中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

實(shí)用文檔>立方根教案

立方根教案

時(shí)間:2024-06-19 13:40:23

立方根教案

  作為一名教師,就不得不需要編寫教案,教案有助于順利而有效地開展教學(xué)活動(dòng)。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編整理的立方根教案,僅供參考,希望能夠幫助到大家。

立方根教案

立方根教案1

  一、教學(xué)目標(biāo)

  1.了解立方根和開立方的概念;

  2.會(huì)用根號(hào)表示一個(gè)數(shù)的立方根,掌握開立方運(yùn)算;

  3.培養(yǎng)學(xué)生用類比的思想求立方根的運(yùn)算能力;

  4.由立方與立方根的教學(xué),滲透數(shù)學(xué)的轉(zhuǎn)化思想;

  5.通過立方根符號(hào)的引入體驗(yàn)數(shù)學(xué)的簡(jiǎn)潔美.

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):立方根的概念與性質(zhì).

  教學(xué)難點(diǎn):會(huì)求某些數(shù)的立方根.

  三、教學(xué)方法

  啟發(fā)式,講練結(jié)合

  四、教學(xué)手段

  幻燈片.

  五、教學(xué)過程

  (一)復(fù)習(xí)提問

  請(qǐng)同學(xué)們回憶一下,平方根我們是如何定義的?平方根有哪些性質(zhì)?

  在同學(xué)們回答后,啟發(fā)學(xué)生是否可試著給數(shù)的立方根下個(gè)定義.

  1.立方根的概念:

  如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根.(也稱數(shù)a的三次方根)

  用數(shù)學(xué)式表示為:

  若x3=a,則x叫做a的立方根,或稱x叫做a的三次方根.

  2.立方根的表示方法:

  類似于平方根德表示方法,數(shù)a的立方根我們用符號(hào)

  來表示.讀作“三次根號(hào)下a”,其中a叫做被開方數(shù),3叫做根指數(shù),注意,在前面我們學(xué)習(xí)平方根的.表示方法說過當(dāng)根指數(shù)為2時(shí)可以省略不寫,現(xiàn)在是立方根了,這個(gè)根指數(shù)3是絕對(duì)不可省的,否則就會(huì)與平方根混淆了,例如

  表示125的立方根,而

  則表示125的算術(shù)平方根.練習(xí):用根號(hào)表示下列各數(shù)的立方根:

  3.開立方概念:

  求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方.

  4.開立方運(yùn)算與立方運(yùn)算互為逆運(yùn)算.

  因此,我們可以根據(jù)立方運(yùn)算來求一些數(shù)的立方根.

  例1. 求下列各數(shù)的立方根:

  解:(1)∵(-2)3=-8,

  (2)∵23=8,

  (4)∵ (0.6)3=0.216,

  (5)∵03=0,

  下面我們思考這樣一個(gè)問題:一個(gè)正數(shù)有幾個(gè)平方根?負(fù)數(shù)有沒有平方根?一個(gè)正數(shù)有幾個(gè)立方根?負(fù)數(shù)有沒有立方根?請(qǐng)學(xué)生來回答這個(gè)問題.由前面剛剛做過的題我們不難看出像8、0.126、103、

  這樣的正數(shù),有一個(gè)正的立方根;像-8、

  這樣的負(fù)數(shù)有一個(gè)負(fù)的立方根;0的立方根是0.由此我們得了立方根的性質(zhì).5.立方根的性質(zhì):

  (1)正數(shù)有一個(gè)正的立方根.

  (2)負(fù)數(shù)有一個(gè)負(fù)的立方根.

  (3)0的立方根是0.

  這里我們不妨與平方根的性質(zhì)做個(gè)比較,平方根中,正數(shù)有兩個(gè)平方根,它們互為相反數(shù),正數(shù)只有一個(gè)正的立方根;在平方根中負(fù)數(shù)是沒有平方根的,而負(fù)數(shù)有一個(gè)負(fù)的立方根;平方根與立方根唯一相同之處是0的平方根,立方根都是它本身.

立方根教案2

  一、教學(xué)目標(biāo)

  知識(shí)與技能

  1、了解立方根的概念,初步學(xué)會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.

  2、了解開立方與立方互為逆運(yùn)算,會(huì)用立方運(yùn)算求某些數(shù)的立方根.

  過程與方法

  1讓學(xué)生體會(huì)一個(gè)數(shù)的立方根的惟一性.

