圓的面積教案范文集合5篇
作為一名無私奉獻的老師,常常需要準備教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{整。教案應該怎么寫才好呢?以下是小編收集整理的圓的面積教案5篇,歡迎大家分享。
圓的面積教案 篇1
教學目標:
1、使學生學會已知圓的周長求圓的面積的解題思路與方法,理解并學會環(huán)形面積。
2、培養(yǎng)學生靈活、綜合運用知識的能力,運用所學的知識解決簡單的實際問題。
3、培養(yǎng)學生的邏輯思維能力。
教學重點:培養(yǎng)綜合運用知識的能力。
教學難點:培養(yǎng)綜合運用知識的能力。
教學過程:
一、復習。
1、口算:
3242528292202
267
2、思考:
。1)圓的周長和面積分別怎樣計算?二者有何區(qū)別?
。2)求圓的面積需要知道什么條件?
。3)知道圓的周長能夠求它的面積嗎?
二、新課。
1、教學練習十六第3題
小剛量得一棵樹干的周長是125.6cm,這棵樹干的橫截面積是多少?
已知:c=125.6厘米s=r2
r:125.6(23.14)3.14202
=125.66.28=3.14400
=20(厘米)=1256(平方厘米)
答:這棵樹干的橫截面積1256平方厘米。
3、教學環(huán)形面積。
。1)例2光盤的銀色部分是個圓環(huán),內圓半徑是2cm,外圓半徑是6cm。它的面積是多少?
已知:R=6厘米r=2厘米求:s=?
3.14623.1422
=3.1436=3.144
=113.04(平方厘米)=12.56(平方厘米)
113.04-12.56=100.48(平方厘米)
第二種解法:3.14(62-22)=100.48(平方厘米)
。2)小結:環(huán)形的面積計算公式:
S=R2-r2或S=(R2-r2)
。3)完成做一做:一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
三、鞏固練習。
1、學校有個圓形花壇,周長是18.84米,花壇的面積是多少?
選擇正確算式
A、(18.843.142)23.14
B、(18.843.14)23.14
C、18.8423.14
2、環(huán)形鐵片,外圈直徑20分米,內圓半徑7分米,環(huán)形鐵片的面積是多少?
3、課堂小結。
。1)這節(jié)課的學習內容是什么?
。2)求圓的面積時題中給出的已知條件有幾種情況?怎樣求出圓面積?
已知半徑求面積S=r2
已知直徑求面積S=()2
已知周長求面積S=()2
。3)環(huán)形面積:S=(R2-r2)
四、作業(yè)
課本P70第4、6、7題。
教學追記:
本堂課,在我?guī)ьI著學生利用教具進行操作,在此基礎上,讓學生自主發(fā)現(xiàn)圓的面積與拼成長方形面積的關系,圓的周長、半徑和長方形的長、寬的關系,并推導出圓的面積計算公式。教學環(huán)形的面積計算時,我充分放手給學生,讓學生通過思考討論領悟出求環(huán)形的面積是用外圓面積減去內圓面積,并引導他們發(fā)現(xiàn)這兩種算法的一致性,同時提醒學生盡量使用簡便算法,減少計算量。
圓的面積教案 篇2
學材分析
教學重點:
面積計算公式的正確運用。
教學難點:
面積公式的推導過程。
學情分析
學生對圓面積公式的推導過程理解有一定的難度。
學習目標
1.理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.會用圓面積的計算公式,正確計算圓的面積。
導學策略
導練法、遷移法、例證法
教學準備
圓的面積模型、圓規(guī)、投影儀、投影片
教師活動
學生活動
一.引入
1.什么叫做圓面積?
2.出示大小略有不同的兩個圓,讓學生比較哪個圓的面積大?大多少?(學生口答后把兩圓重疊,比較大小。)相差多少呢?
3.引出課題。
二.推導
1.問:小正方形面積怎樣計算?(半徑半徑)圓面積與小正方形面積的3倍誰大誰?圓面積與小正方形面積的4倍呢?2倍呢?
