成比例的是( )。
A.7 B.5.4 C.1.5
板書
表示兩個比相等的式子叫做比例。
《比例的意義》教案通用5
教學(xué)內(nèi)容:
教科書第19—21頁正比例的意義,練習(xí)六的1—3題。
教學(xué)目的:
1.使學(xué)生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。
2.初步培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題。
3.初步滲透函數(shù)思想。
教具準(zhǔn)備:
投影儀、投影片、小黑板。
教學(xué)過程:
一、復(fù)習(xí)
用,投影片逐一出示下面的題目,讓學(xué)生回答。
1.已知路程和時間,怎樣求速度?板書: =速度
2.已知總價和數(shù)量,怎樣求單價?板書: =單價
3.己知工作總量和工作時間,怎樣求工作效率?板書:
。焦ぷ餍
4,已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書: =公頃產(chǎn)量
二、導(dǎo)人新課
教師:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進一步來研究這些數(shù)量關(guān)系中的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。(板書課題:正比例的意義)
三、新課
1.教學(xué)例1。
用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:
提問:
“誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)
“表中有哪幾種量?”
“當(dāng)時間是1小時,路程是多少?當(dāng)時間是2小時,路程又是多少?……”
“這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)
教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)“時間和路程是兩種相關(guān)聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?”
教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應(yīng)的路程也擴大2倍3時間擴大3倍,對應(yīng)的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應(yīng)的路程也縮小8倍;時間縮小7倍,對應(yīng)的路程也縮小7倍……時間縮小2倍,對應(yīng)的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規(guī)律是怎么樣的呢?
讓每一小組(8個小組)的同學(xué)選一組相對應(yīng)的數(shù)據(jù),計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學(xué)生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對應(yīng)的兩個數(shù)的比值(也就是商)一定。
然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關(guān)系式嗎?板書: =速度(—定)
教師小結(jié):通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關(guān)聯(lián)的量。)路程和時間這兩種量的變化規(guī)律是什么呢?(路程和時間的比的比值(速度)總是一定的。)
2.教學(xué)例2。
出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。
讓學(xué)生觀察上表,并回答下面的問題:
(1)表中有哪兩種量?
(2)米數(shù)擴大,總價怎樣?米數(shù)縮小,總價怎樣?
(3)相對應(yīng)的總價和米數(shù)的比各是多少?比值是多少?
當(dāng)學(xué)生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……
然后進一步問:
“這個比值實際上是什么?你能用一個關(guān)系式表.示它們的關(guān)系嗎?”板書: =單價(一定)
教師小結(jié):通過剛才的思考和分析,我們知道總價和米數(shù)也是兩種相關(guān)聯(lián)的量,總價是隨著米數(shù)的變化而變化的,米數(shù)擴大,總價也隨著擴大;米數(shù)縮小,總價也隨著縮小。它們擴大、縮小的規(guī)律是:總價和米數(shù)的比的比值總是一定的。
3.抽象概括正比例的意義。
教師:請同學(xué)們比較一下剛才這兩個例題,回答下面的問題;
(1)都有幾種量?
(2)這兩種量有沒有關(guān)系?
(3)這兩種量的比值都是怎樣的?
教師小結(jié):通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。(板書出教科書上第’20頁的倒數(shù)第二段。)
接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學(xué)生想一想:在例2中,有哪兩種相關(guān)聯(lián)的量:它們是不是成正比例的量?為什么?
最后教師提出:如果我們用字母X,y表示兩種相關(guān)聯(lián)的量.用字母K表示它們的比值,你能將正比例關(guān)系用字母表示出來嗎?
學(xué)生回答后,教師板書: =K(一定)
4,教學(xué)例3。
出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?
教師引導(dǎo):
“面粉的總重量和袋數(shù)是不是相關(guān)聯(lián)的量?”·
“面粉的總重量和袋數(shù)有什么關(guān)系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例。”
5.鞏固練習(xí)。
讓學(xué)生試做第21頁“做一做”中的題目。其中(3)要求學(xué)生說明這個比值所表示的意義,學(xué)生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。
四、課堂練習(xí)
完成練習(xí)六的第1—3題。
第1題,做題前,讓學(xué)生想一想:成正比例的量要滿足哪幾個條件?然后讓學(xué)生算出各表中兩種相對應(yīng)的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關(guān)系式進行判斷。第(3)小題,要問一問學(xué)生為什么正方形的邊長和面積不成比例。(因為相對應(yīng)的正方形的邊長和面積的比的比值不相等。)
第2題,先讓學(xué)生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3題,可先讓同桌的同學(xué)互相舉例,然后再指名舉出成正比例的例子。
《比例的意義》教案通用6
教學(xué)要求:
1.使學(xué)生認(rèn)識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。
2.進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:
認(rèn)識正比例關(guān)系的意義。
教學(xué)難點:
掌握成正比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1.說出下列每組數(shù)量之間的關(guān)系。
(1)速度 時間 路程
(2)單價 數(shù)量 總價
(3)工作效率 工作時間 工作總量
2.引入新課。
上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,先認(rèn)識正比例關(guān)系的意義。(板書課題)
二、教學(xué)新課
1.教學(xué)例1。
出示例l。讓學(xué)生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓 學(xué) 生觀察表里兩種量變化的數(shù)據(jù),思考:
(1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?