  2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會(huì)立方與開立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  情感態(tài)度與價(jià)值觀

  通過立方根符號(hào)的引入體會(huì)數(shù)學(xué)的簡(jiǎn)潔美。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn)

  立方根的概念和求法。

  難點(diǎn)

  立方根與平方根的區(qū)別,立方根的求法

  三、學(xué)情分析

  前面已經(jīng)學(xué)過了平方根的知識(shí),由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計(jì)上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進(jìn)行立方根知識(shí)的學(xué)習(xí),讓學(xué)生感覺到其實(shí)立方根知識(shí)并不難,可以與平方根知識(shí)對(duì)比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識(shí)的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識(shí)和新問題,會(huì)更理性和全面,會(huì)有更大的進(jìn)步。

  四、教學(xué)過程設(shè)計(jì)

  教學(xué)環(huán)節(jié)問題設(shè)計(jì)師生活動(dòng)備注

  情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長(zhǎng)應(yīng)該是多少?

  設(shè)這種包裝箱的邊長(zhǎng)為xm,則=27這就是求一個(gè)數(shù),使它的立方等于27.

  因?yàn)?27,所以x=3.即這種包裝箱的邊長(zhǎng)應(yīng)為3m

  歸納:

  立方根的概念:

  創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。

  通過具體問題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?

  因?yàn)椋ǎ,所?.125的'立方根是()

  因?yàn)椋ǎ?8的立方根是()

  因?yàn)椋ǎ,所?0.125的立方根是()

  因?yàn)椋ǎ?的立方根是()

  一個(gè)正數(shù)有一個(gè)正的立方根

  0有一個(gè)立方根,是它本身

  一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根

  任何數(shù)都有唯一的立方根

  【總結(jié)歸納】

  一個(gè)數(shù)的立方根,記作,讀作:“三次根號(hào)”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.

  探究二:

  因?yàn)樗?

  因?yàn)椋?總結(jié):

  利用開立方和立方互為逆運(yùn)算關(guān)系,求一個(gè)數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗(yàn)其正確性,求負(fù)數(shù)的立方根,可以先求出這個(gè)負(fù)數(shù)的絕對(duì)值的立方根,再取其相反數(shù),即。

立方根教案3

  教學(xué)目的

  1.通過實(shí)驗(yàn)經(jīng)歷立方根概念的產(chǎn)生的過程。

  2.了解立方根的概念,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根。

  3.了解開立方與立方互為逆運(yùn)算,能用立方運(yùn)算求某數(shù)的立方根。

  4.通過性質(zhì)推導(dǎo)過程培養(yǎng)學(xué)生的類比思想。

  教學(xué)重點(diǎn)

  立方根的概念與開立方的運(yùn)算。

  教學(xué)難點(diǎn)

  涉及兩種開立方的運(yùn)算,學(xué)生易混淆。

  教學(xué)過程

  一、 情景創(chuàng)設(shè),引入課題.

  1.要做一個(gè)體積為27立方厘米的立方體模型,它的.棱要多少長(zhǎng)?你是怎么知道的?

  2請(qǐng)同學(xué)們回憶一下,平方根是如何定義的?

  3平方根有哪些性質(zhì)?

  二、師生互動(dòng),拓展新知

  (通過類比的方法導(dǎo)出立方根的概念及開立方的定義.)

  1、你能否由平方根的定義說出立方根的定義呢?

  立方根的概念:

  如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根。(也稱數(shù)a的三次方根。)用數(shù)學(xué)式子表示為:若x3=a,則x叫做a的立方根或三次方根。

  2、立方根的表示方法:

  類似平方根的表示方法。數(shù)a的立方根我們用符號(hào)來表示,讀作“三次根號(hào)a”,其中a叫做被開方數(shù),3叫做根指數(shù),且不能省略,否則與平方根混淆。

  開平方:求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。

  開立方:求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方

  問:一個(gè)正數(shù)有幾個(gè)平方根,一個(gè)負(fù)數(shù)有幾個(gè)平方根?0呢?

  一個(gè)正數(shù)有幾個(gè)立方根,負(fù)數(shù)、0呢

  例1求下列各數(shù)的立方根:

 。1)-8;(2)8;(3)-8/27;(4)0、216;(5)0(6)4。

  解:略

  3.練一練 :第78頁(yè) 1,2

  4.立方根的性質(zhì):

 。1)正數(shù)有一個(gè)正的立方根,(2)負(fù)數(shù)有一個(gè)負(fù)的立方根,(3)0的立方根是0。

  例2求下列各式的值:

  (1)(2)

  解:略。

  三、反饋練習(xí)

  第78頁(yè)3

  四、課時(shí)小結(jié)

  我們?cè)趯W(xué)習(xí)立方根概念時(shí),應(yīng)對(duì)照平方根概念進(jìn)行。

  2、平方根的性質(zhì)