2.師生共同操作:拿出一張正方形紙,按要求對折4次(注意第4次折的折法,是按角對分地折),然后拿尺量出一等腰三角形剪一刀,展開,得到一個近似于圓的紙片。
3.教師操作:拿一張正方形紙,對折5次,剪一刀展開。與前一次剪的作比較,使學生知道,隨著折的次數(shù)不斷增加,剪下的圖形也就越接近圓。
4.分析推導。師生共同拿出剪好的圖形分析:這個圖形等分成若干塊,每一塊都是什么形狀?(等腰三角形)這個圖形的面積怎么求?隨著折的次數(shù)不斷增加,剪下的圖形的面積也就越接近什么圖形的面積?
板書:圖形面積=等腰三角形面積n=底高2n=Cr2n
=2rn
圓的面積=r2
邊板書邊提問:等腰三角形的底是多少?(C)等腰三角形的高相當于圓的什么?(半徑r)
5.在上面推導的基礎上,讓學生分4人小組動手把準備的圓分成相等的16個小扇形,再拼成其他圖形,推導出圓面積公式。教師巡視,取學生拼成的各式各樣的圖形,貼在黑板上,選其中兩個進行分析。
三.鞏固
試一試。
四.總結
五.作業(yè)
學生口答
師生共同操作
師生共同操作
教學反思
已經是第2次教畢業(yè)班了記得第1次教的時候,還是幼兒園的院長一早每天都要過去一下,課前準備就不夠充分,上課就照本宣科。而現(xiàn)在教這個知識的時候,不僅教具演示而且學生實際操作,所以教學效果就好多了,可以說連中下生都能靈活應用這個知識。
圓的面積教案 篇3
教學內容:小學數(shù)學義務教育教材第十一冊p129---p130
教學目的:
1、通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2、激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括力,發(fā)展學生的空間觀念。
3、滲透轉化的數(shù)學思想和極限思想。
教學重點:圓面積公式的推導。
教學難點:弄清圓與轉化后的近似圖形之間的關系。
學具:每四人小組一個彩色圓(教師分好8等分點)、兩三個圓、固體膠、卡紙、剪刀。
教具:課件。
教學過程:
一、談話揭題:
出示圖:
你看到了什么?剛才同學們提到的圓的面積就是今天這節(jié)課我們要來研究的內容。(出示課題:圓的面積)那么圓的面積和什么有關?(半徑、直徑)
二、新課教學:
1、猜測:
現(xiàn)在請大家看,這兒有一張正方形的紙,(課件演示)用它剪一個最大的圓,(課件演示)如果圓的半徑用r來表示,你知道原來正方形的面積怎么求嗎?(2rx2r)整理一下(板書:2rx2r=4r的平方)(按虛線)我們再來看看圖,你明白了什么?這樣看來,正方形的面積是r的平方的4倍,那么,現(xiàn)在請你猜猜看,圓的面積大概會是多少?
2、驗證:
(1)現(xiàn)在我們都認為圓的面積是r的平方的三倍多一點,那么,圓的面積與r的平方到底有怎樣的關系呢?你們準備用怎樣的方法來研究它呢?下面請四人小組討論一下,可以動用桌子上的學具。(教師巡視)
。2)反饋:(三分鐘后,低到高)
a:你們?yōu)槭裁床粍?你們又是怎么想的?(平均分成若干份,拼成我們學過的圖形來研究)同意嗎?
b:這兒有一個圓,我們把它平均分成四份,可以嗎?那么怎么拼呢?(學生拼,投影演示)看看象什么圖形?(平行四邊形)象嗎?我看不象。怎樣使它象呢?(分的份數(shù)多一點)剛才我們拼的圖形象平行四邊形,當然,可能還能拼成別的圖形。
c:剛才我們討論研究出來的方法第一步是等分,第二步是想一想拼成什么圖形,再拼一拼,第三步是推導。(板書:等分想、拼推導)當然,也可以用別的方法。(板書箭頭)
。3)操作:
你們想試一試嗎?現(xiàn)在請組長拿出信封,倒出里面的圓片,我們以四人小組為單位動動手。(小組討論操作,師巡回指導:表揚拼出與別組不一樣圖形的小組,提示拼好后可以用膠水粘住。)
3、小組匯報:(舉起把圓等分成8份、16份所拼成的長方形或平行四邊形給學生看一看,再請平均分成16份拼成長方形或平行四邊形的同學匯報)
。1)學生匯報。
。2)有沒有疑問?
