中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

實用文檔> 數(shù)學(xué)幾何證明選講教案

數(shù)學(xué)幾何證明選講教案

時間:2024-06-27 20:21:34

數(shù)學(xué)幾何證明選講教案

數(shù)學(xué)幾何證明選講教案

 數(shù)學(xué)幾何證明選講教案

  考試要求重難點擊命題展望

  1.了解平行線截割定理.

  2.會證明并應(yīng)用直角三角形射影定理.

  3.會證明并應(yīng)用圓周角定理,圓的切線的判定定理及性質(zhì)定理,并會運用它們進行計算與證明.

  4.會證明并應(yīng)用相交弦定理、圓內(nèi)接四 邊形的性質(zhì)定理與判定定理、切割線定理,并會運用它們進行幾何計算與證明.

  5.了解平行投影的含義,通過圓柱與平面的位置關(guān)系了解平行投影;會證明平面與圓柱面的截線是橢圓(特殊情形是圓).

  6.了解下面的定理.

  定理:在空間中,取直線l為軸,直線l′與l相交于點O,其夾角為α,l′圍繞l旋轉(zhuǎn)得到以O(shè)為頂點,l′為母線的圓錐面,任取平面π,若它與軸l的交角為β(π與l平行,記β=0),則:

 、佴拢睛粒矫姒信c圓錐的交線為橢圓;

 、讦拢溅粒矫姒信c圓錐的交線為拋物線;

 、郐拢鸡,平面π與圓錐的交線為雙曲線.

  7.會利用丹迪林(Dandelin)雙 球(如圖所示,這兩個球位于圓錐的內(nèi)部,一個位于平面π的上方,一個位于平面π的下方,并且與平面π及圓錐面均相切,其切點分別為F,E)證明上述定理①的情形:

  當(dāng)β>α?xí)r,平面π與圓錐的交線為橢圓.

  (圖中,上、下兩球與圓錐面相切的切點分別為點B和點C,線段BC與平面π相交于點A)

  8.會證明以下結(jié)果:

 、僭7.中,一個丹迪林球與圓 錐面的交線為一個圓,并與圓錐的底面平行.記這個圓所在的平面為π′.

 、谌绻矫姒信c平面π′的交線為m,在6.①中橢圓上任取點A,該丹迪林球與平面π的切點為F,則點A到點F的距離與點 A到直線m的距離比是小于1的常數(shù)e(稱點F為這個橢圓的焦點,直線m為橢圓的準線,常數(shù)e為離心率).

  9.了解定理6.③中的證明,了解當(dāng)β無限接近α?xí)r,平面π的極限結(jié)果. 本章重點:相似三角形的判定與性質(zhì),與圓有關(guān)的若干定理及其運用,并將其運用到立體幾何中.

  本章難點:對平面截圓柱、圓錐所得的曲線為圓、橢圓、雙曲線、拋物線的證明途徑與方法,它是解立體幾何、平面幾何知識的綜合運用,應(yīng)較好地把握.

  本專題強調(diào)利用演繹推理證明結(jié)論,通過推理證明進一步發(fā)展學(xué)生的邏輯推理能力,進一步提高空間想象能力、幾何直觀能力和綜合運用幾何方法解決問題的能力.

  第一講與第二講是傳統(tǒng)內(nèi)容,高考中主要考查平行線截割定理、直角三角形射影定理以及與圓有關(guān)的性質(zhì)和判定,考查邏輯推理能力.第三講內(nèi)容是新增內(nèi)容,在新課程高考下,要求很低,只作了解.

  知識網(wǎng)絡(luò)

  16.1 相似三角形的判定及有關(guān)性質(zhì)

  典例精析

  題型一 相似三角形的判定與性質(zhì)

  【例1】 如圖,已知在△ABC中,D是BC邊的中點,且AD=AC,DE⊥BC,DE與AB相交于點E,EC與AD相交于點F.

  (1)求證:△ABC∽△FCD;

  (2)若S△FCD=5,BC=10,求DE的長.

  【解析】(1)因為DE⊥BC,D是BC的中點,所以EB=EC,所以∠B=∠1.

  又因為AD=AC,所以∠2=∠ACB.所以△ABC∽△FCD.

  (2)過點A作AM⊥BC,垂足為點M.因為△ABC∽△FCD,BC=2CD,所以S△ABCS△FCD=(BCCD)2=4,又因為S△FCD=5,所以S△ABC=20.因為S△ABC=12BC?AM,BC=10,所以20=12×10×AM,所以AM=4.又因為DE∥AM,所以DEAM=BDBM,因為DM=12DC=52,BM=BD+DM,BD=12BC=5,所以DE4=55+52,所以DE=83.

  【變式訓(xùn)練1】如右圖,在△ABC中,AB=14 cm,ADBD=59,DE∥BC,CD⊥AB,CD=12 cm.求△ADE的面積和周長.