 。1)一個(gè)正數(shù)有兩個(gè)平方根,這兩個(gè)平方根互為相反數(shù)

 。2)0的平方根還是0

 。3)負(fù)數(shù)沒有平方根

  立方根的性質(zhì):(1)正數(shù)的立方根還是正數(shù)

  (2)0的平方根還是0

 。3)負(fù)數(shù)的立方根還是負(fù)數(shù)

  五、作業(yè)布置1.作業(yè)本

  同步練習(xí)1

  教學(xué)反思:

立方根教案4

  教學(xué)目標(biāo)

  使學(xué)生進(jìn)一步理解立方根的概念,并能熟練地進(jìn)行求一個(gè)數(shù)的立方根的運(yùn)算;

  能用有理數(shù)估計(jì)一個(gè)無理數(shù)的大致范圍,使學(xué)生形成估算的意識(shí),培養(yǎng)學(xué)生的估算能力;

  經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的過程,發(fā)展合情推理能力。

  教學(xué)難點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無理的'大致范圍。

  知識(shí)重點(diǎn)

  用有理數(shù)估計(jì)一個(gè)無理的大致范圍。

  對(duì)于計(jì)算器的使用,在教學(xué)中采用學(xué)生自己閱讀計(jì)算器的說明書、自己操作練習(xí)來掌握用計(jì)算器進(jìn)行開立方運(yùn)算的方法,并讓學(xué)生互相交流,讓學(xué)生親身體會(huì)到利用計(jì)算器不僅能給運(yùn)算帶來很大的方便,也給探求數(shù)量間的關(guān)系與變化帶來方便。在教學(xué)過程中,教師要關(guān)注學(xué)生能否通過閱讀,掌握用計(jì)算器進(jìn)行開立方運(yùn)算的簡(jiǎn)單操作;能否利用計(jì)算器探究數(shù)量間的關(guān)系,從而尋找出數(shù)量的變化關(guān)系。

  使用計(jì)算器進(jìn)行復(fù)雜運(yùn)算,可以使學(xué)生學(xué)習(xí)的重點(diǎn)更好地集中到理解數(shù)學(xué)的本質(zhì)上來,而估算也是一種具有實(shí)際應(yīng)用價(jià)值的運(yùn)算能力,在本節(jié)課的課堂教學(xué)中綜合運(yùn)用筆算、計(jì)算器和估算等培養(yǎng)學(xué)生的運(yùn)算能力。

立方根教案5

  一,教學(xué)目標(biāo)

  1.會(huì)用計(jì)算器求數(shù)的立方根.

  2.通過用計(jì)算器求立方根,培養(yǎng)學(xué)生的類比思想,提高運(yùn)算能力;

  3.利用計(jì)算器求立方根,使學(xué)生進(jìn)一步領(lǐng)會(huì)數(shù)學(xué)的轉(zhuǎn)化思想;

  4.通過利用計(jì)算器求值體驗(yàn)現(xiàn)代科技產(chǎn)品迅速、精確的功能,激發(fā)學(xué)習(xí)、探索知識(shí)的興趣。

  二.教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):用計(jì)算器求一個(gè)數(shù)的立方根的程序

 教學(xué)難點(diǎn):準(zhǔn)確的'用計(jì)算器求一個(gè)數(shù)的立方根

  三.教學(xué)方法

  啟發(fā)式

  四.教學(xué)手段

  計(jì)算器,實(shí)物投影儀

  五.教學(xué)過程

  前面我們學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的平方根,現(xiàn)在我們回憶一下計(jì)算器的使用方法.如何利用計(jì)算器求一個(gè)數(shù)的平方根?操作步驟?

  練習(xí):求下列各數(shù)的平方根:

  (1)13; (2)23.45

  在初一學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的平方或立方的方法?(由學(xué)生回答操作過程,并對(duì)比兩者的差別與聯(lián)系)

  對(duì)于用計(jì)算器求一個(gè)數(shù)的平方根的方法我們已經(jīng)熟悉了,那么如何用計(jì)算器器其一個(gè)數(shù)的立方根?與求平方根有何區(qū)別和練習(xí)?

