高一數(shù)學(xué)必修三教案
作為一名無(wú)私奉獻(xiàn)的老師,就不得不需要編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么什么樣的教案才是好的呢?下面是小編精心整理的高一數(shù)學(xué)必修三教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一數(shù)學(xué)必修三教案1
教學(xué)目標(biāo)
1.使學(xué)生了解奇偶性的概念,回會(huì)利用定義判定簡(jiǎn)單函數(shù)的奇偶性。
2.在奇偶性概念形成過(guò)程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和非凡到一般的思想方法。
3.在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的愛(ài)好,培養(yǎng)學(xué)生樂(lè)于求索的精神。
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定
難點(diǎn)是對(duì)概念的熟悉
教學(xué)用具
投影儀,計(jì)算機(jī)
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法
教學(xué)過(guò)程
一.引入新課
前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì)。從什么角度呢?將從對(duì)稱的角度來(lái)研究函數(shù)的性質(zhì)。
對(duì)稱我們大家都很熟悉,在生活中有很多對(duì)稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對(duì)稱的問(wèn)題,大家回憶一下在我們所學(xué)的內(nèi)容中,非凡是函數(shù)中有沒(méi)有對(duì)稱問(wèn)題呢?
。▽W(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱問(wèn)題,等,也可能會(huì)舉出一些圖象的對(duì)稱問(wèn)題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等。)
結(jié)合圖象提出這些對(duì)稱是我們?cè)诔踔醒芯康年P(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱問(wèn)題,而我們還曾研究過(guò)關(guān)于軸對(duì)稱的問(wèn)題,你們舉的例子中還沒(méi)有這樣的,能舉出一個(gè)函數(shù)圖象關(guān)于軸對(duì)稱的嗎?
學(xué)生經(jīng)過(guò)思考,能找出原因,由于函數(shù)是映射,一個(gè)只能對(duì)一個(gè),而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于軸對(duì)稱。最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,從形的特征中找出它們?cè)跀?shù)值上的規(guī)律。
二.講解新課
2.函數(shù)的奇偶性(板書)
教師從剛才的圖象中選出,用計(jì)算機(jī)打出,指出這是關(guān)于軸對(duì)稱的圖象,然后問(wèn)學(xué)生初中是怎樣判定圖象關(guān)于軸對(duì)稱呢?(由學(xué)生回答,是利用圖象的翻折后重合來(lái)判定)此時(shí)教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?
學(xué)生開始可能只會(huì)用語(yǔ)言去描述:自變量互為相反數(shù),函數(shù)值相等。教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會(huì)不會(huì)在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動(dòng)起來(lái)觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)從這個(gè)結(jié)論中就可以發(fā)現(xiàn)對(duì)定義域內(nèi)任意一個(gè),都有成立。最后讓學(xué)生用完整的語(yǔ)言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整。
。1)偶函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做偶函數(shù)。(板書)
。ńo出定義后可讓學(xué)生舉幾個(gè)例子,如等以檢驗(yàn)一下對(duì)概念的初步熟悉)
提出新問(wèn)題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時(shí)打出或的圖象讓學(xué)生觀察研究)
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義。
。2)奇函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做奇函數(shù)。(板書)
。ㄓ捎谠诙x形成時(shí)已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)
例1。判定下列函數(shù)的奇偶性(板書)
。1);(2);
。3);;
。5);(6)。
。ㄒ髮W(xué)生口答,選出12個(gè)題說(shuō)過(guò)程)
解:(1)是奇函數(shù)。(2)是偶函數(shù)。
。3),是偶函數(shù)。
前三個(gè)題做完,教師做一次小結(jié),判定奇偶性,只需驗(yàn)證與之間的關(guān)系,但對(duì)你們的回答我不滿足,因?yàn)轭}目要求是判定奇偶性而你們只回答了一半,另一半沒(méi)有作答,以第(1)為例,說(shuō)明怎樣解決它不是偶函數(shù)的問(wèn)題呢?
學(xué)生經(jīng)過(guò)思考可以解決問(wèn)題,指出只要舉出一個(gè)反例說(shuō)明與不等。如即可說(shuō)明它不是偶函數(shù)。(從這個(gè)問(wèn)題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)
從(4)題開始,學(xué)生的答案會(huì)有不同,可以讓學(xué)生先討論,教師再做評(píng)述。即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時(shí),由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性。
教師由此引導(dǎo)學(xué)生,通過(guò)剛才這個(gè)題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學(xué)生發(fā)現(xiàn)不了定義域的特征,教師可再?gòu)亩x啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點(diǎn)對(duì)稱,再提出定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的什么條件?
可以用(6)輔助說(shuō)明充分性不成立,用(5)說(shuō)明必要性成立,得出結(jié)論。
。3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件。(板書)
由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問(wèn)題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒(méi)有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說(shuō)明。
經(jīng)學(xué)生思考,可找到函數(shù)。然后繼續(xù)提問(wèn):是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫成這樣呢?能證實(shí)嗎?