(2)路程和時間相對應(yīng)數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?
引導(dǎo)學(xué)生進行討論,得出:
(1)表里的兩種量是所行時間和所行路程。路程和時間是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)路程隨著時間的變化而變化。
(2)時間擴大,路程也擴大;時間縮小,路程也縮小。
(3)可以看出它們的變化規(guī)律是:路程和時間比的比值總是一定的。(板書:路程和時間比的比值一定)因為路程和時間對應(yīng)數(shù)值比的比值都是50。提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面板書補充成:速度一定時,路程和時間比的比值一定)
2.教學(xué)例2。
出示例2和思考題。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?枝數(shù)比的比值一定)你是怎樣發(fā)現(xiàn)的?比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成c單價一定時,總價和枝數(shù)比的比值一定)
3.概括。
(1)綜合例1、例2的共同點。
提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)
(2)概括正比例關(guān)系的意義。
像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第40頁最后一節(jié)。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢? 指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子 =k (一定)來表示。
4.具體認(rèn)識。
(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?
(2)做練習(xí)八第1題。
讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。
5.教學(xué)例3。
出示例3,讓學(xué)生思考。提問:怎樣判斷是不是成正比例?哪位同學(xué)說說零件總數(shù)和時間成不成正比例?為什么?請同學(xué)們看一看例3,書上怎樣判斷的,我們說得對不對。追問:判斷兩種量是不是成正比例要怎樣想?強調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。
三、鞏固練習(xí)
現(xiàn)在,我們根據(jù)上面的判斷方法來做一些題。
1.做“練一練”第l題。
指名學(xué)生口答,說明理由。可以結(jié)合寫出數(shù)量關(guān)系式。
2.做“練一練”第2題。
指名口答,并要求說明理由。
3.做練習(xí)八第2題。
小黑板出示。讓學(xué)生把成正比例關(guān)系的先勾出來。指名口答,選擇幾題讓學(xué)生說一說怎樣想的?(必要時寫出關(guān)系式讓學(xué)生判斷)
4.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?
一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?
五、家庭作業(yè)
練習(xí)八第3題。
《比例的意義》教案通用7
教學(xué)內(nèi)容:
比例的意義和基本性質(zhì)。
教學(xué)要求:
使學(xué)生理解比例的意義,會用比例的意義正確地判斷兩個比是否 成比例,使學(xué)生理解比例的基本性質(zhì)。
教學(xué)重點:
理解比例的意義和基本性質(zhì)。
教學(xué)難點:
靈活地判斷兩個比是否組成比例。
教 具:
投影機等。
教學(xué)過程:
一、復(fù)習(xí)。
1、什么叫做比?什么叫做比值?
2、求出下面各比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、提示課題,引入新課。
1、引入:如果有兩個比是相等的,那么這兩個相等的比以叫做什么?它有什么樣的性質(zhì)?這節(jié)課我們就一起來研究它。
2、引入新課。
三、導(dǎo)演達標(biāo)。
1、教學(xué)比例的意義。
(1)引導(dǎo)學(xué)生觀察課本的表格后回答:
A、第一次所行駛的路程和時間的比是什么?
B、第二次所行駛的路程和時間的比是什么?
C、這兩次比的比值各是什么?它們有什么關(guān)系?
板書: 80:2=200:5 或 =
。2)引出比例的意義。
A、表示兩個比相等的式子叫做比例。
B、討論:組成比例必須具備什么條件?如何判斷兩個比是不是組成比例的?比和比例有什么區(qū)別?
C、判斷兩個比能不能組成比例,關(guān)鍵是看兩個比的比值是否相等。
D、做一做。(先練習(xí),后講評)
2、教學(xué)比例的基本性質(zhì)。
。1)看書后回答:
A、什么叫做比例的項?