  對(duì)于求立方根和平方根的操作過程基本相同,主要差別是在開方的次數(shù)上,因此要注意其立方根時(shí)開方數(shù)是3。

  例1.用計(jì)算器求

  分析:求解時(shí)要用到 上方的鍵 ,因此要用到“2F”功能鍵轉(zhuǎn)換。

  解:用計(jì)算器求 的步驟如下:

  =5

  小結(jié):從這道題刻一個(gè)觀察出用計(jì)算器求立方根和平方根十分類似,區(qū)別是在倒數(shù)第二步的按鍵將 改為改為 ,只是次數(shù)不同。

  例2.用計(jì)算器求

  解:用計(jì)算器求 的步驟如下:

  ≈12.26

  小結(jié):由于計(jì)算器的結(jié)果較精確小數(shù)的位數(shù)較多,在遇到開方開不盡的情況下,如無特殊說明,計(jì)算結(jié)果一律保留四個(gè)有效數(shù)字。

  練習(xí):求下列各式的值

  (1) ; (2) ; (3) ; (4)

  (5) (6) (7)

  (8) (9) (10)

  例3.求下列各式中x的值(精確到0.01)

 。1)

  解:

  用計(jì)算器求 的值:

 。2)

  解:

  用計(jì)算器求 的值:

  六.總結(jié)

  今天學(xué)習(xí)了用計(jì)算器求一個(gè)數(shù)的立方根,求立方根的方法與平方根的方法類似,但要注意開方次數(shù)。做題要細(xì)心仔細(xì),嚴(yán)格按照步驟操作。

  七.作業(yè)

  A組1、2、3

  八.板書

立方根教案6

  一、教學(xué)目標(biāo)

  1。了解立方根和開立方的概念;

  2。會(huì)用根號(hào)表示一個(gè)數(shù)的立方根,掌握開立方運(yùn)算;

  3。培養(yǎng)學(xué)生用類比的思想求立方根的運(yùn)算能力;

  4。由立方與立方根的教學(xué),滲透數(shù)學(xué)的轉(zhuǎn)化思想;

  5。通過立方根符號(hào)的引入體驗(yàn)數(shù)學(xué)的簡(jiǎn)潔美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):立方根的概念與性質(zhì).

  教學(xué)難點(diǎn):會(huì)求某些數(shù)的立方根.

  三、教學(xué)方法

  啟發(fā)式,講練結(jié)合

  四、教學(xué)手段

  幻燈片.

  五、教學(xué)過程

  (一)復(fù)習(xí)提問

  請(qǐng)同學(xué)們回憶一下,平方根我們是如何定義的?平方根有哪些性質(zhì)?

  在同學(xué)們回答后,啟發(fā)學(xué)生是否可試著給數(shù)的立方根下個(gè)定義.

  1.立方根的概念:

  如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根.(也稱數(shù)a的三次方根)

  用數(shù)學(xué)式表示為:

  若x3=a,則x叫做a的立方根,或稱x叫做a的三次方根.

  2.立方根的表示方法:

  類似于平方根德表示方法,數(shù)a的立方根我們用符號(hào) 來表示。讀作“三次根號(hào)下a”,其中a叫做被開方數(shù),3叫做根指數(shù),注意,在前面我們學(xué)習(xí)平方根的表示方法說過當(dāng)根指數(shù)為2時(shí)可以省略不寫,現(xiàn)在是立方根了,這個(gè)根指數(shù)3是絕對(duì)不可省的,否則就會(huì)與平方根混淆了,例如 表示125的立方根,而 則表示125的算術(shù)平方根。

  練習(xí):用根號(hào)表示下列各數(shù)的立方根:

  3.開立方概念:

  求一個(gè)數(shù)的立方根的運(yùn)算,叫做開立方.

  4.開立方運(yùn)算與立方運(yùn)算互為逆運(yùn)算.

  因此,我們可以根據(jù)立方運(yùn)算來求一些數(shù)的立方根.

  例1. 求下列各數(shù)的立方根:

  解:(1)∵(-2)3=-8,

  (2)∵23=8,

  (4)∵ (0。6)3=0。216,

  (5)∵03=0,

  下面我們思考這樣一個(gè)問題:一個(gè)正數(shù)有幾個(gè)平方根?負(fù)數(shù)有沒有平方根?一個(gè)正數(shù)有幾個(gè)立方根?負(fù)數(shù)有沒有立方根?請(qǐng)學(xué)生來回答這個(gè)問題.由前面剛剛做過的題我們不難看出像8、0。126、103、 這樣的正數(shù),有一個(gè)正的立方根;像-8、 、 這樣的負(fù)數(shù)有一個(gè)負(fù)的立方根;0的立方根是0.由此我們得了立方根的性質(zhì).

  5.立方根的性質(zhì):

  (1)正數(shù)有一個(gè)正的立方根.

  (2)負(fù)數(shù)有一個(gè)負(fù)的立方根.

  (3)0的立方根是0.

  這里我們不妨與平方根的性質(zhì)做個(gè)比較,平方根中,正數(shù)有兩個(gè)平方根,它們互為相反數(shù),正數(shù)只有一個(gè)正的立方根;在平方根中負(fù)數(shù)是沒有平方根的,而負(fù)數(shù)有一個(gè)負(fù)的立方根;平方根與立方根唯一相同之處是0的'平方根,立方根都是它本身.