例2。已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:。(板書)(試由學(xué)生來(lái)完成)
證實(shí):既是奇函數(shù)也是偶函數(shù),=,且,= ,即證后,教師請(qǐng)學(xué)生記住結(jié)論的同時(shí),追問(wèn)這樣的函數(shù)應(yīng)有多少個(gè)呢?學(xué)生開始可能認(rèn)為只有一個(gè),經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù)。由上可知函數(shù)按其是否具有奇偶性可分為四類
。4)函數(shù)按其是否具有奇偶性可分為四類:(板書)
例3。判定下列函數(shù)的奇偶性(板書)
(1);(2);(3)。
由學(xué)生回答,不完整之處教師補(bǔ)充。
解:(1)當(dāng)時(shí),為奇函數(shù),當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù)。
(2)當(dāng)時(shí),既是奇函數(shù)也是偶函數(shù),當(dāng)時(shí),是偶函數(shù)。
。3)當(dāng)時(shí),于是,
當(dāng)時(shí),,于是=,
綜上是奇函數(shù)。
教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說(shuō)明具備奇偶性,因?yàn)槠媾夹允菍?duì)函數(shù)整個(gè)定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可。
三. 小結(jié)
1.奇偶性的概念
2.判定中注重的問(wèn)題
四.作業(yè)略
五.板書設(shè)計(jì)
2.函數(shù)的奇偶性例1.例3.
。1)偶函數(shù)定義
。2)奇函數(shù)定義
。3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)例2。 小結(jié)
具備奇偶性的必要條件
(4)函數(shù)按奇偶性分類分四類
探究活動(dòng)
。1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,你能試證實(shí)之嗎?
。2)判定函數(shù)在上的單調(diào)性,并加以證實(shí)。
在此基礎(chǔ)上試?yán)眠@個(gè)函數(shù)的`單調(diào)性解決下面的問(wèn)題:
高一數(shù)學(xué)必修三教案2
教學(xué)目標(biāo)
1。了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
。2)能從數(shù)和形兩個(gè)角度熟悉單調(diào)性和奇偶性。
(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程。
2。通過(guò)函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。
3。通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度。
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
。1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
。2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像。
二、重點(diǎn)難點(diǎn)分析
。1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí)。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫。單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn)。
三、教法建議
。1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏。如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái)。在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來(lái)。
。2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來(lái)。經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式。關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
高一數(shù)學(xué)必修三教案3
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過(guò)定義的引入,圖像特征的觀察、發(fā)現(xiàn)過(guò)程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問(wèn)題、解決問(wèn)題的能力。
3、情感目標(biāo):通過(guò)學(xué)生的參與過(guò)程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
教學(xué)重點(diǎn)、難點(diǎn):
1、重點(diǎn):指數(shù)函數(shù)的圖像和性質(zhì)
2、難點(diǎn):底數(shù)a的變化對(duì)函數(shù)性質(zhì)的影響,突破難點(diǎn)的關(guān)鍵是利用多媒體動(dòng)感顯示,通過(guò)顏色的區(qū)別,加深其感性認(rèn)識(shí)。
教學(xué)方法:
引導(dǎo)——發(fā)現(xiàn)教學(xué)法、比較法、討論法
教學(xué)過(guò)程:
一、事例引入
T:上節(jié)課我們學(xué)習(xí)了指數(shù)的運(yùn)算性質(zhì),今天我們來(lái)學(xué)習(xí)與指數(shù)有關(guān)的函數(shù)。什么是函數(shù)?
S:————————
T:主要是體現(xiàn)兩個(gè)變量的關(guān)系。我們來(lái)考慮一個(gè)與醫(yī)學(xué)有關(guān)的例子:大家對(duì)“非典”應(yīng)該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時(shí)間里病原體在機(jī)體內(nèi)不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來(lái)看一種球菌的分裂過(guò)程:
C:動(dòng)畫演示(某種球菌分裂時(shí),由1分裂成2個(gè),2個(gè)分裂成4個(gè),——————。一個(gè)這樣的球菌分裂x次后,得到的球菌的個(gè)數(shù)y與x的函數(shù)關(guān)系式是:y =2 x)
S,T:(討論)這是球菌個(gè)數(shù)y關(guān)于分裂次數(shù)x的函數(shù),該函數(shù)是什么樣的形式(指數(shù)形式),
從函數(shù)特征分析:底數(shù)2是一個(gè)不等于1的正數(shù),是常量,而指數(shù)x卻是變量,我們稱這種函數(shù)為指數(shù)函數(shù)——點(diǎn)題。
二、指數(shù)函數(shù)的定義
C:定義:函數(shù)y = a x(a>0且a≠1)叫做指數(shù)函數(shù),x∈R。。
問(wèn)題1:為何要規(guī)定a > 0且a ≠1?
S:(討論)
C:(1)當(dāng)a<0時(shí),a x有時(shí)會(huì)沒(méi)有意義,如a=﹣3時(shí),當(dāng)x=
就沒(méi)有意義;
。2)當(dāng)a=0時(shí),a x有時(shí)會(huì)沒(méi)有意義,如x= — 2時(shí),
。3)當(dāng)a = 1時(shí),函數(shù)值y恒等于1,沒(méi)有研究的必要。
鞏固練習(xí)1:
下列函數(shù)哪一項(xiàng)是指數(shù)函數(shù)()
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x
【高一數(shù)學(xué)必修三教案】相關(guān)文章:
《登高》優(yōu)質(zhì)課教案(人教版高一必修三)12-06
高一數(shù)學(xué)必修四學(xué)習(xí)方法08-04
高一數(shù)學(xué)必修一學(xué)習(xí)方法三大要點(diǎn)12-06
高一必修三語(yǔ)文第三單元作文07-28
高一語(yǔ)文必修一《雨巷》教案12-04
《勸學(xué)》導(dǎo)學(xué)案(人教版高一必修三)12-06
高一語(yǔ)文必修三材料作文10-17
高一語(yǔ)文必修三的作文09-22