高一數學必修1各章知識點總結
高一必修一各章知識點總結
第一章 集合與函數概念
一、集合有關概念
- 集合的含義
- 集合的中元素的三個特性:
- 元素的確定性如:世界上最高的山
- 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
- 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
- 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
- 集合的表示方法:列舉法與描述法。
- 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
- 列舉法:{a,b,c……}
- 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。{x∈R| x-3>2} ,{x| x-3>2}
- 語言描述法:例:{不是直角三角形的三角形}
- Venn圖:
4、集合的分類:
- 有限集 含有有限個元素的集合
- 無限集 含有無限個元素的集合
- 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且A≠ B那就說集合A是集合B的真子集,記作AB(或BA)
③如果 AB, BC ,那么 AC
④ 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
- 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 | 交 集 | 并 集 | 補 集 |
定 義 | 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}. | 由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}). | 設S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 記作,即 A CSA= |
韋 恩 圖 示 | A | ||
性 質 | AA=A AΦ=Φ AB=BA ABA ABB | AA=A AΦ=A AB=BA ABA ABB | (CuA) (CuB) = Cu (AB) (CuA) (CuB) = Cu(AB) A (CuA)=U A (CuA)= Φ. |
例題:
1.下列四組對象,能構成集合的是 ( )
A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等于它自身的實數
2.集合{a,b,c }的真子集共有 個
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關系是 .
4.設集合A=,B=,若AB,則的取值范圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有 人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M= .
7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.
注意:
1.定義域:能使函數式有意義的實數x的集合稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于1.
(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等于零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
- 相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
- 描點法:
- 圖象變換法
常用變換方法有三種
- 平移變換
- 伸縮變換
- 對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個區(qū)間D內的任意兩個自變量x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區(qū)間D上是增函數.區(qū)間D稱為y=f(x)的單調增區(qū)間.
如果對于區(qū)間D上的任意兩個自變量的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區(qū)間上是減函數.區(qū)間D稱為y=f(x)的單調減區(qū)間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區(qū)間是增函數或減函數,那么說函數y=f(x)在這一區(qū)間上具有(嚴格的)單調性,在單調區(qū)間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區(qū)間與單調性的判定方法
(A) 定義法:
任取x1,x2∈D,且x1<x2;
作差f(x1)-f(x2);
變形(通常是因式分解和配方);
定號(即判斷差f(x1)-f(x2)的正負);
下結論(指出函數f(x)在給定的區(qū)間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規(guī)律:“同增異減”
注意:函數的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2).奇函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
利用定義判斷函數奇偶性的步驟:
首先確定函數的定義域,并判斷其是否關于原點對稱;
確定f(-x)與f(x)的關系;
作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
- 湊配法
- 待定系數法
- 換元法
- 消參法
10.函數最大(小)值(定義見課本p36頁)
利用二次函數的性質(配方法)求函數的最大(。┲
利用圖象求函數的最大(。┲
利用函數單調性的判斷函數的最大(。┲担
如果函數y=f(x)在區(qū)間[a,b]上單調遞增,在區(qū)間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區(qū)間[a,b]上單調遞減,在區(qū)間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數的定義域:
⑴ ⑵
2.設函數的定義域為,則函數的定義域為_ _
3.若函數的定義域為,則函數的定義域是
4.函數 ,若,則=
5.求下列函數的值域:
⑴ ⑵
(3) (4)
6.已知函數,求函數,的解析式
7.已知函數滿足,則= 。
8.設是R上的奇函數,且當時,,則當時=
在R上的解析式為
9.求下列函數的單調區(qū)間:
⑴ ⑵ ⑶
10.判斷函數的單調性并證明你的結論.
11.設函數判斷它的奇偶性并且求證:.
第二章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.
- 負數沒有偶次方根;0的任何次方根都是0,記作。
當是奇數時,,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規(guī)定:
,
- 0的正分數指數冪等于0,0的負分數指數冪沒有意義
3.實數指數冪的運算性質
(1)· ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數,其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 | 0<a<1 |
定義域 R | 定義域 R |
值域y>0 | 值域y>0 |
在R上單調遞增 | 在R上單調遞減 |
非奇非偶函數 | 非奇非偶函數 |
函數圖象都過定點(0,1) | 函數圖象都過定點(0,1) |
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數當且僅當;
(3)對于指數函數,總有;
二、對數函數
(一)對數
1.對數的概念:一般地,如果,那么數叫做以為底的對數,記作:(— 底數,— 真數,— 對數式)
說明: 注意底數的限制,且;
;
注意對數的書寫格式.
兩個重要對數:
常用對數:以10為底的對數;
自然對數:以無理數為底的對數的對數.
- 指數式與對數式的互化
冪值 真數
= N= b
底數
指數 對數
(二)對數的運算性質
如果,且,,,那么:
·+;
-;
.
注意:換底公式
(,且;,且;).
利用換底公式推導下面的結論
(1);(2).
(二)對數函數
1、對數函數的概念:函數,且叫做對數函數,其中是自變量,函數的定義域是(0,+∞).
注意: 對數函數的定義與指數函數類似,都是形式定義,注意辨別。如:, 都不是對數函數,而只能稱其為對數型函數.
對數函數對底數的限制:,且.
2、對數函數的性質:
a>1 | 0<a<1 | |
定義域x>0 | 定義域x>0 | |
值域為R | 值域為R | |
在R上遞增 | 在R上遞減 | |
函數圖象都過定點(1,0) | 函數圖象都過定點(1,0) |
(三)冪函數
1、冪函數定義:一般地,形如的函數稱為冪函數,其中為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義并且圖象都過點(1,1);
(2)時,冪函數的圖象通過原點,并且在區(qū)間上是增函數.特別地,當時,冪函數的圖象下凸;當時,冪函數的圖象上凸;
(3)時,冪函數的圖象在區(qū)間上是減函數.在第一象限內,當從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當趨于時,圖象在軸上方無限地逼近軸正半軸.
例題:
1. 已知a>0,a0,函數y=ax與y=loga(-x)的圖象只能是 ( )
2.計算: ① ;②= ;= ;
③ =
3.函數y=log(2x2-3x+1)的遞減區(qū)間為
4.若函數在區(qū)間上的最大值是最小值的3倍,則a=
5.已知,(1)求的定義域(2)求使的的取值范圍
第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。
即:方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
(代數法)求方程的實數根;
(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
(1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.
(2)△=0,方程有兩相等實根,二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
(3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點。
5.函數的模型
收集數據
畫散點圖
選擇函數模型
求函數模型
用函數模型解釋實際問題
符合實際
不符合實際
檢驗
【高一數學必修1各章知識點總結】相關文章:
高一數學必修3映射教案08-12
蘇教版必修1《前方》教案06-16
高中高一語文必修1期中試卷試題06-05
蘇教版必修1鄉(xiāng)土情結教案06-15
高一年級數學必修2第三單元關于直線與方程的知識點整理06-02
數學高一年級下冊知識點06-02
三年級小學生數學1單元知識點歸納06-04
關于小學一年級下冊數學1單元知識點07-03
高一數學的教學總結07-16
高一年級數學《立體幾何》知識點06-02