  例2.求下列各式的值:

  解:(1)∵33=27,

  (2)∵ (-3)3=-27,

  (5)∵ (102)3=106,

  (6)∵ (103)3=109,

  例3. 解方程:

  (1)x3=0。125;(2)3(x-4)3-1536=0.

  解:(1)x3=0。125

  x=0。5.

  (2)3(x-4)3-1536=0(此題可由學(xué)生先做,教師糾正錯(cuò)誤)

  3(x-4)3=1536

  (x-4)3=512

  x-4=8

  x=12.

  盡管我們學(xué)習(xí)了立方根,而我們也只能由立方根的定義求解x3=a(a為常數(shù))這一類型的

  簡(jiǎn)單的三次方程,所以像第(2)小題,我們要把(x-4)看成一個(gè)整體,依然轉(zhuǎn)化成為x3=a的形式,再由立方根定義去解.

  填空練習(xí):

  (1)1的平方根是____;立方根為____;算術(shù)平方根為____.

  (2)平方根是它本身的數(shù)是____.

  (3)立方根是其本身的數(shù)是____.

  (4)算術(shù)平方根是其本身的數(shù)是________.

  (5) 的立方根為________。

  (6) 的平方根為________。

  (7) 的立方根為________ 。

  (8)一個(gè)自然數(shù)的算術(shù)平方根是a,那么與這個(gè)自然數(shù)相鄰的下一個(gè)自然數(shù)的平方根是____________;立方根是____________.

  解:(1)±1;1;1.

  (2)0.(此題學(xué)生容易把1也算進(jìn)去,注意糾正他們的錯(cuò)誤.)

  (3)±1和0.(由此題,再?gòu)?fù)習(xí)一道立方根的性質(zhì).)

  (4)0,1.(此題有學(xué)生可能會(huì)忘掉0.)

  (5)-2(此題學(xué)生易得出-4的答案,應(yīng)引導(dǎo)學(xué)生將 翻譯為-8,在求立方根,也有學(xué)生將 看成 得到 ,講解時(shí)注意)

  (6) (此題首先讓學(xué)生把 計(jì)算出來,再求平方根,而且平方根有兩個(gè))

  (7)-2.

  (8) , (此題引導(dǎo)學(xué)生先根據(jù)算術(shù)平方根來表示被開方數(shù)為a2,再表示相鄰的下一個(gè)自然數(shù)為a2+1,注意表示其平方根時(shí)有兩個(gè)值.)

  六、總結(jié)

  今天我們主要學(xué)習(xí)了立方根的概念和性質(zhì),一定要與平方根的概念和性質(zhì)相對(duì)比去理解.平方根與立方根是今后我們學(xué)習(xí)中經(jīng)常會(huì)用到的兩個(gè)非常重要的概念,希望同學(xué)們能夠熟練地掌握它,尤其是它們之間的聯(lián)系與區(qū)別.

  七、作業(yè)

  教材P.141練習(xí)1、2、4.

  八、板書設(shè)計(jì)

  探究活動(dòng)

  立方根近似值的求法

  當(dāng)立方根是一位整數(shù)時(shí),很容易求出這個(gè)立方根;但當(dāng)立方根是兩位或兩位以上的整數(shù)時(shí),也能容易地求出嗎?例如求140608的立方根,怎樣求容易?

  下面就介紹它的巧妙求法.

  先用前三位數(shù)140來確定立方根的十位數(shù).因?yàn)?3<140<63,所以十位數(shù)是5,而不是6.再用最后一位數(shù)8來確定立方根的個(gè)位數(shù).因?yàn)?3=8,所以個(gè)位數(shù)是2.就是說,140608的立方根是52.確定立方根的個(gè)位數(shù)時(shí)要注意下面規(guī)律:我們知道:13=1,43=64,53=125,63=216,93=729,就是說當(dāng)被開方數(shù)的末位數(shù)是1、4、5、6、9時(shí),立方根的個(gè)位數(shù)就等于它本身(1、4、5、6、9);

  因?yàn)?3=8,83=512,就是說當(dāng)被開方數(shù)的末位數(shù)是8和2時(shí),立方根的個(gè)位數(shù)就分別是2和8,叫做2與8互換原則;同樣還有3與7互換原則(被開方數(shù)的末位數(shù)分別是3和7,立方根的個(gè)位數(shù)就分別是7和3).

  一般地,如果103<a<1003,且a是能開盡立方的數(shù),那么就能用這種方法求a的立方根.請(qǐng)用這種方法求下列各數(shù)的立方根:

  21952,50653,79507,287496,970299.