  【解析】由AB=14 cm,CD=12 cm,CD⊥AB,得S△ABC=84 cm2.

  再由DE∥BC可得△ABC∽△ADE.由S△ADES△ABC=(ADAB)2可求得S△ADE=757 c m2.利用勾股定理求出BC,AC,再由相似三角 形性質(zhì)可得△ADE的周長為15 cm.

  題型二 探求幾何結(jié)論

  【例2】如圖,在梯形ABCD中,點E,F(xiàn)分別在AB,CD上,EF∥AD,假設(shè)EF做上下平行移動.

  (1)若AEEB=12,求證:3EF=BC+2AD;

  (2)若AEEB=23,試判斷EF與BC,AD之間的關(guān)系,并說明理由;

  (3)請你探究一般結(jié)論,即若AEEB=mn,那么你可以得到什么結(jié)論?

  【解析】 過點A作AH∥CD分別交EF,BC于點G、H.

  (1)因為AEEB=12,所以AEAB=13,

  又EG∥BH,所以EGBH=AEAB=13,即3EG=BH,

  又EG+GF=EG+AD=EF,從而EF=13(BC-HC)+AD,

  所以EF=13BC+23AD,即3EF=BC+2AD.

  (2)EF與BC,AD的關(guān)系式為5EF=2BC+3AD,理由和(1)類似.

  (3)因為AEEB=mn,所以AEAB=mm+n,

  又EG∥BH,所以EGBH=AEAB,即EG=mm+nBH.

  EF=EG+GF=EG+AD=mm+n(BC-AD)+AD,

  所以EF=mm+nBC+nm+nAD,

  即(m+n)EF=mBC+nAD.

  【點撥】 在相似三角形中,平行輔助線是常作的輔助線之一;探求幾何結(jié)論可按特殊到一般的思路去獲取,但結(jié)論證明應(yīng)從特殊情況得到啟迪.

  【變式訓(xùn)練2】如右圖,正方形ABCD的邊長為1,P是CD邊上中點,點Q在線段BC上,設(shè)BQ=k,是否存在這樣的實數(shù)k,使得以Q,C,P為頂點的三角形與△ADP相似?若存在,求出k的值;若不存在,請說明理由.

  【解析】設(shè)存在滿足條件的實數(shù)k,

  則在正方形ABCD中,∠D=∠C=90°,

  由Rt△ADP∽Rt△QCP或Rt△ADP∽Rt△PCQ得ADQC=DPCP或ADPC=DPCQ,

  由此解得CQ=1或CQ=14.

  從而k=0或k=34.

  題型三 解決線的位置或數(shù)量關(guān)系

  【例3】(2009江蘇)如圖,在四邊形ABCD中,△ABC △BAD,求證:AB∥CD.

  【證明】 由△ABC≌△BAD得∠ACB=∠BDA,所以A、B、C、D四點共圓,

  所以∠CAB=∠CDB.

  再由△ABC≌△BAD得∠CAB=∠DBA,

  所以∠DBA=∠CDB,即AB∥CD.

  【變式訓(xùn)練3】如圖,AA1與BB1相交于點O,AB∥A1B1且AB=12A1B1,△AOB的外接圓的直徑為1,則△A1OB1的外接圓的直徑為 .

  【解析】因為AB∥A1B1且AB=12A1B1,所以△AOB∽△A1OB1

  因為兩三角形外接圓的直徑之比等于相似比.

  所以△A1OB1的外接圓直徑為2.

  總結(jié)提高

  1.相似三角形的判定與性質(zhì)這一內(nèi)容是平面幾何知識的重要組成部分,是解題的工具,同時它的內(nèi)容滲透了等價轉(zhuǎn)化、從一般到特殊、分類討論等重要的數(shù)學(xué)思想與方法,在學(xué)習(xí)時應(yīng)以它們?yōu)橹笇?dǎo).相似三角形的證法有:定義法、平行法、判定定理法以及直角三角形的HL法.

  相似三角形的性質(zhì)主要有對應(yīng)線的比值相等(邊長、高線、中線、周長、內(nèi)切圓半徑等),對應(yīng)角相等,面積的比等于相似比的平方.

  2.“平行出相似”“平行成比例”,故此章中平行輔助線是常作的輔助線之一,遇到困難時應(yīng)常考慮此類輔助線.

  

【 數(shù)學(xué)幾何證明選講教案】相關(guān)文章:

關(guān)于《我選我》的教案03-19

《我選我》教案反思03-20

小學(xué)《圖形與幾何》教學(xué)設(shè)計(通用11篇)05-02

銀行選部門報告模板03-20

離職報告范選15篇05-31

數(shù)學(xué)單項式教案10-25

數(shù)學(xué)教案:圓的認識02-12

數(shù)學(xué)因真實而精彩教案03-20

認識球體數(shù)學(xué)教案03-20

蘇教版數(shù)學(xué)分數(shù)的教案03-20

用戶協(xié)議