B、什么叫做比例的外項、內(nèi)項?
。2)引導(dǎo)學(xué)生總結(jié)規(guī)律?
先讓學(xué)生計算,兩個外項的積,再計算兩個內(nèi)項的積,最后讓學(xué)生總結(jié)出比例的基本性質(zhì),然后強調(diào),如果把比例寫成分?jǐn)?shù)形式,比例的基本性質(zhì)就是等號兩端的分子和分母分別交叉相乘的積相等。
3、練習(xí):判斷下面的哪組比可以組成比例。
6:9和9:12 1.4:2和7:10
四、鞏固練習(xí):第一、二題。(指名回答,集體訂正)
五、總結(jié):今天我們學(xué)習(xí)了什么?
比例的意義和比例的基本性質(zhì)及怎樣判斷兩個比是否可以組成比例的方法。
六、作業(yè):第二題。
《比例的意義》教案通用8
教學(xué)內(nèi)容:
教材第42~44頁例4~例6,“練一練”,練習(xí)八第4—7題。
教學(xué)要求:
1.使學(xué)生認(rèn)識反比例關(guān)系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關(guān)系。
2.進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)的量成不成反比例的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:
認(rèn)識反比例關(guān)系的意義。
教學(xué)難點:
掌握成反比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、復(fù)習(xí)舊知
1.正比例關(guān)系的意義是什么?怎樣用字母表示這種關(guān)系?
判斷兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?
2.下面哪兩種量成正比例關(guān)系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關(guān)系。(學(xué)生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關(guān)系呢?這就是今天要學(xué)習(xí)的反比例關(guān)系。(板書課題)
二、教學(xué)新課
1.教學(xué)例4。
出示例4。讓學(xué)生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學(xué)生按學(xué)習(xí)正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學(xué)生口答討論的結(jié)果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關(guān)系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學(xué)例5。
出示例5。
請同學(xué)們按照剛才學(xué)習(xí)例4的方法,自己學(xué)習(xí)例5,仔細(xì)想想你發(fā)現(xiàn)了些什么?學(xué)生觀察思考后,指名學(xué)生口答從表里發(fā)現(xiàn)了些什么,再提問:這兩種相關(guān)聯(lián)量變化的規(guī)律是什么?(板書:每袋重量和袋數(shù)的積一定)乘積8000是什么數(shù)量,這種數(shù)量關(guān)系用式子怎樣表示?[板書:每袋重量×袋數(shù)=糖果總重量(一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)
3.概括反比例的意義。
(1)綜合例4、例5的共同點。
提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例4、例5里兩種相關(guān)聯(lián)的量,它們是什么關(guān)系的量呢?請同學(xué)們看第43頁倒數(shù)第二節(jié)。說明:像例4、例5里這樣兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應(yīng)的兩個數(shù)的積一定。這樣兩種相關(guān)聯(lián)的量就叫做成反比例的量,它們之間的關(guān)系叫做反比例關(guān)系。迫問:兩種相關(guān)聯(lián)的量成不成反比例的關(guān)鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積,那么上面這種關(guān)系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關(guān)聯(lián)的`量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關(guān)系。所以,兩種量成反比例關(guān)系,我們就用x×y=k(一定)來表示。
4.具體認(rèn)識。
(1)提問:例4里有哪兩種相關(guān)聯(lián)的量?這兩種量成反比例關(guān)系嗎?為什么,
例5里的兩種量成反比例關(guān)系嗎?為什么?
(2)提問:看兩種相關(guān)聯(lián)的量成不成反比例,關(guān)鍵要看什么?
(3)做練習(xí)八第4題。
讓學(xué)生讀題思考。指名依次口答題里的問題。[結(jié)合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]
(4)判斷。
現(xiàn)在回過來看開始寫的關(guān)系式:工作效率×工作時間=工作總量,當(dāng)工作總量一定時,工作效率和工作時間成什么關(guān)系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關(guān)系,只要先看這兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關(guān)聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關(guān)系就是反比例關(guān)系。
5.教學(xué)例6。
出示例6,學(xué)生讀題、思考。提問:怎樣判斷成不成反比例?哪位同學(xué)說說每本的頁數(shù)和裝訂的本數(shù)成不成反比例?為什么?【板書;每本的頁數(shù)×本數(shù)=紙的總頁數(shù)(一定)】請同學(xué)們看書上例6是怎樣判斷的,看看我們說得對不對。追問:判斷兩種量成不成反比例要怎樣想?其中關(guān)鍵是看什么?