立方根教案7

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.了解立方根的概念,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.

  2.能用立方運(yùn)算求某些數(shù)的立方根,了解開立方與立方互為逆運(yùn)算.

  3.了解立方根的性質(zhì).

  4.區(qū)分立方根與平方根的不同.

  (二)能力訓(xùn)練要求

  1.在學(xué)了平方根的基礎(chǔ)上,要求學(xué)生能用類比的方法學(xué)習(xí)立方根的有關(guān)知識(shí),領(lǐng)會(huì)類比思想.

  2.發(fā)展學(xué)生的求同求異思維,使他們能在復(fù)雜環(huán)境中明辨是非.

  (三)情感與價(jià)值觀要求

  當(dāng)今社會(huì)是科學(xué)飛速發(fā)展、信息千變?nèi)f化的時(shí)代,每一個(gè)人都不可能把一生中要接觸的知識(shí)全部學(xué)會(huì),因此讓他們會(huì)學(xué)知識(shí)比學(xué)會(huì)知識(shí)更重要,這就要從小培養(yǎng)良好的學(xué)習(xí)習(xí)慣,能自己解決的問題就自己解決,其中類比的學(xué)習(xí)方法就是一種重要的學(xué)習(xí)方法,本節(jié)課重點(diǎn)訓(xùn)練學(xué)生的類比思想的養(yǎng)成.

  ●教學(xué)重點(diǎn)

  立方根的概念.

  ●教學(xué)難點(diǎn)

  1.正確理解立方根的概念.

  2.會(huì)求一個(gè)數(shù)的立方根.

  3.區(qū)分立方根與平方根的不同之處.

  ●教學(xué)方法

  類比學(xué)習(xí)法.

  ●教具準(zhǔn)備

  投影片兩張:

  第一張:平方根與立方根的聯(lián)系與區(qū)別(記作§2.3A);

  第二張:補(bǔ)充練習(xí)(記作§2.3B).

  ●教學(xué)過程

  Ⅰ.新課導(dǎo)入

  上節(jié)課我們學(xué)習(xí)了平方根的定義,若x2=a,則x叫a的平方根,即x=±.

  若正方體的棱長(zhǎng)為a,體積為8,根據(jù)正方體體積的公式得a3=8,那a叫8的什么呢?本節(jié)課請(qǐng)大家根據(jù)上節(jié)課的內(nèi)容自己來類推出結(jié)論,若x3=a,則x叫a的什么呢?

  Ⅱ.新課講解

  1.[師]請(qǐng)大家先回憶平方根的定義.

  [生]若一個(gè)數(shù)x的平方等于a,即x2=a,則x叫a的平方根.

  [師]在平方根定義的基礎(chǔ)上,若x3=a,則x叫a的什么呢?請(qǐng)大家自己猜想然后討論得出結(jié)果.

  [生]因?yàn)閤2=a,x叫a的平方根,所以當(dāng)x的立方等于a時(shí),x叫a的立方根.

  [師]當(dāng)x4=a時(shí),x叫a的什么根呢?

  [生]當(dāng)x的4次方等于a時(shí),x叫a的4次方根.

  [師]大家應(yīng)為這位同學(xué)的精彩回答而鼓掌.下面大家能不能再根據(jù)平方根的寫法來類推立方根的記法呢?

  [生]能.若x的平方等于a,則x叫a的平方根,記作x=±,讀作x等于正、負(fù)二次根號(hào)a,簡(jiǎn)稱為x等于正,負(fù)根號(hào)a.若x的立方等于a,則x叫a的立方根,記作x=±,讀作x等于正、負(fù)三次根號(hào)a,簡(jiǎn)稱x等于正、負(fù)根號(hào)a.

  [師]請(qǐng)大家對(duì)這位同學(xué)的回答展開討論,小組總結(jié)后選代表發(fā)言.

  [生甲]我認(rèn)為這位同學(xué)回答得不對(duì).如果x2=a,則x=±,x3=a時(shí),x=±也成立的話,那如何區(qū)分平方根與立方根呢?

  [生乙]因?yàn)槌朔脚c開方是互為逆運(yùn)算,求立方根可通過逆運(yùn)算立方來求,如x3=8,因?yàn)?3=8,所以x=2,只有一個(gè)根而不是±2,所以立方根的個(gè)數(shù)不正確.

  [師]大家的分析非常有道理,請(qǐng)認(rèn)真看書第13、14頁(yè)可知,若一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根(cuberoot;也叫三次方根)如2是8的立方根,記為x=,讀作x等于三次根號(hào)a.