拼成的長方形是真正的長方形嗎?為什么?(邊是曲線)
如果把一個圓等分成32份,拼成的長方形會怎樣呢?(課件演示)等分成64份,又會怎么樣呢?(課件演示)如果等分的份數(shù)更多,又會怎樣呢?你能得出什么結論?(圓等分的份數(shù)越多,拼成的圖形越接近于長方形)
。3)板書:
那么長方形的面積是怎么求的?(板書)它的長相當于圓的什么?怎么用字母表示?寬呢?(課件演示:在長方形或平行四邊形64等分圖的下面出示r,右邊出示r,同時板書)那么圓的面積=rxr=r的平方。
。4)還有補充嗎?
小組匯報:平行四邊形、三角形、梯形面積轉化為圓的面積公式。(實物投影儀下顯示,最后寫成r的平方,14bd的平方)
4、小結:通過剛才我們四人小組的活動,大家有什么結論?(不管拼成什么圖形,都能推導出圓的面積是r的平方)那么知道什么可以求出圓的面積?(半徑、直徑、周長)
三、鞏固練習:
1、出示:課本p1302(1)(3)(課件演示)會嗎?(草稿本上算,投影反饋)
2、現(xiàn)在來看這個圖形(猜測題)如果r=5厘米,你能求什么?(圓面積、正方形的面積、剩下的紙的面積)請你草稿本上算一算。(投影反饋)或口答。
四、機動練習:
教師準備一些實物,分發(fā)給四人小組:你們能求出它們的面積嗎?(反饋)還可以測什么數(shù)據(jù)算面積?
五、全課小結:
今天這節(jié)課給你印象最深刻的一點是什么?
圓的面積教案 篇4
小學數(shù)學第十一冊第四單元圓練習題
一、填空。
(1) 寫出下面各題的最簡整數(shù)比。
、賵A的半徑和直徑的比是( ),圓的周長和直徑的比是( )。
、谛A的半徑是4厘米,大圓的半徑是6厘米。小圓直徑和大圓直徑的比是( ),小圓周長和大圓周長的比是( ),小圓面積和大圓面積的比是( )。
(2)把圓分成若干等份,然后把它剪開,可以拼成一個近似于長方形的圖形,這個長方形的長相當于圓的( ),長方形的寬相當于圓的.( )。
(3)圓的周長是37.68分米,它的面積是( )平方分米。
(4)圓的半徑擴大3倍,它的面積就擴大()。
(5)一個圓的周長、直徑和半徑相加的和是9.28厘米,這個圓的直徑是()厘米;面積是()。
(6)在一個邊長為12厘米的正方形紙板里剪出一個最大的圓,剩下的面積是( )。
(7)要在底面半徑是10厘米的圓柱形水桶外面打上一個鐵絲箍,接頭部分是6厘米,需用鐵絲( )厘米。
(8)用圓規(guī)畫一個圓,如果圓規(guī)兩腳之間的距離是6厘米,畫出的這個圓的周長是( )厘米。這個圓的面積是( )平方厘米。
。贰⒂靡桓L12.56厘米的鐵絲圍成一個正方形,正方形的面積是()平方厘米;如果用這根鐵絲圍成一個圓,這個圓的面積是()平方厘米。
二、判斷題。正確的畫“√”,錯的打“×”,并訂正。
(1)在一個圓里,兩端都在圓上的線段叫做圓的直徑。( )
(2)小圓半徑是大圓半徑的12 ,那么小圓周長也是大圓周長的12 。( )
(3)小圓半徑是大圓半徑的12 ,那么小圓面積也是大圓面積的12 。( )
(4)半圓的周長就是這個圓周長的一半。( )
(5)求圓的周長,用字母表示就是C=πd或C=2πr。( )
三、選擇題。將正確答案的序號填在括號里。(8%)
。1)畫圓時,固定的一點叫()。
、 頂點② 圓心 ③ 字母O
。2)從圓心到圓上任意一點的()叫做半徑。
、 直線② 射線 ③ 線段
。3)周長相等的圖形中,面積最大的是()。
① 圓 ②正方形③長方形
。4)圓周率表示()
、 圓的周長②圓的面積與直徑的倍數(shù)關系 ③圓的周長與直徑的倍數(shù)關系
。5)半徑為r的圓面積等于()。
① πr2 ② 2πr2 ③πd
。6)圓的直徑長度決定圓的()。
① 位置② 大小 ③ 形狀
。7)圓的半徑擴大3倍,它的面積就擴大()。
、 3倍 ② 6倍 ③ 9倍
。8)已知圓的周長是106.76分米,圓的半徑是()。
、 17分米②8.5分米 ③ 34分米
四、應用題。
(1)一個大廳里掛有一只大鐘,它的分針長40厘米。這根分針的針尖1天轉動多少厘米?
