中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

實用文檔>多項式的乘法教案

多項式的乘法教案

時間:2024-09-30 00:43:36

多項式的乘法教案

  在教學(xué)工作者開展教學(xué)活動前,通常會被要求編寫教案,教案是實施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。如何把教案做到重點突出呢?下面是小編為大家收集的多項式的乘法教案,僅供參考,大家一起來看看吧。

多項式的乘法教案

多項式的乘法教案1

  〖教學(xué)目標(biāo)〗

  1、經(jīng)歷探索多項式的乘法運算法則的過程,掌握多項式與多項式相乘的法則。

  2、會運用單項式與單項式,單項式與多項式,多項式與多項式相乘的法則,化簡整式。

  3、會用多項式的乘法解決簡單的實際問題。

  〖教學(xué)重點與難點〗

  教學(xué)重點:多項式與多項式相乘的運算。

  教學(xué)難點:例2包含了多種運算,過程比較復(fù)雜是本節(jié)的難點。

  〖教學(xué)過程〗

  一、創(chuàng)設(shè)情境,引出課題

  小明找來一張鉛畫紙包數(shù)學(xué)課本,已知課本長a厘米,寬b厘米,厚c厘米,小明想將課本封面與封底的每一邊都包進(jìn)去m厘米,問如果你是小明你會在鉛畫紙上裁下一塊多大面積的長方形?

  二、引出新知,探究示例

  1、合作探索學(xué)習(xí):有一家廚房的平面布局如圖1

 。1)請用三種不同的方法表示廚房的總面積。

 。2)這三種不同的方法表示的面積應(yīng)當(dāng)相等,你能用運算律解釋嗎?

 。3)通過上面的討論,你能總結(jié)出單項式與多項式相乘的運算規(guī)律嗎?

  (讓學(xué)生以同桌合作的形式進(jìn)行探索,然后表達(dá)交流)

  答:(1)總面積:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm

 。2)總面積相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①

  =ab+am+nb+nm……②

  第①步運用分配律把(b+m)看成一個數(shù),第②步再運用分配律。

 。3)由(a+n)(b+m)=ab+am+nb+nm師生共同總結(jié)得出多項式與多項式相乘的法則:

 。▽W(xué)生歸納,教師板書)

  2、運用新知,計算例題

  例1:計算

 。1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2

  解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by

 。2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3

  (3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1

  教師在示范過程中引導(dǎo)學(xué)生注意這三題都按多項式相乘的`法則進(jìn)行,運算過程中注意符號,防止漏乘,結(jié)果要合并同類項。

  反饋練習(xí):課內(nèi)練習(xí)1

  例2,先化簡,再求值:(2a—3)(3a+1)—ba(a—4),其中a=

  解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3

  當(dāng)a=時,原式=17a—3=17×()—3=—19—3=—22

  注意的幾點:(1)必須先化簡,再求值,注意符號及解題格式。

 。2)當(dāng)代入的是一個負(fù)數(shù)時,添上括號。

  (3)在運算過程中,把帶分?jǐn)?shù)化為假分?jǐn)?shù)來計算。

  反饋練習(xí):1、計算當(dāng)y=—2時,(3y+2)(y—4)—(y—2)(y—3)的值。

  2、課內(nèi)練習(xí)2、3。

  三、分層訓(xùn)練,能力升級

  1、填空

 。1)(2x—1)(x—1)=

 。2)x(x2—1)—(x+1)(x2+1)=

  (3)若(x—a)(x+2)=x2—6x—16,則a=

 。4)方程y(y—1)—(y—2)(y+3)=2的解為

  2、某地區(qū)有一塊原長m米,寬a米的長方形林區(qū)增長了200米,加寬了15米,則現(xiàn)在這塊地的面積為平方米。

  3、某人以一年期的定期儲蓄把20xx元錢存入銀行,當(dāng)年的年利率為x,第二年的年利率減少10%,則第二年到期時他的本利和為多少元?

  四、小結(jié)

  讓學(xué)生談?wù)勍ㄟ^這節(jié)課的學(xué)習(xí),有哪些收獲與疑問?教師及時總結(jié)內(nèi)容并解答疑惑。

  五、布置作業(yè)

  課本的分層作業(yè)題。

多項式的乘法教案2

  學(xué)習(xí)目標(biāo)

  1、經(jīng)歷探索多項式乘法法則的過程,理解多項式乘法法則。

  2、學(xué)會用多項式乘法法則進(jìn)行計算。

  3、要有用幾何圖形理解代數(shù)知識的能力和復(fù)雜問題轉(zhuǎn)化為簡單問題的轉(zhuǎn)化思想。

  學(xué)習(xí)重難點

  重點是掌握多項式的乘法法則并加以運用。

  難點是理解多項式乘法法則的推導(dǎo)過程和運用法則進(jìn)行計算。

  教學(xué)過程設(shè)計

  看一看

  認(rèn)真閱讀教材,記住以下知識:

  1、多項式乘法的法則:

  2、歸納易錯點:

  做一做:

  1.計算:

  (1)(a+2b)(a-b)=_________;

  (2)(3a-2)(2a+5)=________;

  (3)(x-3)(3x-4)=_________;

  (4)(3x-y)(x+2y)=________.

  2.計算:(4x2-2xy+y2)(2x+y).