  開立方的定義

  [師]大家先回憶開平方的定義,再類推開立方的定義.

  [生]求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方,則求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開立方,其中a叫做被開方數(shù).

  (2)立方根的性質(zhì)

  [師]2的立方等于多少?是否有其他的數(shù),它的立方也是8?

  [生]2的立方等于8,(-2)3=-8,所以沒有其他的數(shù)的立方等于8.

  [師]-3的立方等于多少?是否有其他的數(shù),它的立方也是-27?

  [生]-3的立方等于-27,33=27,所以沒有其他的數(shù)的立方等于-27.

  [師]0的立方等于多少?0有幾個(gè)立方根?

  [生]0的立方等于0,0有1個(gè)立方根是0.

  [師]從剛才的討論中,大家總結(jié)一下正數(shù)有幾個(gè)立方根?0有幾個(gè)立方根?負(fù)數(shù)有幾個(gè)立方根?

  [生]正數(shù)有一個(gè)立方根,0有一個(gè)立方根是0,負(fù)數(shù)有一個(gè)立方根.

  [師]對(duì).正數(shù)有一個(gè)正的立方根、負(fù)數(shù)有一個(gè)負(fù)的立方根,0的立方根有一個(gè),是0.

  (3)平方根與立方根的區(qū)別與聯(lián)系.

  [師]我們已經(jīng)學(xué)習(xí)了平方根與立方根的定義,并會(huì)求某些數(shù)的平方根和立方根,下面請(qǐng)大家說說它們的聯(lián)系與區(qū)別.

  [生]從定義來看,若一個(gè)數(shù)x的平方等于a,即x2=a,則x叫a的平方根;若一個(gè)數(shù)x的立方等于a,即x3=a,則x叫a的立方根,都是一個(gè)數(shù)x的乘方等于a,但一個(gè)是平方,另一個(gè)是立方.

  [生]一個(gè)正數(shù)的平方根有兩個(gè),一個(gè)負(fù)數(shù)沒有平方根,零的平方根有一個(gè)是零;一個(gè)正數(shù)的立方根有一個(gè),并且是正數(shù),一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根,零的立方根有一個(gè)是零.

  [生]它們的表示方法和讀法不同,一個(gè)正數(shù)a的平方根表示為±,立方根表示為.

  [師]很好.大家現(xiàn)在已經(jīng)具備了一定的分析判斷能力,這對(duì)大家以后的學(xué)習(xí)和工作非常有幫助,繼續(xù)發(fā)揚(yáng)下去,你們都將前途無量,下面我再系統(tǒng)地總結(jié)一下.

  投影片:(§2.3A)

  平方根與立方根的聯(lián)系與區(qū)別.

  聯(lián)系:

  (1)0的'平方根、立方根都有一個(gè)是0.

  (2)平方根、立方根都是開方的結(jié)果.

  區(qū)別:

  (1)定義不同:“如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根”;“如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根.”

  (2)個(gè)數(shù)不同:一個(gè)正數(shù)有兩個(gè)平方根,一個(gè)正數(shù)有一個(gè)立方根;一個(gè)負(fù)數(shù)沒有平方根,一個(gè)負(fù)數(shù)有一個(gè)立方根.

  (3)表示法不同

  正數(shù)a的平方根表示為±,a的立方根表示為.

  (4)被開方數(shù)的取值范圍不同

  ±中的被開方數(shù)a是非負(fù)數(shù);中的被開方數(shù)可以是任何數(shù).

  2.例題講解

  [例1]求下列各數(shù)的立方根:

  (1)-27;(2);(3)0.216;(4)-5.

  解:(1)因?yàn)?-3)3=-27,所以-27的立方根是-3,即=-3;

  (2)因?yàn)?)3=,所以的立方根是,即=;

  (3)因?yàn)?.63=0.216,所以0.216的立方根是0.6,即=0.6;

  (4)-5的立方根是.

  [師]請(qǐng)大家思考下列問題.

  表示a的立方根,則()3等于什么?等于什么?

  大家可以先舉例后找規(guī)律.

  [生]∵23=8,∴=2,()3=8;

  ∵(-2)3=-8,

  ∴=-2;()3=-8;

  ∵()3=,

  ∴;

  ∵(-)3=-,

  ∴.

  ∴()3=a.

  [師]若x3=a,則x=,∴x3=()3=a.

  ∴()3=a.

  又∵a3是a的立方,所以a3的立方根就是a,所以=a.下面就這兩個(gè)式子進(jìn)行練習(xí).

  [例2]求下列各式的值:

  (1);(2);(3)-;(4)()3

  解:(1)==-2;

  (2)=;

  (3)=;

  (4)()3=9.