(2)一個大廳里掛有一只大鐘,它的時針長35厘米。這根時針的針尖1天轉動多少厘米?
(3)小明騎的自行車車輪直徑是70厘米,每分鐘轉100周,從家到學校有1300米,小明大約要騎幾分鐘?(得數(shù)保留整數(shù))
(4)一個農民新開挖一個圓形水池,水池的周長是50.24米,求水池占地的面積是多少平方米?
(5)一張長方形紙片,長60厘米,寬40厘米。用這張紙剪下一個盡可能大的圓。剩下的面積是多少平方厘米?
(6)一個環(huán)形鐵片,內圓半徑是8厘米,外圓半徑是10厘米,這個環(huán)形鐵片的面積是多少?
(7)公園里有一個圓形花壇,周長50.24米,在它的周圍有一條寬1米的小路,小路的面積是多少平方米?
(8)學校操場(如左圖,單位:米),操場的周長是多少米?面積是多少平方米?
小學數(shù)學六年級(上冊)圓測試題 (上)
一、填空
1、( )決定圓的大小,( )決定圓的位置。
2、圓是( )圖形,它有( )條對稱軸,( )是圓的對稱軸,
3、( )是圓中最長的線段。
4、一個圓周長擴大4倍,半徑擴大( )倍,直徑擴大()倍,面積擴大()倍。
5、大圓的半徑等于小圓的直徑,那么大圓的面積是小圓面積的( )倍。
6、圓的周長公式是( )或( ),圓的面積公式是( ),半圓形的周長公式( ),圓周長的一半公式是( )
7、周長相等的長方形,正方形,圓。( )的面積最大,()的面積最小。
8、π,3.14,3.1414,0.314,31.4,從小到大排列是()。
9、圓的周長總是直徑()倍,是半徑的( )倍。
10、畫出一個圓的周長是18.84厘米,那么圓規(guī)兩腳間的距離是( )。
11、在同一個圓里,直徑和半徑的關系用字母表示是()。
12、一個半圓,半徑是r,它的周長是( )。
二、判斷
1、直徑是半徑的2倍。
2、兩端都在圓上的線段,叫半徑。
3、半徑是2厘米的圓周長和面積相等。
4、將一個圓通過切拼,轉化成一個長方形,面積和周長沒有變化。
5、如果圓的直徑是d,它的面積是 πd2 。
6、圓周率就是3.14
7、半圓形的周長就是圓周長的一半。
8、直徑是圓的對稱軸。
9、一個圓的面積和一個正方形的面積相等,它們的周長也相等
10、半圓形的面積就是圓面積的一半
三、應用
1、 一個圓形水池,直徑是20米,在水池周圍圍一圈柵欄,再在水池外圍修一條寬4米的環(huán)形小路。
。1)、柵欄的長度是多少?
。2)、這條小路的面積是多少?
2、 一根12.96 米的繩子,繞樹10圈還長0.4米,樹干橫截面的面積是多少?
3、一輛自行車輪胎外直徑是80厘米,如果平均每分鐘轉動200圈,它要通過一座長1500米的橋,大約需要多少分鐘?(得數(shù)保留整數(shù))
4、一張長方形紙片,長4厘米,寬2厘米,要用它剪一個最大的半圓,這個半圓面積是多少,周長是多少,剩下的紙片的周長是多少?面積是多少?