三、鞏固練習(xí)
用剛才我們說的判斷方法來做幾道題。
1.做“練一練”第l題。
指名學(xué)生口答,說明理由。(可以寫出數(shù)量關(guān)系式看一看)
2.做“練一練”第2題。
指名口答,說說理由。思考時可以引導(dǎo)看數(shù)量關(guān)系式。
3.做練習(xí)八第5題。
讓學(xué)生先在書上判斷。指名口答,要求說出數(shù)量關(guān)系式判斷。
4.下題兩種相關(guān)聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做練習(xí)八第6題。
各人先在書上寫各成什么比例。指名口答,要求說明理由。
6.做練習(xí)八第7題。
先讓學(xué)生默讀題目。提問:題里有怎樣的關(guān)系式?(板書:圓柱底面積×高=體積)指名學(xué)生口答.
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)的是什么內(nèi)容?反比例關(guān)系的意義是什么?用怎樣的式子表示x和y這兩種相關(guān)聯(lián)的量成反比例?判斷兩種量是不是成反比例,關(guān)鍵是什么?
五、課堂作業(yè)
練習(xí)八第7題。
《比例的意義》教案通用9
教學(xué)目標(biāo):
1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學(xué)生概括能力和分析判斷能力。
3、培養(yǎng)學(xué)生用發(fā)展變化的觀點來分析問題的能力。
教學(xué)重點:
成正比例的量的特征及其判斷方法。
教學(xué)難點:
理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.
教 法:
啟發(fā)引導(dǎo)法
學(xué) 法:
自主探究法
教 具:
課件
教學(xué)過程:
一、定向?qū)W(xué)(5分)
1、已知路程和時間,求速度
2、已知總價和數(shù)量,求單價
3、已知工作總量和工作時間,求工作效率
4、導(dǎo)入課題
今天我們來學(xué)習(xí)成正比例的量。
5、出示學(xué)習(xí)目標(biāo)
1、理解正比例的意義。
2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。
二、自主學(xué)習(xí)(8分)
自學(xué)內(nèi)容:書上45頁例1
自學(xué)時間:8分鐘
自學(xué)方法:讀書法、自學(xué)法
自學(xué)思考:
1、舉例說明什么是成正比例的量,成正比例的量要具備幾個條件?
2、正比例關(guān)系式是什么?
。1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。例如底面積一定,體積和高成正比例。
。2)構(gòu)成正比例關(guān)系的兩種量,必須具備三個條件:一是必須是兩種相關(guān)聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定
(3)如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?
y/x=k(一定)
。4)不計算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的體積是175立方米?225立方厘米的水有9厘米。
2、歸類提升
引導(dǎo)學(xué)生小結(jié)成正比例的量的意義和關(guān)系式。
三、合作交流(5分)
第46頁正比例圖像
1、正比例圖像是什么樣子的?
2、完成46頁做一做
3、各組的b1同學(xué)上臺講解
四、質(zhì)疑探究(5分)
1、第49頁第1題
2、第49頁第2題
3、你還有什么問題?
五、小結(jié)檢測(8分)
1、什么是正比例關(guān)系?如何判斷是不是正比例關(guān)系?
2、檢測
1、49頁第3題。
六、堂清作業(yè)(9分)
練習(xí)九頁第4、5題。
板書設(shè)計:
成正比例的量
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
關(guān)系式:
y/x=k
(一定)
《比例的意義》教案通用10
教學(xué)要求:
1.使學(xué)生認(rèn)識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。
2.進一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。
教學(xué)重點:
認(rèn)識正比例關(guān)系的意義。
教學(xué)難點:
掌握成正比例量的變化規(guī)律及其特征。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
1.說出下列每組數(shù)量之間的關(guān)系。
(1)速度時間路程
(2)單價數(shù)量總價
(3)工作效率工作時間工作總量
2.引入新課。
上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識這種變化規(guī)律。今天,先認(rèn)識正比例關(guān)系的意義。(板書課題)
二、自主探究:
1.教學(xué)例1。
出示例l。讓學(xué)生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:
(1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?
(2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?
。3)分別找出面積與款項對應(yīng)的數(shù),面積與寬的比各是幾比幾?比值各是多少?