  Ⅲ.課堂練習(xí)

  (一)隨堂練習(xí)

  1.求下列各式的值:

  .

  解:;

  2.一個(gè)正方體,它的體積是棱長(zhǎng)為3厘米的正方體體積的8倍,這個(gè)正方體的棱長(zhǎng)是多少?

  解:設(shè)正方體的棱長(zhǎng)是x厘米,得

  x3=8×33

  ∴x3=216

  ∴x=6(厘米)

  答:這個(gè)正方體的棱長(zhǎng)是6厘米.

  (二)補(bǔ)充練習(xí)

  投影片:(§2.3B)

  1.求下列各數(shù)的立方根:

  0,1,-,6,-,0.001

  2.求下列各式的值:

  3.下列說法對(duì)不對(duì)?

  -4沒有立方根;

  1的立方根是±1;

  的立方根是;

  -5的立方根是-;

  64的算術(shù)平方根是8.

  1.解:因?yàn)?3=0,所以0的立方根為0.

  即=0;

  因?yàn)?3=1,所以1的立方根為1.

  即=1;

  因?yàn)榈牧⒎礁鶠?

  即;

  6的立方根為;

  ∵-的立方根為-,即;

  ∵0.13=0.001,所以0.001的立方根為0.1,即=0.1.

  2.解:;

  .

  3.答案:錯(cuò).因?yàn)樨?fù)數(shù)也有立方根;

  錯(cuò).因?yàn)?的立方根是1;

  錯(cuò).的立方根是,平方根是±;

  對(duì).-5的立方根是,-;

  對(duì).

  Ⅳ.議一議

  1.某化工廠使用一種球形儲(chǔ)氣罐儲(chǔ)藏氣體.現(xiàn)在要造一個(gè)新的球形儲(chǔ)氣罐,如果它的體積是原來的8倍,那么它的半徑是原儲(chǔ)氣罐半徑的多少倍?

  解:設(shè)原來的球形儲(chǔ)氣罐的半徑為r1,后來的儲(chǔ)氣罐的半徑為r2,由球體積公式V=πr3得

  8×πr13=πr23

  ∴8r13=r23

  ∴(2r1)3=r23

  ∴r2=2r1

  即新儲(chǔ)氣罐的半徑是舊儲(chǔ)氣罐半徑的2倍.

  2.一個(gè)正方體的體積變?yōu)樵瓉淼膎倍,它的棱長(zhǎng)變?yōu)樵瓉淼亩嗌俦?

  解:設(shè)原正方體的棱長(zhǎng)為a,后來的正方體的棱長(zhǎng)為b,得

  na3=b3∴

  ∴b=.

  即后來的棱長(zhǎng)變?yōu)樵瓉淼谋?

  Ⅴ.課時(shí)小結(jié)

  本節(jié)課學(xué)了如下內(nèi)容:

  1.立方根的定義.

  2.立方根的性質(zhì).

  3.開立方的定義.

  4.平方根與立方根的區(qū)別與聯(lián)系.

  5.會(huì)求一個(gè)數(shù)的立方根.

  Ⅵ.課后作業(yè)

  習(xí)題2.5.

 、.活動(dòng)與探究

  1.求下列各式中的x.

  (1)8x3+27=0;

  (2)(x-1)3-0.343=0;

  (3)81(x+1)4=16;

  (4)32x5-1=0.

  分析:先把每一個(gè)式子都化成x3=的形式,然后再根據(jù)平方根或立方根的定義來求,

  解:(1)由8x3+27=0.∴8x3=-27

  ∴x3=∴x=;

  (2)由(x-1)3-0.343=0

  ∴(x-1)3=0.343

  ∴x-1==0.7

  ∴x=1.7;

  (3)由81(x+1)4=16

  ∴(x+1)4=

  ∴x+1=±

  ∴x=±-1∴x=-或x=-;

  (4)由32x5-1=0

  ∴x5=

  ∴x=.

  2.求滿足+1=x的x的值.

  解:=x-1

  ∴x-1=-1或x-1=0或x-1=1

  ∴x=0或x=1或x=2

  3.計(jì)算

  (1)-;

  (2).

  解:(1);

  (2)

【立方根教案】相關(guān)文章:

《左傳》教案10-24

存貨教案02-28

愛蓮說的經(jīng)典教案03-20

《牧場(chǎng)上的家教案》經(jīng)典教案設(shè)計(jì)03-20

茶花賦教案04-06

《什么蟲》教案01-08

《文化苦旅》教案02-27

大學(xué)教案的寫法10-05

《認(rèn)識(shí)鐘表》的教案03-19

《沙田山居》教案01-29

用戶協(xié)議