5、 一個圓的周長是6280米,半徑增加1厘米,面積增加了多少平米?
6、 一只掛鐘的時針長8厘米,針尖一晝夜走過的路程是多少厘米?
7、 一只掛鐘的分針長8厘米,針尖一晝夜走過的路程是多少厘米?掃過的面積是多少?
8、 一只掛鐘的分針長8厘米,經過15分鐘分針走過的路程是多少?掃過的面積是多少?
9、 一只掛鐘的分針長8厘米,從2時到5時,分針尖端走過的路程是多少?
10一個半圓的周長是10.28厘米,這個半圓的半徑是多少,面積是多少?
11、 一臺壓路機前輪直徑是10分米,長是15分米,這臺壓路機的前輪滾動一圈,壓過的路長是多少?壓過路面的面積是多少米?
12、一座圓形游泳池,劉星沿著游泳池走了一圈,一共是628步,他每步的長約是0.6米。這個游泳池占地面積是多少?
圓的面積教案 篇5
教學內容:六年制小學數(shù)學教科書第十一冊第一單元《圓的面積》中的第一節(jié)課,數(shù)學 - 圓的面積(一)。
教學目的:
1.通過教學使學生建立圓面積的概念,理解圓面積計算公式的推導過程,掌握圓面積的計算公式。
2.能正確地應用圓面積計算公式進行圓面積的計算,并能解答有關圓的實際問題。
教學重點:理解和掌握圓面積的計算公式的推導過程
教學難點:圓面積計算公式的推導
教學過程:
一 、創(chuàng)設情境,提出問題
。 課件演示)用一根繩子把羊栓在木樁上,演示羊邊吃草邊走的情景。(生看完提問題)
生:1羊走一圈有多長?2羊最多能吃到多少草?3羊能吃到草的最大面積是多少?
二、引導探究,構建模型
A:啟發(fā)猜想
師:羊吃到草的最大面積最大是圓形:1、這個圓的面積有多大猜猜看;2、試想圓的面積和哪些條件有關?3、怎樣推導圓的面積公式?(生試說)
B:分組實驗,發(fā)現(xiàn)模型
學生分小組將平均分成16等分、32等分的圓放在桌上自由拼擺,拼成以前學過的平面圖形擺好后想一想:1、你擺的是什么圖形?2、你擺的圖形與圓的面積有什么關系?3、圖形各部分相當于圓的什么?4、你如何推導出圓的面積?
請小組長匯報拼擺的情況,鼓勵學生拼擺成不同的平面圖形(師課件展示動畫效果)可以拼擺成長方形、梯形、三角形、平行四邊形四種情況,小學數(shù)學教案《數(shù)學 - 圓的面積(一)》。
三、 應用知識,拓展思維
1師:要求圓的面積必須知道什么?
2 運用公式計算面積
A完成羊吃草的面積
B完成課后“做一做”
C一個圓的直徑是10厘米,它的面積是多少平方厘米?
D找出身邊的圓,同桌合作量一量半徑,算一算面積(完成實驗報告單)
測量物直徑(厘米)半徑(厘米)面積(平方厘米)
3應用知識解決身邊的實際問題(知識應用)
下面是一個體育場的平面圖,請你算一算跑道的周長是多少米?長方形體育場的占地面積是多少平方米?學校要請師傅給體育場鋪草皮,已知每平方米的草皮是2.4元,學校一共要付多少錢才能完成?
四 歸納總結,完善認知
今天學了什么,這些知識我們是用什么方法學來的,你懂得了什么?
【圓的面積教案】相關文章:
《圓的面積》教案06-29
圓的面積教案08-26
圓的面積教案01-15
圓的面積二教案07-02
圓的面積優(yōu)秀教案06-16
圓的面積教案人教版09-15
圓的面積說課教案02-14
小學數(shù)學《圓的面積》教案06-03
圓扇形弓形的面積教案10-01
精選圓的面積教案三篇01-12