  3.計算(a-b)(a-b)其結(jié)果為()

  A.a2-b2B.a2+b2

  C.a2-2ab+b2D.a2-2ab-b2

  4.(x+a)(x-3)的積的一次項系數(shù)為零,則a的值是()

  A.1B.2C.3D.4

  5.下面計算中,正確的`是()

  A.(m-1)(m-2)=m2-3m-2

  B.(1-2a)(2+a)=2a2-3a+2

  C.(x+y)(x-y)=x2-y2

  D.(x+y)(x+y)=x2+y2

  6.如果(x+3)(x+a)=x2-2x-15,則a等于()

  A.2B.-8C.-12D.-5

  想一想

  你還有哪些地方不是很懂?請寫出來。

  _______________________________

  _______________________________

  ________________________________.

  預(yù)習(xí)展示:

  一、計算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)

  二、先化簡,再求值:

  (2a-3)(3a+1)-6a(a-4)其中a=2/17

  應(yīng)用探究

  計算

  (1)(a+b)(a-b)

  (2)(a+b)2

  (3)(a+b)(a2-ab+b2)

  (4)(a+b+c)(c+d+e)

  拓展提高

  1.當(dāng)y為何值時,(-2y+1)與(2-y)互為負(fù)倒數(shù).

  2.已知(x+2)(x2+ax+b)的積不含x的二次項和一次項,求a、b的值.

  3.已知:A=x2+x+1,B=x+p-1,化簡:AB-pA,當(dāng)x=-1時,求其值.

  堂堂清

  1.解方程:(2x+3)(x-4)-(x+2)(x-3)=x2+6.

  2.先化簡,再求值:5x(x2+2x+1)-x(x-4)(5x-3),其中x=1.

  教后反思

  在前面學(xué)習(xí)了單項式與單項式相乘,單項式與多項式相乘的法則之后,有繼續(xù)來學(xué)習(xí)多項式與多項式的乘法法則,對學(xué)生來說掌握起來并不困難,但是學(xué)生的計算能力不是很強,所以計算起來很浪費時間,并且計算容易出錯。

多項式的乘法教案3

  【教學(xué)目標(biāo)

  1、經(jīng)歷探索多項式乘法法則的過程,理解多項式乘法法則。

  2、學(xué)會用多項式乘法法則進(jìn)行計算。

  3、培養(yǎng)學(xué)生用幾何圖形理解代數(shù)知識的能力和復(fù)雜問題轉(zhuǎn)化為簡單問題的轉(zhuǎn)化思想。

  【教學(xué)重點、難點

  重點是掌握多項式的乘法法則并加以運用。

  難點是理解多項式乘法法則的推導(dǎo)過程和運用法則進(jìn)行計算。

  【教學(xué)過程

  一、回顧與思考

  教師引導(dǎo)學(xué)生復(fù)習(xí):單項式×多項式運算法則;整式的乘法實際上就是

  單項式×單項式; 單項式×多項式; 和今天學(xué)多項式×多項式

  二、創(chuàng)設(shè)情景,導(dǎo)入課題

  展示:節(jié)前語和圖片。

  展示:課本中三圖

  圖5-5

  圖5-6

  圖5-7

  一間廚房的平面布局如圖5-5,試用幾種方法表示廚房的總面積。(師生共同探索,鼓勵學(xué)生用不同的表示方法完成,然后總結(jié))

  由圖5-6得總面積為(a+n)(b+m);由圖5-7得總面積為a(b+m)+n(b+m)

  或ab+am+nb+nm ; 此時提出問題《多項多的'乘法》。

  三、探索法則與應(yīng)用

  (a+n)(b+m)=a(b+m)+n(b+m)=ab+am+nb+nm

  根據(jù)分配律,我們也能得到下面等式:

 。╝+n)(b+m)=ab+am+nb+nm

  1、在學(xué)生發(fā)言的基礎(chǔ)上,教師總結(jié)多項式×多項式的乘法法則并板書法則。

  讓學(xué)生體會法則的理論依據(jù):

  乘法對加法的分配律

  多項式乘以多項式先用一個多項式的每一項乘以另一個多項式的每一項,再把所得的積相加。

  2、例題講題

  例1 計算(1)(x+y)(a+2b)

  (2)(3x-1)(x+3)強調(diào)法則的作用。

  例2 先化簡,再求值:

 。2a-3)(3a+1)-6a(a-4)其中a=2/17

  解:(2a-3)(3a+1)-6a(a-4)

 。6a2+2a-9a-3-6a2+24a

 。17a-3

  當(dāng)a=2/17時,原式=17×2/17-3=-1

  3、課內(nèi)練習(xí)

  見課本P114

  四、拓展延伸,探索挑戰(zhàn)

  1、拓展演練

  (1)(a+b)(a-b) (2)(a+b)2 (3)(a+b)(a2-ab+b2)

 。4)(a+b+c)(c+d+e)

  2、探索

  課本P115 第6題

  五、歸納小結(jié),充實結(jié)構(gòu)

  指導(dǎo)學(xué)生總結(jié)本節(jié)課的知識點、學(xué)習(xí)過程等的自我評價。主要針對以下兩個方面:

  1、多項式×多項式 ;

  2、整式的乘法

  六、知識留戀、課后韻味

  布置作業(yè):作業(yè)本,一課一練。

【多項式的乘法教案】相關(guān)文章:

整式的乘法小結(jié)與復(fù)習(xí)教案03-20

多項式除以單項式的教案范文(通用6篇)10-15

《乘法的初步認(rèn)識》教案(通用6篇)02-25

《2-6的乘法口訣(一)》教案(精選10篇)12-31

關(guān)于多項式除以單項式的教學(xué)設(shè)計(通用12篇)07-20

《2、3乘法口訣》的教學(xué)反思02-26

《乘法分配律》教學(xué)設(shè)計02-23

三年級下冊《筆算乘法(不進(jìn)位)》教案(精選12篇)05-19

數(shù)學(xué)《表內(nèi)乘法二》教學(xué)反思02-02

不進(jìn)位乘法教學(xué)反思(精選10篇)11-21

用戶協(xié)議