引導(dǎo)學(xué)生進行討論,得出:
(1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長)的變化而變化。
(2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。
(3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應(yīng)數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)
2.教學(xué)例2。
出示例2。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數(shù)量比的比值一定)
3.概括正比例的意義。
(1)綜合例1、例2的共同點。
提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應(yīng)數(shù)值的比的比值一定)
(2)概括正比例關(guān)系的意義。
像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學(xué)們看課本第95頁最后連個自然段。說明:根據(jù)剛才學(xué)習(xí)例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子=k(一定)來表示。
4.教學(xué)例3學(xué)生看書自學(xué),小組討論,集體交流。
(1)數(shù)量與時間是不是兩種相關(guān)聯(lián)的量?
。2)數(shù)量與時間有什么關(guān)系?他們的比值是誰?比值是不是不變的?
。3)判斷數(shù)量與時間是不是成正比例?
5.完成97頁練一練。
三、鞏固練習(xí)
1.(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?
2.做練習(xí)十一第1題。
讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。
3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?
一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。
五、家庭作業(yè)
練習(xí)十一第2~6題。
《比例的意義》教案通用11
教學(xué)內(nèi)容:
比例的意義、基本性質(zhì),比例各部分名稱,組比例。
教學(xué)目標(biāo):
1. 使學(xué)生理解比例的意義,認(rèn)識比例各部分的名稱。
2. 能運用比例的意義判斷兩個比能否組成比例,并會組比例。理解并掌握比例的基本性質(zhì)。
教學(xué)重點:
比例的意義和基本性質(zhì)。
教學(xué)難點:
理解比例的基本性質(zhì)。
教學(xué)過程:
一、 復(fù)習(xí)
。、 提問:什么是比?一輛汽車4小時行160千米,說出路程和時間的比。
2、 求下面各比的比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
二、 新授
提示課題:這節(jié)課我們在過去學(xué)過比的知識的基礎(chǔ)上,學(xué)一個的知識:比例的意義和基本性質(zhì)。
。、 比例的意義
出示例1:一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時) 2 5
路程(千米) 80 200
從上不中可以看到,這輛汽車:
第一次所行臺的路程和時間的比是____;
第二次所行駛的路程和時間的比是____;
這兩個比的比值各是多少?它們有什么關(guān)系?
。ǎ保 根據(jù)學(xué)生回答,師板書結(jié)果后,師指出:這兩個比的比值都是40,所以這兩個比是相等的,可以用等號將兩個比連起來寫成下面的等式。
板書:80:2=200:5 或 =
師:這樣的式子,我們給它一個名字叫做比例。
。ǎ玻 口答
A、把復(fù)習(xí)第2題中兩個比值相等的比用等號連起來。
B、用等號連接起來的式子叫做什么?
。、根據(jù)剛才的回答,你能說出什么叫比例嗎?
。ǎ常 小結(jié)。
A、表示兩個比相等的式子叫做比例,兩個比的比值相等也就是這兩個比相等。
。、要判斷兩個比能否組成比例,可以看這兩個比的比值是否相等。比值相等的兩個比可以組成比例,比值不相等的兩個比就不能組成比例。
(4) 練習(xí),課本第10頁做一做。
2、 比例的基本性質(zhì)。
(1) 比例各部分的名稱。
引導(dǎo)學(xué)生觀察黑板上的例題:80:2=200:5
并自學(xué)課本
提問:什么叫做比例的項?什么叫前項?什么叫后項?什么叫內(nèi)項?什么叫外項?這四項分別在等號的什么位置?
。ǎ玻 說出下面各比例的外項和內(nèi)項?
6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8
。ǎ常 計算:上面比例中的外項積與內(nèi)項積。
(4) 引導(dǎo)學(xué)生觀察每個比例中的計算結(jié)果,發(fā)現(xiàn)這兩個乘積有怎樣的關(guān)系?
師:想一想,如果把比例寫成分?jǐn)?shù)形式,等號兩端的分子分母交叉相乘的積有什么關(guān)系?
。ǎ担┠隳艿贸鍪裁唇Y(jié)論?
三、 鞏固練習(xí)
。薄 完成第2頁的做一做。
。病 完成第3頁的做一做第1題。
四、 總結(jié)
1、 比例的意義和基本性質(zhì)是什么?
。病 怎樣判斷兩個比能否組成比例?
五、 作業(yè)
。、 完成練習(xí)四的第1-3題。
【《比例的意義》教案】相關(guān)文章:
《比例的意義》教案03-31
《比例的意義》教案集合12-06
《正比例的意義》教案08-30
《比例的意義》教案15篇12-22
《比例的意義》教案集錦12-22
復(fù)習(xí)比例的意義和性質(zhì)教案10-10
比例的意義說課稿09-29
比例的意義說課稿09-14
比例的意義說課稿12-03